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Sequences are everywhere

• An RNN models sequences: Time series, 
Natural Language, Speech

• Sequence data: sentences, speech, 
stock market, signal data
• Sequence of words in an English sentence

• Acoustic features at successive time frames in speech recognition

• Successive frames in video classification

• Rainfall measurements on successive days in Hong Kong

• Daily values of current exchange rate
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Why RNNs?

• Can model sequences having variable length

• Inputs, outputs can be different lengths in different examples

• Efficient: Weights shared across time-steps 
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Modeling Sequential Data

• Sample data sequences from a certain distribution
𝑃(𝑥1, 𝑥2, … , 𝑥𝑇)

• Generate natural sentences to describe an image
𝑃(𝑦1, 𝑦2, … , 𝑦𝑇|𝐼)

• Activity recognition from a video sequence
𝑃(𝑦|𝑥1, 𝑥2, … , 𝑥𝑇)

• Speech Recognition
𝑃 𝑦1, 𝑦2, … , 𝑦𝑇 𝑥1, 𝑥2, … , 𝑥𝑇

• Machine Translation
𝑃 𝑦1, 𝑦2, … , 𝑦𝑇 𝑥1, 𝑥2, … , 𝑥𝑆
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Sequences in Input or Output?
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Input: No 
sequence
Output: No 
sequence
Example: 
“standard” 
classification 
/ 
regression 
problems

Input: No 
sequence
Output: 
Sequence
Example: 
Im2Caption

Input: Sequence
Output: No 
sequence
Example: 
sentence 
classification, 
multiple-choice 
question 
answering

Input: Sequence
Output: Sequence
Example: machine translation, video classification, 
video captioning, open-ended question answering



How do we model sequences?

• With inputs
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Dynamical system driven by external signal

• Consider a dynamical system driven by external (input) signal 

𝑥(𝑡): 𝑠(𝑡) = 𝑓 𝑠(𝑡−1), 𝑥(𝑡); 𝜃

• The state now contains information about the whole past input sequence. 
To indicate that the state is hidden rewrite using variable h for state:

ℎ(𝑡) = 𝑓 ℎ(𝑡−1), 𝑥(𝑡); 𝜃
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Output prediction by RNN

• Task : To predict the future from the past

• The network typically learns to use h(t) as a summary of the task-
relevant aspects of the past sequence of inputs upto t

• The summary is in general lossy since it maps a sequence of 
arbitrary length (x (t), x (t-1),..,x (2),x (1)) to a fixed length vector h(t)

• Depending on the training criterion, the summary keeps some 
aspects of past sequence more precisely than other aspects
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h0 fW
h1 fW h2 fW h3

x3

…

x2x1𝑊ℎℎ, 
𝑊ℎ𝑥

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph
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h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1𝑊ℎℎ, 
𝑊ℎ𝑥

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to Many
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h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1

𝑊ℎℎ, 
𝑊ℎ𝑥

hT

y3y2y1 L1
L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to Many
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h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

hT

y3y2y1 L1
L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to Many
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h0 fW h1 fW h2 fW h3

x3

y

…

x2x1
W

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to One



h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: One to Many



h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input sequence 
in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-many



y1 y2

… 

Many to one: Encode input sequence 
in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Sequence to Sequence: Many-to-one + one-to-many



Recurrent Neural Network

x

h

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

h

y



The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

Recurrent Neural Network

𝑦𝑡 = 𝑔 ℎ𝑡
= 𝑓2 𝑊

𝑂ℎ𝑡 +𝑊0
𝑂

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡
= 𝑓1 𝑊

ℎ𝑥𝑥𝑡 +𝑊
ℎℎℎ𝑡−1 +𝑊0

ℎℎ

𝑦𝑡 = 𝑔 ℎ𝑡

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡

x

RNN

y

𝑊𝑂

𝑊ℎ𝑥

𝑊ℎℎ
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The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

𝑦𝑡 = 𝑔 ℎ𝑡
𝑓2 𝑊

𝑂ℎ𝑡 +𝑊0
𝑂

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡
= 𝑓1 𝑊

ℎ𝑥𝑥𝑡 +𝑊
ℎℎℎ𝑡−1 +𝑊0

ℎℎ

The inputs, outputs, and states are all 
vector-valued:

𝑥𝑡: 𝑙 × 1
ℎ𝑡: 𝑚 × 1
𝑦𝑡: 𝑣 × 1

Weights in the network:
𝑊ℎ𝑥: 𝑚 × 𝑙
𝑊ℎℎ: 𝑚 × 𝑚
𝑊0
ℎℎ: 𝑚 × 1

𝑊𝑂: 𝑣 × 𝑚
𝑊0
𝑂: 𝑣 × 1

x

RNN

y

𝑊𝑂

𝑊ℎ𝑥

𝑊ℎℎ
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Sequence-to-sequence RNN

• How can we train an RNN to model a transduction on sequences? 
This problem is sometimes called sequence-to-sequence mapping

• A training set has the form [x(1) , y(1) , . . . , x(q) , y(q) ]

• x(i) and y(i) are length n(i) sequences;

• Sequences in the same pair are the same length; and sequences in 
different pairs may have different lengths
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Loss function

• Sum up a per-element loss function on each of the output values, 
where  𝒚 is the predicted sequence and 𝒚 is the actual one:

Lossseq  𝒚
(𝑖), 𝒚(𝑖) = 

𝑡=1

𝑛(𝑖)

Losselt  𝑦𝑡
(𝑖), 𝑦𝑡

(𝑖)

The per-element loss function Losselt will depend on the type of 𝑦𝑡
and what information it is encoding.

The overall objective to miminize is :

𝐽 𝜃 = 

𝑡=1

𝑞

Lossseq RNN(𝑥
(𝑖); 𝜃), 𝒚(𝑖)
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Backpropagation through time

Loss

Forward through entire sequence 
to compute loss, then backward 
through entire sequence to 
compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Backpropagation Through Time (BPTT)
• Update the weight matrix:

• Issue: W occurs each timestep
• Every path from W to L is one 

dependency
• Find all paths from W to L

25



Systematically Finding All Paths

• How many paths exist from W 
to L through L1? 
• 1

• How many paths from W to L 
through L2?
• 2 (originating at h0 and h1)

The gradient has two 
summations:

1: Over Lj

2: Over hk
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Backpropagation as two summations
First summation over L
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Backpropagation as two summations

Second summation over h: 
Each Lj depends on the 
weight matrices before it

Lj depends on 
all hk before it.
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Backpropagation as two summations

j

k

29



Backpropagation as two summations

j

k
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BPTT
1. Sample a training pair of sequences (𝑥, 𝑦) ; let their length be 𝑛.

2. “Unroll" the RNN to be length 𝑛, and initialize ℎ0

Performing almost an ordinary backpropagation training procedure in a feed-forward neural 
network, but with the difference that the weight matrices are shared among the layers

1. Do the forward pass, to compute the predicted output sequence  𝑦

2. Do backward pass to compute the gradients. Find

𝑑𝐿𝑠𝑒𝑞

𝑑𝑊
=  

𝑢=1

𝑛
𝑑𝐿𝑢
𝑑𝑊

𝐿𝑢 = Losselt  𝑦𝑢, 𝑦𝑢

=  

𝑢=1

𝑛

 

𝑡=1

𝑛
𝜕𝐿𝑢
𝜕ℎ𝑡
∙
𝜕ℎ𝑡
𝜕𝑊
= 

𝑡=1

𝑛
𝜕ℎ𝑡
𝜕𝑊
∙  

𝑢=1

𝑛
𝜕𝐿𝑢
𝜕ℎ𝑡
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BPTT
𝑑𝐿𝑠𝑒𝑞
𝑑𝑊

= 

𝑡=1

𝑛
𝜕ℎ𝑡
𝜕𝑊
∙  

𝑢=1

𝑛
𝜕𝐿𝑢
𝜕ℎ𝑡

ℎ𝑡 only affects 𝐿𝑡, 𝐿𝑡+1, … 𝐿𝑛

𝑑𝐿𝑠𝑒𝑞
𝑑𝑊

= 

𝑡=1

𝑛
𝜕ℎ𝑡
𝜕𝑊
∙ 

𝑢=𝑡

𝑛
𝜕𝐿𝑢
𝜕ℎ𝑡

= 

𝑡=1

𝑛
𝜕ℎ𝑡
𝜕𝑊
∙
𝜕𝐿𝑡
𝜕ℎ𝑡
+  

𝑢=𝑡+1

𝑛
𝜕𝐿𝑢
𝜕ℎ𝑡

𝛿ℎ𝑡

𝛿ℎ𝑡 is the dependence of 
the loss on steps after t on 
the state at time t.
We can compute this 
backwards, with t going from 
n down to 1.
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𝐹𝑡 =  

𝑢=𝑡+1

𝑛

Losselt  𝑦𝑢, 𝑦𝑢

𝛿ℎ𝑡 =
𝜕𝐹𝑡
𝜕ℎ𝑡

𝜕ℎ𝑛 = 0

𝜹𝒉𝒕−𝟏 =
𝜕

𝜕ℎ𝑡−1
 

𝑢=𝑡

𝑛

Losselt  𝑦𝑢, 𝑦𝑢

=
𝜕ℎ𝑡
𝜕ℎ𝑡−1

𝜕

𝜕ℎ𝑡
 

𝑢=𝑡

𝑛

Losselt  𝑦𝑢, 𝑦𝑢

=
𝜕ℎ𝑡
𝜕ℎ𝑡−1

𝜕

𝜕ℎ𝑡
Losselt  𝑦𝑡 , 𝑦𝑡 +  

𝑢=𝑡+1

𝑛

Losselt  𝑦𝑢 , 𝑦𝑢

=
𝜕ℎ𝑡
𝜕ℎ𝑡−1

∙
𝜕Losselt  𝑦𝑡 , 𝑦𝑡

𝜕ℎ𝑡
+ 𝜹𝒉𝒕

Define future loss 𝐹𝑡



BPTT
𝛿ℎ𝑡−1 =

𝜕ℎ𝑡

𝜕ℎ𝑡−1
∙
𝜕Losselt  𝑦𝑡 , 𝑦𝑡

𝜕ℎ𝑡
+ 𝛿ℎ𝑡

• we can use the chain rule again to find the dependence of the element loss at time t on the 
state at that same time

𝜕Losselt  𝑦𝑡, 𝑦𝑡
𝜕ℎ𝑡

=
𝜕𝑧𝑡
2

𝜕ℎ𝑡
∙
𝜕Losselt  𝑦𝑡, 𝑦𝑡

𝜕𝑧𝑡
2

and the dependence of the state at time t on the state at 𝑡 − 1, noting that we are 

performing an elementwise multiplication between 𝑊𝑡
ℎℎ and the vector of 𝑓1′ values, 

𝜕ℎ𝑡

𝜕𝑧𝑡
1

𝜕ℎ𝑡
𝜕ℎ𝑡−1

=
𝜕𝑧𝑡
1

𝜕ℎ𝑡−1
∙
𝜕ℎ𝑡

𝜕𝑧𝑡
1 = 𝑊

ℎℎ𝑇 ∗ 𝑓1
′
(𝑧𝑡
1)

Thus, we get 

𝛿ℎ𝑡−1 = 𝑊ℎℎ
𝑇
∗ 𝑓1

′
(𝑧𝑡
1) ∙ 𝑊𝑂

𝑇 𝜕𝐿𝑡

𝜕𝑧𝑡
2 + 𝜹

𝒉𝒕
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BPTT weight updates

𝑑𝐿𝑠𝑒𝑞
𝑑𝑊ℎℎ

+=
𝜕𝐹𝑡−1
𝜕𝑊ℎℎ

=
𝜕𝑧𝑡
1

𝜕𝑊ℎℎ
𝜕ℎ𝑡
𝜕𝑧𝑡
1

𝜕𝐹𝑡−1
𝜕ℎ𝑡

𝑑𝐿𝑠𝑒𝑞
𝑑𝑊ℎ𝑥

+=
𝜕𝐹𝑡−1
𝜕𝑊ℎ𝑥

=
𝜕𝑧𝑡
1

𝜕𝑊ℎ𝑥
𝜕ℎ𝑡
𝜕𝑧𝑡
1

𝜕𝐹𝑡−1
𝜕ℎ𝑡

𝑑𝐿𝑠𝑒𝑞
𝑑𝑊𝑂

= 

𝑡=1

𝑛
𝜕𝐿𝑡
𝜕𝑊𝑂

= 

𝑡=1

𝑛
𝜕𝐿𝑡

𝜕𝑧2
𝑡 ∙
𝜕𝑧2
𝑡

𝜕𝑊𝑂
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Vanishing Gradients

Take a careful look at the backward propagation of the gradient along the sequence:

𝛿ℎ𝑡−1 =
𝜕ℎ𝑡

𝜕ℎ𝑡−1
∙
𝜕Losselt  𝑦𝑡 , 𝑦𝑡

𝜕ℎ𝑡
+ 𝛿ℎ𝑡

Consider a case where only the output at the end of the sequence is incorrect, but it depends 
critically, via the weights, on the input at time 1. In this case, we will multiply the loss at step n by

𝜕ℎ2
𝜕ℎ1
∙
𝜕ℎ3
𝜕ℎ2
∙ ⋯ ∙

𝜕ℎ𝑛
𝜕ℎ𝑛−1

In general, this quantity will either grow or shrink exponentially with the length of the sequence, 
and make it very difficult to train.
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Truncated Backpropagation through time

Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time

Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller number 
of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time

Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Complexity of BPTT

• Computing gradient of the loss function wrt parameters is 
expensive
• It involves performing a forward propagation pass followed by a backward

propagation through the graph

• Run time is O (τ) and cannot be reduced by parallelization

• States computed during forward pass must be stored until reused in
the backward pass
• So memory cost is also O (τ)

• RNN with hidden unit recurrence is very powerful but also expensive 
to train
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Addressing Vanishing / exloding gradients

Vanishing/Exploding Gradients in RNN

Weight 
Initialization 

Methods

Constant Error 
Carousel

Hessian Free 
Optimization

Echo State 
Networks

● Identity-RNN
● np-RNN

● LSTM
● GRU
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Conditional independence assumption 

• RNN receives a sequence of vectors x(t) as input

• RNN described by z(t) = b +𝑊ℎℎh(t-1)+𝑊ℎ𝑥x(t) corresponds to 

a conditional distribution P(y(1),.., y(τ)|x(1),.., x(τ))

• It makes a conditional independence assumption that this 
distribution factorizes as

P(y(t ) |  x(1),..,x(t ))

• To remove the conditional independence assumption, we can
add connections from the output at time t to the hidden unit at
time t+1



Removing conditional independence assumption

Connections from previous output to current state 
allow RNN to model arbitrary distribution over 
sequences of y

Compare it to model that is only able to 
represent distributions in which the y 
values are conditionally independent 
from each other given x values



Train time: We feed the correct output 
y(t) (from teacher) drawn from the 
training set as input to h(t+1)

Teacher forcing

8

Test time:
True output is not known.
We approximate the correct output y ( t)

with the model’s output o (t) and feed the
output back to the model



Training with Teacher forcing
• Teacher forcing: during training the model receives the ground 

truth output 𝑦(𝑡) as input at time 𝑡 + 1.

• Advantage
1. In comparing loss function to output all time steps are decoupled 

-> each step can be trained in isolation

2. Training can be parallelized

• Gradient for each step t computed in isolation

• No need to compute output for the previous step first,
because training set provides ideal value of output

3. Can be trained with teacher forcing

8The model is trained to maximize the conditional probability 

of current output y(t), given both the x sequence so far and 

the previous output y(t-1)



Visualizing Teacher Forcing

• Imagine that the network is learning to follow a trajectory

• It goes astray (because the weights are wrong) but teacher forcing puts the net

back on its trajectory

• By setting the state of all the units to that of teacher’s.

(a) Without teacher forcing, trajectory
runs astray (solid lines) while the
correct trajectory are the dotted
lines

(b) With teacher forcing trajectory
corrected at each step



Training with both Teacher Forcing and BPTT

• Some models may be trained with both Teacher forcing and 
Backward Propagation through time (BPTT)
• When there are both hidden-to-hidden recurrences as well as

output-to- hidden recurrences

Less powerful than with hidden-to- hidden recurrent connections

• It cannot simulate a universal TM

• It requires that the output capture all information of past
to predict future



RNN 3: hidden2hidden, single output. 

Such a network can be used to summarize a sequence and produce a 
fixed-size representation used as input for further processing.
There might be a target right at the end or the gradient on the output 𝑜(𝑡)

can be obtained by backpropagation from further downstream modules



Vector to sequence RNN

If x is a fixed-sized vector, 
we can make it an extra input 
of the RNN that generates the y 
sequence.

• as an extra input at each time 
step, 

• as the initial state h0

• Both

• Example: generate caption for 
an image



Bidirectional RNNs

• Combine an RNN that moves forward through time from the start of 
the sequence

• Another RNN that moves backward through time beginning from the 
end of the sequence

• Need for bidirectionality
• In speech recognition, the correct interpretation of the current sound may 

depend on the next few phonemes because of coarticulation and the next 
few words because of linguistic dependencies

• handwriting recognition
• Machine translation



Bidirectional RNNs

• ℎ(𝑡) summaries the information 
from the past sequence, and 

• 𝑔(𝑡) summaries the information 
from the future sequence



Bidirectional RNNs

• Consists of two 
independent RNNs

• outputs of the two 
networks  are 
combined to 
capture both the 
left and right 
contexts of an input 
at each point in 
time.



Encoder Decoder RNNs

• Applications such as speech recognition, machine translation or 
question-answering where the input and output sequences in the 
training set are generally not of the same length 



Encoder-Decoder Sequence to Sequence RNN



Encoder-Decoder Sequence to Sequence RNN

• An encoder or reader or input RNN processes the input sequence. The encoder emits 
the context C , usually as a simple function of its final hidden state.

• A decoder or writer or output RNN is conditioned on that fixed-length vector to 
generate the output sequence Y = ( y(1) , . . . , y(ny ) ).

• Training: two RNNs are trained jointly to maximize the average of logP(y(1),…,y(ny) 
|x(1),…,x(nx)) over all the pairs of x and y sequences in the training set.



Deep Recurrent Networks

• The computation in most RNNs can be decomposed into three blocks 
of parameters and associated transformations

1. From the input to the hidden state

2. From the previous hidden state to the next hidden state

3. From the hidden state to the output

• Introduce depth



5

Deep RNN



Stacked RNN


