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A word can have multiple senses. 

Have you paid that money to the bank yet ?
It is safest to deposit your money in the bank .

The victim was found lying dead on the river bank .
They stood on the river bank to fish.

The hospital has its own blood bank.

The third sense or not?

https://arxiv.org/abs/1902.06006



word2vec represent each word type with a single vector

• The new-look play area is due to be completed by early spring 2010 .
• Gerrymandered congressional districts favor representatives who play to the 

party base .
• The freshman then completed the three-point play for a 66-63 lead .
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Transfer Learning
• Can we leverage unlabeled data to cut down on the number of 

labeled examples we need?
• Take a network trained on a task for which it is easy to generate 

labels, and adapt it to a different task for which it is harder. 
• Train a really big language model on billions of words, transfer to 

every NLP task!
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Problem with Previous Methods
• Problem: Language models only use left context or right context, but 

language understanding is bidirectional. 
• Why are LMs unidirectional? 

• Reason 1: Directionality is needed to generate a well-formed probability 
distribution. 

• Reason 2: Words can “see themselves” in a bidirectional encoder. 

Slide from Jacob Delvin
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ELMO 
use all layers of the language model
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The Transformer – Self-Attention Layer
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BERT

Q
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BERT is a bidirectional (Transformer encoder) model.



BERT
BERT is a deep bidirectional, unsupervised language representation, 
pre-trained using only a plain text corpus

Pre-trained 
representation

Context free

Contextual unidirectional 

biidirectional 

word2vedc, GloVE

GPT

ElMO (shallow), BERT
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Training of BERT
Approach 1: Masked 
Language Modeling (MLM)
- Select 15% random words in the 

input.
- Replace each by a <MASK> token
- On the output re-predict the 

original words
- There is a bit more detail, see 

detail in the paper

BERT

Select 退了 words in ……

……

[MASK]

Linear Multi-class
Classifier

Predicting the 
masked word

vocabulary size



BERT

[CLS] Stop traffic [SEP]

Approach 2: Next Sentence Prediction 
Given a corpus of consecutive sentence pairs
Create a dataset with 50% real pairs of consecutive sentences, and 50% 
“fake” pairs (where the second sentence is a random one).
[CLS]: the position that outputs classification results 
[SEP]: the boundary of two sentences

Road is blocked

Linear Binary
Classifier

yes

Training of BERT



Masked LM
• Solution: Mask out k% of the input words, and then predict the 

masked words 
• Typically k = 15% 

store gallon

the man went to the [MASK] to buy a [MASK] of milk 

Too little masking: Too expensive to train 
Too much masking: Not enough context 

Slide from Jacob Delvin
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Masked LM
• Problem: Mask token never seen at fine-tuning 
• Solution: 15% of the words to predict, but don’t 

replace with [MASK] 100% of the time. Instead: 
• 80% of the time, replace with [MASK]

went to the store → went to the [MASK] 

• 10% of the time, replace random word
went to the store → went to the running 

• 10% of the time, keep same
went to the store → went to the store 

Slide from Jacob Delvin
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BERT

[CLS] 醒醒 吧 [SEP]

Approach 2: Next Sentence Prediction
- Build inputs of the form: <CLS> Sentence 1 <SEP> Sentence 2 

<SEP>
- Use CLS output to classify pair as real or fake consecutive pair

你 沒有 妹妹

Linear Binary
Classifier

yes

Training of BERT



Next Sentence Prediction
• To learn relationships between sentences, predict whether Sentence 

B is actual sentence that follows Sentence A, or a random sentence 

Slide from Jacob Delvin

This is found to be unimportant as can be removed as in RoBERTa
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BERT is trained with two types of loss:

During pretraining, the model must learn to recover what has been MASKed and 
predict sentence consecutiveness.

BERT



What is a... contextual word embedding

Transformer-based models start with a static word embedding (input 
of layer 1), which is "contextualized" by going through stacked layers 
of self-attention and transformation.

I run my house 's  kitchen, so if we  run out of something, I do a  quick run to the  
marke t.

In a Transformer, the model will learn to contextualize and differentiate each  instance of 
"run". In comparison, word2vec has a single vector for "run".



Bidirectional Encoder Representations from
Transformers (BERT)
• BERT =  Encoder of Transformer 

Encoder

BERT

潮水 退了 就 知道 ……

Learned from a large amount of text 
without annotation

……



BERT
• Multi-layer self-attention (Transformer)
• Input: a sentence or a pair of sentences with a separator and subword

representation

3/21/2021 24



Tokenization Challenges
• Problem: A fixed vocabulary does not account for language evolution.

"Boeing's new Starliner is built to carry astronauts."
• Solution 1: Any word not in the vocabulary is replaced by a special "unknown" token.
>> toks = ["Boeing", " 's", "new", "UNK", "is", "built", "to", "carry", "astronauts", "."]

Limitation: All unknown words are represented by the same word vector to the model, limiting model 
understanding.

• Solution 2: Increase vocabulary size. NLP models saw vocabulary size grow from 50k to around 200k 
(until 2017).

>> toks = ["Boeing", " 's", "new", "Starliner", "is", "built", "to", "carry", "astronauts", "."]
Limitation:

• Larger vocabulary means larger model size.
• Model cannot learn good representations for words it sees a few times.
• UNK can still occur (vocab is not infinite)

3/21/2021



Sub-word Tokenization
BERT uses Word Piece tokenization
Solution 3: Allow for words to be broken down into "pieces" (e.g. syllables) if they 
are not present in the vocabulary.
>> toks = ["boeing", " 's", "new", "star", "##liner", "is", "built", "to", "carry", 

"astronauts", "."] # (output of the BERT uncased tokenizer)

3/21/2021 26

1. Initialize with tokens for all characters
2. While vocabulary size is below the target size:

1. Build a language model over the corpus (e.g., unigram language model)
2. Merge pieces that lead to highest improvement in language model perplexity

Need to choose a language model that will make the process tractable. Often a unigram 
language model



WordPiece
• BERT uses a variant of the wordpiece model
• (Relatively) common words are in the vocabulary: 

at, fairfax, 1910s

• Other words are built from wordpieces: 

hypatia = h ##yp ##ati ##a

• Wordpiece Model:
• Given a training corpus and a number of desired tokens D, select D wordpieces such 

that the resulting corpus is minimal in the number of wordpieces when segmented 
according to the chosen wordpiece model.
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BERT: multi-layer self-attention (Transformer)

3/21/2021 28



Input Representation

• Use 30,000 WordPiece vocabulary on input. 
• Each token is sum of three embeddings 
• Single sequence is much more efficient. 

Slide from Jacob Delvin

Hidden state corresponding to [CLS] will be used as the 
sentence representation 
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Using BERT
• Use the pre-trained model as the first “layer” of your final model
• Train with fine-tuning using your supervised data
• Fine-tuning recipe: 1-3 epochs, batch size 2-32, learning rate 2e-5 -

5e-5

3/21/2021 30



BERT Task specialization



BERT for Classification Task

3/21/2021



BERT for classification

Input: single sentence, 
output: class

Example:
Sentiment analysis 
Document Classification

BERT

[CLS] w1 w2 w3

Linear 
Classifier

class

sentence

Trained from 
Scratch 

Fine-tune



BERT for tagging tasks

3/21/2021



BERT for Tagging

BERT

[CLS] w1 w2 w3

Linear 
Cls

class

Input: single sentence, 
output: class of each word

sentence

Example: Slot filling 

Linear 
Cls

class

Linear 
Cls

class



Tagging with BERT
• Can do for a single sentence or a pair
• Tag each word piece
• Example tasks: span-based question answering, name-entity 

recognition, POS tagging

3/21/2021 36



Linear 
Classifier

w1 w2

How to use BERT – Case 3

BERT

[CLS] [SEP]

Class

Sentence 1 Sentence 2
w3 w4 w5

Input: two sentences, output: class
Example: Natural Language Inference 

Given a “premise”, determining whether a 
“hypothesis” is T/F/ unknown.



Sentence-pair Classification with BERT
• Feed both sentences, and CLS token 

used for classification
• Example tasks:

• Textual entailment
• Question paraphrase detection
• Question-answering pair classification
• Semantic textual similarity
• Multiple choice question answering

3/21/2021 38



SQuAD 1.0: Stanford Question Answering Dataset

Given a paragraph P, a question Q, find the answer as a subset of P (start 
and end character)

Question Answering



Question Answering with BERT
• Stanford Question Answering Dataset (SQuAD).
• Given a question, and a passage of text containing the answer, highlight the 

“span” of text corresponding to the correct answer.

3/21/2021

Input Format
Pack the question and 
the reference text into 
the input separated by 
<SEP>
Segment Embedding



QA: Start and End Token Classification
• Highlight a “span” of text containing the answer: 

Predict which token marks the start of the 
answer, and which token the end.

• Feed the final embedding of each token into the 
start token classifier. The classifier only has a 
single set of weights (represented by the blue 
“start” rectangle in the above illustration).

• After taking the dot product between the output 
embeddings and the ‘start’ weights, apply the 
softmax activation to produce a probability 
distribution over all of the words. Pick the word 
with the highest probability of being the start 
token.

• Repeat this process for the end token–we have a 
separate weight vector this.

3/21/2021



Start and End Token Classification

3/21/2021



SQuAD

BERT Performance



Training a classifier with Transformers

Practical tip:
When training a classifier, pretrain the model on data as 
close to in-domain data.
For in detail analysis: ULMFit paper 2018

Transformer Fine-tune on
classification

Transformer Pretrain on 
general text

Transformer Pretrain on 
general text

Fine-tune on
classification

Pretrain on in-
domain text

Fine-tune on
classification

BAD

GOOD

BETTER



Model Architecture
 BERT BASE 

 12 layers, 768-dim per word-piece token
 12 heads. 
 Total parameters = 110M

 BERT LARGE
 24 layers, 1024-dim per word-piece token
 16 heads. 
 Total parameters = 340M

BERT is basically a trained Transformer Encoder stack. 
3/21/2021 45



Model Details
• Data: Wikipedia (2.5B words) + BookCorpus (800M words) 
• Batch Size: 131,072 words (1024 sequences * 128 length or 256 

sequences * 512 length) 
• Training Time: 1M steps (~40 epochs) 
• Optimizer: AdamW, 1e-4 learning rate, linear decay 
• BERT-Base: 12-layer, 768-hidden, 12-head 
• BERT-Large: 24-layer, 1024-hidden, 16-head 
• Trained on 4x4 or 8x8 TPU slice for 4 days 

Slide from Jacob Delvin
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Fine Tuning Procedure

3/21/2021 47



Results
• Fine-tuned BERT outperformed previous state of the art on 11 NLP 

tasks
• Since then was applied to many more tasks with similar results
• The larger models perform better, but even the small BERT performs 

better than prior methods
• Variants quickly outperformed human performance on several tasks, 

including span-based question answering — but what does this mean 
is less clear

• Started an arms race (between industry labs) on bigger and bigger 
models

3/21/2021 48



Where to get BERT?
• The Transformers library: 

https://github.com/huggingface/transformers

• Provides state-of-the-art implementation of many models, including
BERT and RoBERTa

• Including pre-trained models



Hard to do with BERT
• BERT cannot generate text (at least not in an obvious way)

• Masked language models are intended to be used primarily for 
“analysis” tasks

3-Nov-20 CS60075 Autumn 2020 Sudeshna Sarkar IIT Kgp 50



Effects of Model Size

• Big models help a lot 
• Going from 110M -> 340M params helps even on datasets with 3,600 

labelled examples 
• Improvements have not asymptoted

Slide from Jacob Delvin
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