Detection and Segmentation CS60010: Deep Learning

Abir Das

IIT Kharagpur

Mar 08, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction
0000000000000

To get introduced to two important tasks of computer vision - detection and segmentation along with deep neural network's application in these areas in recent years.

Detection

Subsampling

Datasets Localization 0000000000 Detection 00000000000

55.

Challenges of Object Detection

- § Simultaneous recognition and localization
- Images may contain objects from more than one class and multiple ξ instances of the same class
- Evaluation δ

Datasets

 Detection 000000000000

Localization and Detection

Classification

Classification + Localization

Abir Das (IIT Kharagpur)

Mar 08, 2021 5 / 50

Abir Das (IIT Kharagpur)

CS60010

Mar 08, 2021 6 / 50

	Datasets	Localization	Detection
000000000	0000	000000000000000000000000000000000000000	0000000000
	.	11	

Evaluation: Precision-Recall

§ precision =
$$\frac{tp}{tp+fp}$$

§ recall = $\frac{tp}{tp+fn}$

Abir Das (IIT Kharagpur)

Mar 08, 2021 7 / 50

Image Source

Abir Das (IIT Kharagpur)

Mar 08, 2021 8 / 50

Source: This medium post

• • • • • • • • • • • •

Introduction	Datasets	Localization	Detection
00000000000	0000	000000000000000000000000000000000000	00000000000
Evaluation:	Average Pr	recision	

Area under curve is a measure of performance. This gives the average precision of the detector.

Rank	Correct	Precision	Recall
1	True Positive	1.00	0.20
2	True Positive	1.00	0.40
3	False Positive	0.67	0.40
4	False Positive	0.50	0.40
5	FalsePositive 🕤	0.40	0.40
6	True Positive	0.50	0.60
7	True Positive	0.57	0.80
8	False Positive	0.50	0.80
9	False Positive	0.44	0.80
10	True Positive	0.50	1.00

Image: Image:

Source: This medium post

Datasets 0000 Localization

Detection 000000000000

Non-max Suppression

What to do if there are multiple detections of the same object? Can you think its effect on precision-recall?

Source: deeplearning.ai

Image: Image:

Datasets 0000 Detection 000000000000

Non-max Suppression

- § Sort the predictions by the confidence scores
- § Starting with the top score prediction, ignore any other prediction of the same class and high overlap (*e.g.*, IoU > 0.5) with the top ranked prediction
- § Repeat the above step until all predictions are checked

Source: deeplearning.ai

0000	000000

Datasets 0000 Localization

Detection 000000000000

Segmentation

GRASS, CAT, TREE, SKY

DOG, DOG, CAT

Introd	uction
0000	000000

0000

 Detection 000000000000

PASCAL VOC

§ Dataset size (by 2012): <u>11.5K</u> training/val images, 27K bounding boxes, 7K segmentations

(日) (周) (三) (三)

PASCAL VOC

Localization

Detection 000000000000

Object detection renaissance (2013-present)

Source: ICCV '15, Fast R-CNN

- ∢ ∃ ▶

< □ > < ---->

Datasets

Localization

Detection 000000000000

COCO Dataset

What is COCO?

FXX±4

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

Abir Das (IIT Kharagpur)

Mar 08, 2021 16 / 50

O000

 Detection 000000000000

COCO Tasks

Image Classification Semantic Segmentation

Object Detection

Instance Segmentation

(日) (周) (三) (三)

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Classification + Localization: Task

Classification + Localization: Do both

Source: cs231n course, Stanford University

(日) (周) (三) (三)

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Idea #1: Localization as Regression

Source: cs231n course, Stanford University

Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected "regression head" to the network

Simple Recipe for Classification + Localization

Step 3: Train the regression head only with SGD and L2 loss

22 / 50

Abir Das (IIT Kharagpur)

Mar 08, 2021 23 / 50

Source: cs231n course, Stanford University

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Datasets 0000

Localization

Detection 000000000000

Classification + Localization

Aside: Human Pose Estimation

Source: cs231n course, Stanford University

イロト イポト イヨト イヨト

Introduction Datasets Construction Detection Detection

Classification + Localization

Sliding Window: Overfeat Class scores: 4096 4096 Winner of ILSVRC 2013 1000 localization challenge FC FC Softmax Convolution loss + pooling FC FC FC Feature map: Euclidean 1024 x 5 x 5 Image: loss 3 x 221 x 221 Boxes: 1024 4096 Sermanet et al. "Integrated Recognition, Localization and 1000 x 4 Detection using Convolutional Networks", ICLR 2014

Source: cs231n course, Stanford University

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Source: cs231n course, Stanford University

<ロ> (日) (日) (日) (日) (日)

Datasets

Localization

Detection 000000000000

Classification + Localization

Source: cs231n course, Stanford University

イロト イポト イヨト イヨト

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

<ロ> (日) (日) (日) (日) (日)

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	

Classification scores: P(cat)

イロト イポト イヨト イヨト

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

イロト イポト イヨト イヨト

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

	0.5	0.75
	0.6	0.8
CI	assificati P(c	ion scores:

Source: cs231n course, Stanford University

イロト イポト イヨト イヨト

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

Greedily merge boxes and scores (details in paper)

0.8

Classification score: P (cat)

イロト イポト イヨト イヨト

Source: cs231n course, Stanford University

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Sliding Window: Overfeat

In practice use many sliding window locations and multiple scales

Final Predictions

Efficient Sliding Window: Overfeat

Source: cs231n course, Stanford University

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

Efficient Sliding Window: Overfeat

Source: cs231n course, Stanford University

(日) (同) (日) (日) (日)

Datasets 0000 Localization

Detection 000000000000

Classification + Localization

ImageNet Classification + Localization

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Datasets 0000 Localization

Detection 000000000000

Detection as Regression

- § In detection you don't know the number of objects present
- \S So, it is problematic to address detection as regression
- § How many output neurons to put?

Datasets

Localization

Detection

Detection as Classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

CS231n course, Stanford University

Datasets

Localization

Detection 000000000000

Detection as Classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

CS231n course, Stanford University

Datasets

Localization

Detection 000000000000

Detection as Classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

CS231n course, Stanford University

Datasets

Localization

Detection 000000000000

Detection as Classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

CS231n course, Stanford University

Datasets

Localization

Detection

Detection as Classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

CS231n course, Stanford University

イロト イポト イヨト イヨ

Datasets 0000

Detection as Classification

- § Need to apply CNN to huge number of locations, scales and aspect ratios
- § If the classifier is fast enough, this is done. Pre Deep Learning approach.
- § Deep learning classifiers, first get a tiny subset of possible positions. Only these are passed through the deep classifiers.
- § The possible positions are called <u>'candidate proposals</u>' or 'region proposals'.

Image: Image:

Datasets 0000 Localization

Detection

Detection with Region Proposals

- § Generate and evaluate a few (much less than exhaustive search) region proposals
- § Proposal mechanism can take advantage of low-level cues (e.g., edges or connected components)
- \S Classifier can be slower but more powerful

イロト イヨト イヨト イヨト

Introduction	
00000000000	

Datasets

Localization

Detection

Selective Search

J Uijlings, K van de Sande, T Gevers, and A Smeulders, 'Selective Search for Object Recognition', IJCV 2013

Introd	luction	
0000	000000	¢

Datasets

Localization

Detection 00000000000000

Selective Search

Extract object location boxes L from all regions in R

J Uijlings, K van de Sande, T Gevers, and A Smeulders, 'Selective Search for Object Recognition', IJCV 2013

Introduction 0000000000	Datasets 0000	Localization 000000000000000000000	Detection 000000000000
EdgeBoxes			
			STOD

- § Edgeboxes depend on a fast scoring/evaluating method for bounding boxes.
- § First edges are extracted for the whole image and they are grouped according to their similarity
- § The main idea of scoring boxes builds on the fact that edges tend to correspond to object boundaries and bounding boxes that tightly enclose a set of edges are likely to contain an object.
- § Gets 75% recall with 800 boxes (vs 1400 for Selective Search) and is 40 times faster
 Clinick and P Dollar, 'Edge Boxes: Locating Object Proposals from Edges', ECCV 2014

Datasets

Localization

Detection

Many Region Proposal Methods

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		1	1	0.2	***	*	
CPMC [19]	Grouping	1	1	1	250	-	**	*
EdgeBoxes [20]	Window scoring		~	√	0.3	**	***	***
Endres [21]	Grouping	~	~	~	100	-	* * *	**
Geodesic [22]	Grouping	~		1	1	*	* * *	**
MCG [23]	Grouping	1	1	1	30	*	* * *	* * *
Objectness [24]	Window scoring		1	~	3		*	
Rahtu [25]	Window scoring		1	1	3			*
RandomizedPrim's [26]	Grouping	1		1	1	*	*	**
Rantalankila [27]	Grouping	1		1	10	**		**
Rigor [28]	Grouping	~		1	10	*	**	**
SelectiveSearch [29]	Grouping	1	~	1	10	**	***	* * *
Gaussian				1	0			*
SlidingWindow				1	0	* * *		
Superpixels		1			1	*		
Uniform				1	0			

J Hosang, R Benenson, P Dollar and B Schiele, 'What makes for effective detection proposals?', IEEE TPAMI 2016

Image: A math and A

CS60010