
CNN Architectures
CS60010: Deep Learning

Abir Das

IIT Kharagpur

Feb 03, 04, 09 and 10, 2022

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Agenda

To discuss in detail about some of the highly successful deep CNN
architectures

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 2 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

LeNet-5

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20186

Review: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

§ Citation of the paper as on Feb 03, 2022 is 42,871

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 3 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

§ Citation of the paper as on Feb 03, 2022 is 1,02,838

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 4 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 5 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 6 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 7 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3x3 filters applied at stride 2
Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 8 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3x3 filters applied at stride 2.
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 9 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3x3 filters applied at stride 2.
Output volume: 27x27x96

Parameters: 0!

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 10 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 20187

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 11 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

AlexNet

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li & Justin Johnson & Serena
YeungFei-Fei Li & Justin Johnson & Serena Yeung

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- Pooling is overlapping
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 12 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Imagenet Leaderboard

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201821

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 13 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Imagenet Leaderboard

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201822

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
ZFNet: Improved
hyperparameters over
AlexNet

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 14 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ZFNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201823

ZFNet [Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%
§ Citation of the paper as on Feb 03, 2021 is 14,464

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 15 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ZFNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201824

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 16 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19

§ Citation of the paper as on Feb 03, 2022 is 72,788

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 17 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

AlexNet VGG16 VGG19

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 18 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

§ Receptive field is the region in the input space that a particular CNN’s
feature (activation value) is looking at (or getting computed due to)

Input	Image One	layer	of	7x7	convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 19 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Input	Image One	layer	of	3x3	convolution

§ Receptive field is 3× 3

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 20 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Input	Image Two	layers	of	3x3	convolution

§ Receptive field is 5× 5

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 21 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Input	Image Three	layers	of	3x3	convolution

§ Receptive field is 7× 7

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 22 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

AlexNet VGG16 VGG19

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.
72C2 for C channels per layer

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 23 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201831

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

TOTAL memory: 15.2M * 4 bytes ~= 58MB / image (for a forward pass)
TOTAL params: 138M parameters

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 24 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201832

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 15.2M * 4 bytes ~= 58MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in
early CONV

Most params are
in late FC

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 25 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201833

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

Common namesTOTAL memory: 15.2M * 4 bytes ~= 58MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 26 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

VGG

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

AlexNet VGG16 VGG19

Details:
- ILSVRC’14 2nd in classification, 1st in

localization
- Similar training procedure as Krizhevsky

2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only

slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other

tasks

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 27 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Video Classification

Examples from UCF-101 dataset.

ApplyEyeMakeup CuttingInKitchen

BalanceBeam TableTennisShot

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 28 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

C3D

§ Citation of the paper as on Feb 03, 2022 is 5,925

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 29 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

C3D

INPUT: [16x112x112x3] memory: 16*112*112*3=602K params: 0
CONV1a: [16x112x112x64] memory: 16*112*112*64=12.8M params: 3*(3*3*3)*64 = 5,184
POOL1: [16x56x56x64] memory: 16*56*56*64=3.2M params: 0
CONV2a: [16x56x56x128] memory: 16*56*56*128=6.4M params: 64*(3*3*3)*128 = 221,184
POOL2: [8x28x28x128] memory: 8*28*28*128=802K params: 0

CONV3a: [8x28x28x256] memory: 8*28*28*256=1.6M params: 128*(3*3*3)*256 = 884,736

POOL3: [4x14x14x256] memory: 4*14*14*256=200K params: 0

FC6: [4096] memory: 4096 params: 4*4*512*4096 = 33,554,432
FC: [4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [101] memory: 101 params: 4096*101 = 413,696

(not counting biases)

C3D
TOTAL memory: 28.3M * 4 bytes ~= 107.82MB / image (for a forward pass)
TOTAL params: 78.4M parameters

CONV3b: [8x28x28x256] memory: 8*28*28*256=1.6M params: 256*(3*3*3)*256 = 1,769,472

CONV4a: [4x14x14x512] memory: 4*14*14*512=401K params: 256*(3*3*3)*512 = 3,538,944
CONV4b: [4x14x14x512] memory: 4*14*14*512=401K params: 512*(3*3*3)*512 = 7,077,888
POOL4: [2x7x7x512] memory: 2*7*7*512=50K params: 0
CONV5a: [2x7X7x512] memory: 2*7*7*512=50K params: 512*(3*3*3)*512 = 7,077,888
CONV5b: [2x7X7x512] memory: 2*7*7*512=50K params: 512*(3*3*3)*512 = 7,077,888
POOL5: [1x4x4x512] memory: 1*4*4*512=8,192 params: 0

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 30 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201835

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

§ Citation of the paper as on Feb 03, 2022 is 37,061

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 31 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201850

1x1 convolutions

64

56

56

1x1 CONV
with 32 filters

32
56

56
(each filter has size 1x1x64,
and performs a 64-dimensional
dot product)
preserves spatial dimensions,
reduces depth!

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 32 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201836

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 33 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201837

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 34 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201838

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 35 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201838

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

Q: What is the problem with this?
[Hint: Computational complexity]

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 36 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q1: What is the output size of the
1x1 conv, with 128 filters?

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 37 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q1: What is the output size of the
1x1 conv, with 128 filters?

28x28x128

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 38 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

28x28x128

Q2: What are the output sizes of
all different filter operations?

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 39 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

28x28x128

Q2: What are the output sizes of
all different filter operations?

28x28x192 28x28x96 28x28x256

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 40 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

Q3:What is output size after
filter concatenation?

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 41 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

Q3:What is output size after
filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 42 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

Q3:What is output size after
filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Q: What is the problem with this?
[Hint: Computational complexity]

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 43 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

Q3:What is output size after
filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Q: What is the problem with this?
[Hint: Computational complexity]

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

Very expensive compute

Pooling layer also preserves feature
depth, which means total depth after
concatenation can only grow at every
layer!

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 44 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201841

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

Q3:What is output size after
filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Q: What is the problem with this?
[Hint: Computational complexity]

Solution: “bottleneck” layers that
use 1x1 convolutions to reduce
feature depth

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 45 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201853

Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

1x1 conv “bottleneck”
layers

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 46 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201854

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module with dimension reduction

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

Module input:
28x28x256

28x28x64 28x28x64 28x28x256

28x28x128 28x28x192 28x28x96 28x28x64

Conv Ops:
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

28x28x480

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 47 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201855

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Stack Inception modules
with dimension reduction

on top of each other

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 48 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201856

Case Study: GoogLeNet
[Szegedy et al., 2014]

Stem Network:
Conv-Pool-

2x Conv-Pool

Full GoogLeNet
architecture

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 49 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201856

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Stacked Inception
Modules

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 50 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201856

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Classifier output
(removed expensive FC layers!)

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 51 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201856

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 52 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

GoogLeNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201862

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- 12x less params than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 53 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201863

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”

§ Citation of the paper as on Feb 03, 2022 is 1,05,614

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 54 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201864

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)
- Swept all classification and

detection competitions in
ILSVRC’15 and COCO’15!

..

.

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 55 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201866

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Q: What’s strange about these training and test curves?
[Hint: look at the order of the curves]

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 56 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201866

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 57 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201869

Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned
layers from the shallower model and setting
additional layers to identity mapping.

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 58 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201870

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

relu

“Plain” layers
X

H(x)

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 59 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201870

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

relu

“Plain” layers
X

H(x)

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

H(x) = F(x) + x Use layers to
fit residual
F(x) = H(x) - x
instead of
H(x) directly

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 60 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

3x3 conv, 64
filters

3x3 conv, 128
filters, /2
spatially with
stride 2

73

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 61 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)
-Additional conv layer
at the beginning
-No FC layers at the
end (only FC 1000 to
output classes)

3x3 conv, 64
filters

3x3 conv, 128
filters, /2
spatially with
stride 2

73

No FC layers
besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 62 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Case Study: ResNet
[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GoogLeNet)

1x1 conv, 64 filters
to project to
28x28x64

3x3 conv operates over
only 64 feature maps

1x1 conv, 256 filters projects
back to 256 feature maps
(28x28x256)

78

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 63 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

0 1 2 3 4 5 6
0

5

10

20

iter. (1e4)

er
ro

r
(%

)

plain-20
plain-32
plain-44
plain-56

0 1 2 3 4 5 6
0

5

10

20

iter. (1e4)

er
ro

r
(%

)

ResNet-20
ResNet-32
ResNet-44
ResNet-56
ResNet-11056-layer

20-layer

110-layer

20-layer

4 5 6
iter. (1e4)

residual-110
residual-1202

Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error
of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.

0 20 40 60 80 100

1

2

3

layer index (sorted by magnitude)

st
d

plain-20
plain-56
ResNet-20
ResNet-56
ResNet-110

0 20 40 60 80 100

1

2

3

layer index (original)

st
d

plain-20
plain-56
ResNet-20
ResNet-56
ResNet-110

Figure 7. Standard deviations (std) of layer responses on CIFAR-
10. The responses are the outputs of each 3×3 layer, after BN and
before nonlinearity. Top: the layers are shown in their original
order. Bottom: the responses are ranked in descending order.

networks such as FitNet [35] and Highway [42] (Table 6),
yet is among the state-of-the-art results (6.43%, Table 6).

Analysis of Layer Responses. Fig. 7 shows the standard
deviations (std) of the layer responses. The responses are
the outputs of each 3×3 layer, after BN and before other
nonlinearity (ReLU/addition). For ResNets, this analy-
sis reveals the response strength of the residual functions.
Fig. 7 shows that ResNets have generally smaller responses
than their plain counterparts. These results support our ba-
sic motivation (Sec.3.1) that the residual functions might
be generally closer to zero than the non-residual functions.
We also notice that the deeper ResNet has smaller magni-
tudes of responses, as evidenced by the comparisons among
ResNet-20, 56, and 110 in Fig. 7. When there are more
layers, an individual layer of ResNets tends to modify the
signal less.

Exploring Over 1000 layers. We explore an aggressively
deep model of over 1000 layers. We set n = 200 that
leads to a 1202-layer network, which is trained as described
above. Our method shows no optimization difficulty, and
this 103-layer network is able to achieve training error
<0.1% (Fig. 6, right). Its test error is still fairly good
(7.93%, Table 6).

But there are still open problems on such aggressively
deep models. The testing result of this 1202-layer network
is worse than that of our 110-layer network, although both

training data 07+12 07++12
test data VOC 07 test VOC 12 test
VGG-16 73.2 70.4

ResNet-101 76.4 73.8

Table 7. Object detection mAP (%) on the PASCAL VOC
2007/2012 test sets using baseline Faster R-CNN. See also Ta-
ble 10 and 11 for better results.

metric mAP@.5 mAP@[.5, .95]
VGG-16 41.5 21.2

ResNet-101 48.4 27.2

Table 8. Object detection mAP (%) on the COCO validation set
using baseline Faster R-CNN. See also Table 9 for better results.

have similar training error. We argue that this is because of
overfitting. The 1202-layer network may be unnecessarily
large (19.4M) for this small dataset. Strong regularization
such as maxout [10] or dropout [14] is applied to obtain the
best results ([10, 25, 24, 35]) on this dataset. In this paper,
we use no maxout/dropout and just simply impose regular-
ization via deep and thin architectures by design, without
distracting from the focus on the difficulties of optimiza-
tion. But combining with stronger regularization may im-
prove results, which we will study in the future.

4.3. Object Detection on PASCAL and MS COCO

Our method has good generalization performance on
other recognition tasks. Table 7 and 8 show the object de-
tection baseline results on PASCAL VOC 2007 and 2012
[5] and COCO [26]. We adopt Faster R-CNN [32] as the de-
tection method. Here we are interested in the improvements
of replacing VGG-16 [41] with ResNet-101. The detection
implementation (see appendix) of using both models is the
same, so the gains can only be attributed to better networks.
Most remarkably, on the challenging COCO dataset we ob-
tain a 6.0% increase in COCO’s standard metric (mAP@[.5,
.95]), which is a 28% relative improvement. This gain is
solely due to the learned representations.

Based on deep residual nets, we won the 1st places in
several tracks in ILSVRC & COCO 2015 competitions: Im-
ageNet detection, ImageNet localization, COCO detection,
and COCO segmentation. The details are in the appendix.

8

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 64 / 73

Source: He et. al., 2015

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep

networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lowing training error as
expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

80

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 65 / 73

Source: CS231n course, Stanford University

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

MobileNet-v1

§ ConvNets, in general, are compute and memory heavy

§ MobileNet-v1 from Google [in 2017] describes an efficient network in
terms of compute and memory so that many real world vision
applications can be performed in mobile or similar embedded
platforms

§ Used depthwise separable convolution which is depthwise convolution
and then pointwise convolution

§ Also introduced two simple scaling hyperparameters

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 66 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

MobileNet-v1

§ ConvNets, in general, are compute and memory heavy

§ MobileNet-v1 from Google [in 2017] describes an efficient network in
terms of compute and memory so that many real world vision
applications can be performed in mobile or similar embedded
platforms

§ Used depthwise separable convolution which is depthwise convolution
and then pointwise convolution

§ Also introduced two simple scaling hyperparameters

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 66 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

MobileNet-v1

§ ConvNets, in general, are compute and memory heavy

§ MobileNet-v1 from Google [in 2017] describes an efficient network in
terms of compute and memory so that many real world vision
applications can be performed in mobile or similar embedded
platforms

§ Used depthwise separable convolution which is depthwise convolution
and then pointwise convolution

§ Also introduced two simple scaling hyperparameters

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 66 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Suppose, we have DF ×DF ×M input feature map, DF ×DF ×N
output feature map and Dk ×Dk spatial sized conventional
convolution filters.

𝐷"×𝐷"×𝑀 𝐷"×𝐷"×𝑁

𝐷&×𝐷&×𝑀

§ What is the computational cost for such a convolution operation?

—Dk ·Dk ·M ·DF ·DF ·N
§ What is the number of parameters? —Dk ·Dk ·M ·N

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 67 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Suppose, we have DF ×DF ×M input feature map, DF ×DF ×N
output feature map and Dk ×Dk spatial sized conventional
convolution filters.

𝐷"×𝐷"×𝑀 𝐷"×𝐷"×𝑁

𝐷&×𝐷&×𝑀

§ What is the computational cost for such a convolution operation?
—Dk ·Dk ·M ·DF ·DF ·N

§ What is the number of parameters?

—Dk ·Dk ·M ·N

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 67 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Suppose, we have DF ×DF ×M input feature map, DF ×DF ×N
output feature map and Dk ×Dk spatial sized conventional
convolution filters.

𝐷"×𝐷"×𝑀 𝐷"×𝐷"×𝑁

𝐷&×𝐷&×𝑀

§ What is the computational cost for such a convolution operation?
—Dk ·Dk ·M ·DF ·DF ·N

§ What is the number of parameters? —Dk ·Dk ·M ·N

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 67 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Now, think of M filters which are DK ×DK (not DK ×DK ×M)
and think each M of these filters are operated separately on M
channels of input of spatial size DF ×DF

§ What is the computational cost for such a convolution operation?

—DK ·DK ·DF ·DF ·M
§ And what is the number of parameters? —DK ·DK ·M
§ This operation is known as Depthwise Convolution operation

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 68 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Now, think of M filters which are DK ×DK (not DK ×DK ×M)
and think each M of these filters are operated separately on M
channels of input of spatial size DF ×DF

§ What is the computational cost for such a convolution operation?
—DK ·DK ·DF ·DF ·M

§ And what is the number of parameters?

—DK ·DK ·M
§ This operation is known as Depthwise Convolution operation

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 68 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Now, think of M filters which are DK ×DK (not DK ×DK ×M)
and think each M of these filters are operated separately on M
channels of input of spatial size DF ×DF

§ What is the computational cost for such a convolution operation?
—DK ·DK ·DF ·DF ·M

§ And what is the number of parameters? —DK ·DK ·M

§ This operation is known as Depthwise Convolution operation

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 68 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ Now, think of M filters which are DK ×DK (not DK ×DK ×M)
and think each M of these filters are operated separately on M
channels of input of spatial size DF ×DF

§ What is the computational cost for such a convolution operation?
—DK ·DK ·DF ·DF ·M

§ And what is the number of parameters? —DK ·DK ·M
§ This operation is known as Depthwise Convolution operation

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 68 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ What is the output shape now?

—DF ×DF ×M
§ Where did the N (output channels) go?

It is simply not there because depthwise convolution does the
convolution only on input channels.

§ Now think about 1× 1 traditional convolution on DF ×DF ×M
featuremap to get DF ×DF ×N output. What is the computation
cost?

—1 · 1 ·M ·DF ·DF ·N = DF ·DF ·M ·N
§ What is the number of parameters? —1 · 1 ·M ·N
§ This operation is called 1× 1 pointwise convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 69 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ What is the output shape now? —DF ×DF ×M
§ Where did the N (output channels) go?

It is simply not there because depthwise convolution does the
convolution only on input channels.

§ Now think about 1× 1 traditional convolution on DF ×DF ×M
featuremap to get DF ×DF ×N output. What is the computation
cost?

—1 · 1 ·M ·DF ·DF ·N = DF ·DF ·M ·N
§ What is the number of parameters? —1 · 1 ·M ·N
§ This operation is called 1× 1 pointwise convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 69 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ What is the output shape now? —DF ×DF ×M
§ Where did the N (output channels) go?

It is simply not there because depthwise convolution does the
convolution only on input channels.

§ Now think about 1× 1 traditional convolution on DF ×DF ×M
featuremap to get DF ×DF ×N output. What is the computation
cost?

—1 · 1 ·M ·DF ·DF ·N = DF ·DF ·M ·N
§ What is the number of parameters? —1 · 1 ·M ·N
§ This operation is called 1× 1 pointwise convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 69 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ What is the output shape now? —DF ×DF ×M
§ Where did the N (output channels) go?

It is simply not there because depthwise convolution does the
convolution only on input channels.

§ Now think about 1× 1 traditional convolution on DF ×DF ×M
featuremap to get DF ×DF ×N output. What is the computation
cost?

—1 · 1 ·M ·DF ·DF ·N = DF ·DF ·M ·N
§ What is the number of parameters? —1 · 1 ·M ·N
§ This operation is called 1× 1 pointwise convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 69 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ What is the output shape now? —DF ×DF ×M
§ Where did the N (output channels) go?

It is simply not there because depthwise convolution does the
convolution only on input channels.

§ Now think about 1× 1 traditional convolution on DF ×DF ×M
featuremap to get DF ×DF ×N output. What is the computation
cost?

—1 · 1 ·M ·DF ·DF ·N = DF ·DF ·M ·N
§ What is the number of parameters?

—1 · 1 ·M ·N
§ This operation is called 1× 1 pointwise convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 69 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ What is the output shape now? —DF ×DF ×M
§ Where did the N (output channels) go?

It is simply not there because depthwise convolution does the
convolution only on input channels.

§ Now think about 1× 1 traditional convolution on DF ×DF ×M
featuremap to get DF ×DF ×N output. What is the computation
cost?

—1 · 1 ·M ·DF ·DF ·N = DF ·DF ·M ·N
§ What is the number of parameters? —1 · 1 ·M ·N
§ This operation is called 1× 1 pointwise convolution

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 69 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Depthwise Separable Convolution

§ So, traditional convolution with DK ×DK ×M ×N filters, we get
feature map of size DF ×DF ×N

§ Also with depthwise separable convolution (i.e., depthwise convolution
+ 1× 1 pointwise convolution), we get DF ×DF ×N feature map

§ The computation is less

I Dk ·Dk ·M ·DF ·DF ·N vs

I Dk ·Dk ·M ·DF ·DF +DF ·DF ·M ·N
§ The reduction in computation Dk·Dk·M ·DF ·DF+DF ·DF ·M ·N

Dk·Dk·M ·DF ·DF ·N = 1
N + 1

D2
K

§ Also the reduction in number of parameters
M ·DK ·DK+M ·N
DK ·DK ·M ·N = 1

N + 1
D2

K

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 70 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

MobileNet-v1 Structure

Image taken from:MobileNet Paper

Image taken from:MobileNet Paper

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 71 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Width and Resolution Multiplier

§ The role of the width multiplier α ∈ (0, 1] is to thin a network
uniformly at each layer

§ the number of input channels M becomes αM and the number of
output channels N becomes αN

§ The computational cost of a depthwise separable convolution with
width multiplier α is Dk ·Dk · αM ·DF ·DF +DF ·DF · αM · αN

§ Width multiplier has the effect of reducing computational cost and
the number of parameters quadratically by roughly α2

§ Resolution multiplier ρ ∈ (0, 1] reduces the image resolution by this
factor and the internal representation of every layer is subsequently
reduced by the same multiplier

§ With width multiplier α and resolution multiplier ρ, the computational
cost is α is Dk ·Dk · αM · ρDF · ρDF + ρDF · ρDF · αM · αN

§ Resolution multiplier has the effect of reducing computational cost by
ρ2

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 72 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Width and Resolution Multiplier

§ The role of the width multiplier α ∈ (0, 1] is to thin a network
uniformly at each layer

§ the number of input channels M becomes αM and the number of
output channels N becomes αN

§ The computational cost of a depthwise separable convolution with
width multiplier α is Dk ·Dk · αM ·DF ·DF +DF ·DF · αM · αN

§ Width multiplier has the effect of reducing computational cost and
the number of parameters quadratically by roughly α2

§ Resolution multiplier ρ ∈ (0, 1] reduces the image resolution by this
factor and the internal representation of every layer is subsequently
reduced by the same multiplier

§ With width multiplier α and resolution multiplier ρ, the computational
cost is α is Dk ·Dk · αM · ρDF · ρDF + ρDF · ρDF · αM · αN

§ Resolution multiplier has the effect of reducing computational cost by
ρ2

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 72 / 73

LeNet AlexNet ZFNet VGG C3D GoogLeNet ResNet MobileNet-v1

Experimental Results

Image taken from:MobileNet Paper

Image taken from:MobileNet Paper

Abir Das (IIT Kharagpur) CS60010 Feb 03, 04, 09 and 10, 2022 73 / 73

	LeNet
	subsec:LeNet

	AlexNet
	subsec:AlexNet

	ZFNet
	subsec:ZFNet

	VGG
	subsec:VGG

	C3D
	subsec:VideoClassification
	subsec:C3D

	GoogLeNet
	subsec:GoogLeNet

	ResNet
	subsec:ResNet

	MobileNet-v1
	subsec:MobileNet-v1

	anm3:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

