
Logistic Regression
CS60010: Deep Learning

Abir Das

IIT Kharagpur

Jan 19 and 20, 2022



Agenda Linear Regression Logistic Regression

Agenda

§ Understand regression and classification with linear models.

§ Brush-up concepts of maximum likelihood and its use to understand
linear regression.

§ Using logistic function for binary classification and estimating logistic
regression parameters.
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Resources

§ The Elements of Statistical Learning by T Hastie, R Tibshirani, J
Friedman. [Link] [Chapter 3 and 4]

§ Artificial Intelligence: A Modern Approach by S Russell and P Norvig.
[Link] [Chapter 18]

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 3 / 31

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://aima.cs.berkeley.edu/


Agenda Linear Regression Logistic Regression

Linear Regression
§ In a regression problem we want to find the relation between some

input variables x and output variables y, where x ∈ Rd and y ∈ R.

§ Inputs are also often referred to as covariates, predictors and features;
while outputs are known as variates, targets and labels.

§ Examples of such input-output pairs can be
I {Outside temperature, People inside classroom, target room

temperature | Energy requirement}
I {Size, Number of Bedrooms, Number of Floors, Age of the Home |

Price}

§ We have a set of N observations of y as {y(1), y(2), · · · , y(N)} and
the corresponding input variables {x(1),x(2), · · · ,x(N)}.

𝒙(#)

𝑦(#)

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 4 / 31



Agenda Linear Regression Logistic Regression

Linear Regression
§ In a regression problem we want to find the relation between some

input variables x and output variables y, where x ∈ Rd and y ∈ R.

§ Inputs are also often referred to as covariates, predictors and features;
while outputs are known as variates, targets and labels.

§ Examples of such input-output pairs can be
I {Outside temperature, People inside classroom, target room

temperature | Energy requirement}
I {Size, Number of Bedrooms, Number of Floors, Age of the Home |

Price}
§ We have a set of N observations of y as {y(1), y(2), · · · , y(N)} and

the corresponding input variables {x(1),x(2), · · · ,x(N)}.

𝒙(#)

𝑦(#)

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 4 / 31



Agenda Linear Regression Logistic Regression

Linear Regression

§ The input and output variables are assumed to be related via a
relation, known as hypothesis. ŷ = hθ(x), where θ is the parameter
vector.

§ The goal is to predict the output variable ŷ∗ = f(x∗) for an arbitrary
value of the input variable x∗.

§ Let us start with scalar inputs (x) and scalar outputs (y).
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Univariate Linear Regression
§ hypothesis: hθ(x) = θ0 + θ1x.

§ Cost Function: Sum of squared
errors.

J(θ0, θ1) =
1

2N

N∑
i=1

(
hθ(x

(i))− y(i)
)2

𝒙(#)

𝑦(#)

§ Optimization objective: find model parameters (θ0, θ1) that will
minimize the sum of squared errors.

§ Gradient of the cost function w.r.t. θ0:

J(θ0, θ1)

θ0
=

1

N

N∑
i=1

(
hθ(x

(i))− y(i)
)

§ Gradient of the cost function w.r.t. θ1:

J(θ0, θ1)

θ1
=

1

N

N∑
i=1

(
hθ(x

(i))− y(i)
)
x(i)

§ Apply your favorite gradient based optimization algorithm.
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Univariate Linear Regression

§ These being linear equations of θ, have a unique closed form solution
too.

θ1 =

N
N∑
i=1

y(i)x(i) −
( N∑
i=1

x(i)
)( N∑

i=1
y(i)
)

N
N∑
i=1

(
x(i)
)2 − ( N∑

i=1
x(i)
)2

θ0 =
1

N

{ N∑
i=1

y(i) − θ1
N∑
i=1

x(i)
}
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Multivariate Linear Regression

§ We can easily extend to multivariate linear regression problems, where
x ∈ Rd

§ hypothesis: hθ(x) = θ0 + θ1x1 + θ2x2 + · · ·+ θdxd. For convenience
of notation, define x0 = 1.

§ Thus h is simply the dot product of the parameters and the input
vector.

hθ(x) = θTx

§ Cost Function: Sum of squared errors.

J(θ) = J(θ0, θ1, · · · , θd) =
1

2N

N∑
i=1

(
θTx(i) − y(i)

)2
(1)

§ We will use the following to write the cost function in a compact
matrix vector notation

hθ(x) = θTx = xTθ
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Multivariate Linear Regression


ŷ(1)

ŷ(2)

...
ŷ(N)

 =


hθ(x

(1))
hθ(x

(2))
...

hθ(x
(N))

 =


x
(1)
0 x

(1)
1 x

(1)
2 · · · x

(1)
d

x
(2)
0 x

(2)
1 x

(2)
2 · · · x

(2)
d

...
...

. . .
...

x
(N)
0 x

(N)
1 x

(N)
2 · · · x

(N)
d



θ0
θ1
θ2
...
θd

 (2)

ŷ = Xθ

Here, X is a N × (d+ 1) matrix with each row an input vector. ŷ is a N
length vector of the outputs in the training set.
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Multivariate Linear Regression

§ Eqn. (1), gives,

J(θ) =
1

2N

N∑
i=1

(
θTx(i) − y(i)

)2
=

1

2N

N∑
i=1

(
ŷ(i) − y(i)

)2
(3)

=
1

2N
||ŷ − y||22 =

1

2N

(
ŷ − y

)T (
ŷ − y

)
=

1

2N

(
Xθ − y

)T (
Xθ − y

)
=

1

2N

{
θT
(
XTX

)
θ − θTXTy − yTXθ + yTy

}
=

1

2N

{
θT
(
XTX

)
θ −

(
XTy

)T
θ −

(
XTy

)T
θ + yTy

}
=

1

2N

{
θT
(
XTX

)
θ − 2

(
XTy

)T
θ + yTy

}
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Multivariate Linear Regression

§ Equating the gradient of the cost function to 0,

∇θJ(θ) =
1

2N

{
2XTXθ − 2XTy + 0

}
= 0

XTXθ −XTy = 0

θ =
(
XTX

)−1
XTy (4)

§ This gives a closed form solution, but another option is to use
iterative solution (just like the univariate case).

∂J(θ)

∂θj
=

1

N

N∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j
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Multivariate Linear Regression

§ Iterative Gradient Descent needs to perform many iterations and need
to choose a stepsize parameter judiciously. But it works equally well
even if the number of features (d) is large.

§ For the least square solution, there is no need to choose the step size
parameter or no need to iterate. But, evaluating

(
XTX

)−1
can be

slow if d is large.
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Linear Regression as Maximum Likelihood Estimation

§ So far we tried to fit a “straightline” (“hyperplane” to be more
precise) for linear regression problem.

§ This is, in a sense, a “constrained”
way of looking at the problem.
Datapoints may not be perfectly fit
to the hyperplane, but “how
uncertain” they are from the
hyperplane is never considered.

§ An alternate view considers the following.

I y(i) are generated from the x(i) following a underlying hyperplane.

I But we don’t get to “see” the generated data. Instead we “see” a
noisy version of the y(i)’s.

I Maximum likelihood (or in general, probabilistic estimation) models
this uncertainty in determining the data generating function.
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Linear Regression as Maximum Likelihood Estimation

§ Thus data are assumed to be generated as follows.

y(i) = hθ(x
(i)) + ε(i)

where ε(i) is an additive noise following some probability distribution.

§ So,
(
x(i), y(i)

)
’s form a joint distribution.

§ The idea is to assume a probability distribution on the noise and the
probability distribution is parameterised by some additional
parameters (e.g., Gaussian with 0 mean and covariance σ2).

§ Then find the parameters (both θ and σ2) that is “most likely” to
generate the data.
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Recall: Cost Function
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Alternate View: “Maximum Likelihood”
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Maximum Likelihood: Example

§ Intuitive example: Estimate a coin toss
I have seen 3 flips of heads, 2 flips of tails, what is the chance of head
(or tail) of my next flip?

§ Model:
Each flip is a Bernoulli random variable x.
x can take only two values: 1(head), 0(tail)

p(x|θ) =
{

θ, if x = 1
1− θ, if x = 0

(5)

where, θ ∈ [0, 1], is a parameter to be defined from data

§ We can write this probability more succinctly as

p(x|θ) = θx(1− θ)1−x (6)
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Maximum Likelihood: Example

§ Let us now assume, that we have flipped the coin a few times and got
the results x1, ..., xn, which are either 0 or 1. The question is what is
the value of the probability θ?

§ Intuitively, one could assume that it is the number of heads we got
divided by the total number of coin throws.

§ We will prove in the following that the intuition in this case is correct,
by proving that the guess θ =

∑
i xi/n is the “most likely” value for

the real θ.

§ Then the joint probability is

f(x1, ...., xn; θ) =
∏
i

f(xi; θ) = θ

∑
i
xi
(1− θ)

n−
∑
i
xi

(7)

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 18 / 31



Agenda Linear Regression Logistic Regression

Maximum Likelihood: Example

§ Let us now assume, that we have flipped the coin a few times and got
the results x1, ..., xn, which are either 0 or 1. The question is what is
the value of the probability θ?

§ Intuitively, one could assume that it is the number of heads we got
divided by the total number of coin throws.

§ We will prove in the following that the intuition in this case is correct,
by proving that the guess θ =

∑
i xi/n is the “most likely” value for

the real θ.

§ Then the joint probability is

f(x1, ...., xn; θ) =
∏
i

f(xi; θ) = θ

∑
i
xi
(1− θ)

n−
∑
i
xi

(7)

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 18 / 31



Agenda Linear Regression Logistic Regression

Maximum Likelihood: Example

§ Let us now assume, that we have flipped the coin a few times and got
the results x1, ..., xn, which are either 0 or 1. The question is what is
the value of the probability θ?

§ Intuitively, one could assume that it is the number of heads we got
divided by the total number of coin throws.

§ We will prove in the following that the intuition in this case is correct,
by proving that the guess θ =

∑
i xi/n is the “most likely” value for

the real θ.

§ Then the joint probability is

f(x1, ...., xn; θ) =
∏
i

f(xi; θ) = θ

∑
i
xi
(1− θ)

n−
∑
i
xi

(7)

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 18 / 31



Agenda Linear Regression Logistic Regression

Maximum Likelihood: Example

§ Let us now assume, that we have flipped the coin a few times and got
the results x1, ..., xn, which are either 0 or 1. The question is what is
the value of the probability θ?

§ Intuitively, one could assume that it is the number of heads we got
divided by the total number of coin throws.

§ We will prove in the following that the intuition in this case is correct,
by proving that the guess θ =

∑
i xi/n is the “most likely” value for

the real θ.

§ Then the joint probability is

f(x1, ...., xn; θ) =
∏
i

f(xi; θ) = θ

∑
i
xi
(1− θ)

n−
∑
i
xi

(7)

Abir Das (IIT Kharagpur) CS60010 Jan 19 and 20, 2022 18 / 31



Agenda Linear Regression Logistic Regression

Maximum Likelihood: Example
§ We now want to find the θ which makes this probability the highest.

§ It is easier to maximize the log of the joint probabilities
log L(θ) =

∑
i
xilog θ + (n−

∑
i
xi)log (1− θ), which yields the same

result, since the log is monotonously increasing.
§ As we may remember, maximizing a function means setting its first

derivative to 0.

∂log L(θ)
∂θ

=

∑
i

xi

θ
−

(n−
∑
i

xi)

1− θ

=

(1− θ)
∑
i

xi − θn+ θ
∑
i

xi

θ(1− θ)

=

∑
i

xi − θn

θ(1− θ)
= 0

=⇒ θ =

∑
i

xi

n
(8)
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Maximum Likelihood Estimation

We have n = 3 data points y1 = 1, y2 = 0.5, y3 = 1.5, which are
independent and Gaussian with unknown mean = θ and variance = 1 :

yi ∼ N (θ, 1)

with likelihood P(y1, y2, y3; θ) = P(y1; θ)P(y2; θ)P(y3; θ). Consider two
guesses of θ, 1 and 2.5. Which has higher likelihood (probability of
generating the three observations)?

Finding the θ that maximizes the likelihood is equivalent to moving the
Gaussian until the product of 3 green bars (likelihood)is maximized.

Slide Motivation: Nando de Freitas [Link]
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Maximum Likelihood Estimation of model parameters θ

§ In general, we have observations, D = {u(1), u(2), · · · , u(N)}
§ We assume data is generated by some distribution U ∼ p(U ; θ)

§ Compute the likelihood function

L(θ) =
N∏
i=1

p(u(i); θ)← Likelihood Function (9)

θML = argmax
θ

L(θ)

= argmax
θ

n∑
i=1

log p(u(i); θ)← Log Likelihood (10)

§ log(f(x)) is monotonic/ increasing, same argmax as f(x)
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Maximum Likelihood for Linear Regression

§ Let us assume that the noise is Gaussian distributed with mean 0 and
variance σ2

y(i) = hθ(x
(i)) + ε(i) = θTx(i) + ε(i)

§ Noise ε(i) ∼ N (0, σ2) and thus y(i) ∼ N (θTx(i), σ2).

§ Let us compute the likelihood.

p(y|X;θ, σ2) =
N∏
i=1

p(y(i)|x(i);θ, σ2)

=

N∏
i=1

(2πσ2)−
1
2 e−

1
2σ2

(
y(i)−θTx(i)

)2

= (2πσ2)−
N
2 e

− 1
2σ2

N∑
i=1

(
y(i)−θTx(i)

)2
= (2πσ2)−

N
2 e−

1
2σ2

(
y−Xθ

)T(
y−Xθ

)
(11)
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Maximum Likelihood for Linear Regression

§ So we have got the likelihood as,

p(y|X;θ, σ2) = (2πσ2)−
N
2 e−

1
2σ2

(
y−Xθ

)T(
y−Xθ

)
§ The log likelihood is

l(θ, σ2) = −N
2
log(2πσ2)− 1

2σ2
(
y −Xθ

)T (
y −Xθ

)

§ Maximizing the likelihood w.r.t. θ means maximizing

−
(
y −Xθ

)T (
y −Xθ

)
which in turn means minimizing(

y −Xθ
)T (

y −Xθ
)
.

§ Note the similarity with what we did earlier.

§ Thus linear regression can be equivalently viewed as minimizing error
sum of squares as well as maximum likelihood estimation under zero
mean Gaussian noise assumption.
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Classification

§ y ∈ {0, 1}, where 0 : “Negative class” (e.g., benign tumor), 1 :
“Positive class” (e.g., malignant tumor)

§ Some more examples:

I Email: Spam/ Not Spam?

I Video: Viral/Not Viral?

I Tremor: Earthquake/Nuclear explosion?
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Linear classifiers with hard threshold

§ Linear functions can be used to do classification as well as regression.

§ For example,

Figure credit:AIMA: Russell, Norvig

§ A decision boundary is a line (or a surface, in higher dimensions)
that separates the two classes.

§ A linear function gives rise to a linear separator and the data that
admit such a separator are called linearly separable.
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Linear Classifier with Hard Threshold
§ The linear separator in the associated fig is given by,

x2 = 1.7x1 − 4.9

=⇒ −4.9 + 1.7x1 − x2 = 0

=⇒ [−4.9, 1.7,−1.0]

x0x1
x2

 = 0

θTx = 0

Figure credit:AIMA: Russell, Norvig
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Linear Classifier with Hard Threshold

Figure credit:AIMA: Russell, Norvig

§ The explosions (y = 1) are to the right of this line with higher values
of x1 and lower values of x2. So, they are points for which θTx ≥ 0

§ Similarly earthquakes (y = 0) are to the left of this line. So, they are
points for which θTx < 0

§ The classification rule is then,

y(x) =

{
1 if θTx ≥ 0

0 otherwise
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Linear classifiers with hard threshold

§ Alternatively, we can think y as the result of passing the linear
function θTx through a threshold function.

§ To get the linear separator we have find the θ which minimizes
classification error on the training set.

§ For regression problems, we found θ in both closed form and by
gradient descent. But both approaches required us to compute the
gradient.

§ This is not possible for the above threshold function as the gradient is
undefined when the value at x− axis = 0 and 0 elsewhere.
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undefined when the value at x− axis = 0 and 0 elsewhere.
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Agenda Linear Regression Logistic Regression

Linear classifiers with hard threshold
§ Perceptron Rule - This algorithm doesnot compute the gradient to

find θ.

§ Perceptron Learning Rule can find a linear separator
given the data is linearly separable .

§ For data that are not linearly separable, the Perceptron algorithm fails.

§ So, we need to go for a gradient based optimization approach

§ Thus, we need to approximate hard threshold function with
something smooth.

σ(u) =
1

1 + e−u

y = σ(hθ(x)) = σ(θTx)

§ Notice that the output is a number between 0 and 1, so it can be
interpreted as a probability value belonging to Class 1.

§ This is called a logistic regression classifier. The gradient
computation is tedious but straight forward.
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Agenda Linear Regression Logistic Regression

Maximum Likelihood Estimation of Logistic Regression

§ Mathematically, the probability that an example belongs to class 1 is
P (y(i) = 1|x(i);θ) = σ

(
θTx(i)

)
§ Similarly, P (y(i) = 0|x(i);θ) = 1− σ

(
θTx(i)

)
§ Thus, P (y(i)|x(i);θ) =

(
σ
(
θTx(i)

))y(i)(
1− σ

(
θTx(i)

))(1−y(i))

§ The joint probability of all the labels
N∏
i=1

(
σ
(
θTx(i)

))y(i)(
1− σ

(
θTx(i)

))(1−y(i))
§ So the log likelihood for logistic regression is given by,

l(θ) =
N∑
i=1

y(i) log σ
(
θTx(i)

)
+ (1− y(i)) log

(
1− σ

(
θTx(i)

))
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Agenda Linear Regression Logistic Regression

Maximum Likelihood Estimation of Logistic Regression

§ Derivative of log likelihood w.r.t. one component of θ,

∂l(θ)

∂θj
=

∂

∂θj

N∑
i=1

y(i) log σ
(
θTx(i)

)
+ (1− y(i)) log

(
1− σ

(
θTx(i)

))
=

N∑
i=1

[ y(i)

σ
(
θTx(i)

) − 1− y(i)

1− σ
(
θTx(i)

)] ∂

∂θj
σ
(
θTx(i)

)
=

N∑
i=1

[ y(i)

σ
(
θTx(i)

) − 1− y(i)

1− σ
(
θTx(i)

)]σ(θTx(i)
)(

1− σ
(
θTx(i)

))
x
(i)
j

=

N∑
i=1

[ y(i) − σ
(
θTx(i)

)
σ
(
θTx(i)

)(
1− σ

(
θTx(i)

))]σ(θTx(i)
)(

1− σ
(
θTx(i)

))
x
(i)
j

=

N∑
i=1

[
y(i) − σ

(
θTx(i)

)]
x
(i)
j (12)

§ This is used in an iterative gradient ascent loop.
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