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Attention-only Translation Models

e Problems with recurrent networks:

* Sequential training and inference: Time grows in proportion to sentence
length. Hard to parallelize.

* Long-range dependencies have to be remembered across many single
time steps.

n  «

e Tricky to learn hierarchical structures (“car”, “blue car”, “into the blue
car”...)

Alternative:

Convolution — but has other limitations.
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Self-Attention

* Information flows from within the same subnetwork (encoder or decoder).

* Convolution applies fixed transform weights. Self-attention applies variable
weights.

Convolution Self-Attention

TS Sy N
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Self-Attention “Transformers”

e Constant path length between any two positions.
* Variable receptive field (or the whole input sequence).

e Supports hierarchical information flow by stacking self-attention
layers.

e Trivial to parallelize.
e Attention weighting controls information propagation.

e Can replace word-based recurrence entirely.

Vaswani et al. “Attention is all you need”, arXiv 2017

https://arxiv.org/abs/1706.03762



Attention in Transformer Networks

Encoder Self-Attention MaskedDecoder Self-Attention
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Transformers

(Output)
Please come here
'Y
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Self-Attention

bt is obtained based on the whole input sequence.

b, b2, b3, b* can be computed in parallel.

You can try to replace any thing that has been done by RNN with self-attention.
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q: query (to match others)

qi — ani
k: key (to be matched)
ki — Wkai

v: information to be extracted
vi — ani
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Scaled Dot-Product Attention disthediTm of q and k

X1,i =,q1 . k,i/\/a
dot product

al 2 a3 o
1 1 1 |
x1 x2 53 "
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dy; = exp(alli )/2 | exp(al,j )
j

a1 a1,2 X1 3 aq,4
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Considering the whole sequence g
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b, b2, b3, b* can be computed in parallel.
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Self-attention
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(ignore Vd for simplicity)
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Self-attention

Self-Attention




Multi-head Self-attention

(2 heads as example)

qi,l — Wq,lqi > il
1,2 2 1
qhc = W%q

X
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Multi-head Self-attention

qi,l — Wq,lqi
qi,Z — Wq,Zqi
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(2 heads as example)
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Multi-head Self-attention

(2 heads as example)
— bi
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Parallel Attention Heads

| kicked the ball

® o
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Who To whom?

Did what?

| kicked the ball



Positional Encoding

* No position information in self-attention. el + a

* Original paper: each position has a unique positional |
vector e' (not learned from data)

. . X
* In other words: each x* appends a one-hot vector p*
] xi ai
7% =| w! |
. w! P P
p'= 0 i
0 dim ul p




Positional Encoding

 BERT used learned positional embeddings

e Vaswani: add numbers between [-1,1] using predetermined (non-
learned) sinusoidal functions to the token embeddings.

* Mathematically, using i for the position of the token in the sequence and
j for the position of the embedding feature:

r .
sin — if 7 is even
10000 demb_dim

Cos : ) if 7 is odd

Pij =

1—1
\ 10000 demb-dim
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Positional Encoding
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Review: https://www.youtube.com/watch?v=ZjfjPzXw6og&feature=youtu.be

Seqg2seq with Attention

Selt-Attention

A EEE HE B

Encoder Decoder
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Transformer

Using machine translation as example
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The Transformer Attention Tricks

 Self Attention

e Multi-headed Attention

* Normalized Dot-product Attention
e Positional Encodings

The Transformer Training Tricks

e Layer Normalization
e Label Smoothing
e Masking for Efficient Training
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Transformers

* The Transformer starts by generating initial
representations for each word.

e Using self-attention, it aggregates information
from all of the other words, generating a new
representation per word

* This step is repeated multiple times in parallel
for all words, successively generating new
representations.
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Attention in Transformer

* The encoder’s inputs first flow through a self-attention layer

* The outputs are fed to a feed-forward neural network. The exact same feed-
forward network is independently applied to each position.

* The decoder has both those layers, but between them is an attention layer that
helps the decoder focus on relevant parts of the input sentence

4 N
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Encoder

The word at each position
passes through a self-
attention process.

Then, they each pass
through a feed-forward
neural network -- the
exact same network with
each vector flowing
through it separately.
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Multi-headed attention

e Use multiple sets of Query/Key/Value weight
matrices
* The Transformer uses eight attention heads
* so there are eight sets for each encoder/decoder
e Each of these sets is randomly initialized.

» After training, each set is used to project the input
embeddings (or vectors from lower encoders/decoders) into a

different representation subspace.

MultiHead (Q, K,V) = [heady;...; head,]W°
where head; = Attention(QW 9, KWX,,VWV))
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With multi-headed attention, maintain separate Q/K/V weight
matrices for each head resulting in different Q/K/V matrices.

X
Thinking
Machines
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo Q4
W0 w;@
Ko K4
WK WK
Vo Vi
WoV WiV
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Thinking
Machines
Calculating attention separately in
eight different attention heads
v
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

we need a way to condense these eight down
into a single matrix as input to the feedforward
network.
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Putting it all together

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention
input sentence* each word* We multiply X or using the resulting
R with weight matrices ~ Q/K/V matrices

X gt
K
Thinking | Wo i Qo
Machines ! = WU KO
| Vo
W@
* |n all encoders other than #0, ':\N1 K 01
we don't need embedding. W,V Ki
We start directly with the output Vi

of the encoder right below this one L

R = see

i Y
WK Q7
W
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5) Concatenate the resulting © matrices,
then multiply with weight matrix \W* to
produce the output of the layer




The Residuals

each sub-layer (self-attention, ffnn) in each encoder has a residual connection
around it, and is followed by a layer-normalization step.
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Stacked Encoder
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Decoder Side

The encoder start by
processing the input
sequence.

The output of the top
encoder is then
transformed into a set
of attention vectors K
and V.

These are to be used
by each decoder in its
“encoder-decoder
attention” layer which
helps the decoder
focus on aﬁpropriate
places in the input
sequence:
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Decoder Attention

 In the decoder, the self-attention layer is only allowed to attend to
earlier positions in the output sequence. This is done by masking
future positions (setting them to -inf) before the softmax step in the
self-attention calculation.

* The “Encoder-Decoder Attention” layer works just like multiheaded
self-attention, except it creates its Queries matrix from the layer
below it, and takes the Keys and Values matrix from the output of the
encoder stack.



The Final Linear and Softmax Layer

e A Softmax Layer to output word

e Let’s assume that our model knows 10,000 unique English words (our
model’s “output vocabulary”) that it’s learned from its training dataset.

e The softmax layer then turns those scores into probabilities (all positive,
all add up to 1.0). The cell with the highest probability is chosen, and the
word associated with it is produced as the output for this time step.



.

Transformer
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Attention Visualization
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https://arxiv.org/abs/1706.03762
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Attention Visualization
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The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a Transformer trained on English
to French translation (one of eight attention heads).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Example Application

* If you can use seq2seq, you can use transformer.

— ‘ Summarizer ‘L :

Document Set

https://arxiv.org/abs/1801.10198
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Universal Transformer
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Depth

Parameters are tied across positions and time steps

T times

[ Transition Function ]
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https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
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