

CS60010: Deep Learning Spring 2021

Sudeshna Sarkar and Abir Das

Module 2

Part 3

Multilayer Perceptron - Introduction Sudeshna Sarkar

18 Jan 2021

Biological Neural Network

Image courtesy: F. A. Makinde et. al., "Prediction of crude oil viscosity using feedforward back-propagation neural network (FFBPNN)"." Petroleum & Coal 2012

- 1940s-1960s: Cybernetics: Brain like electronic systems, morphed into modern control theory and signal processing.
 - McCulloch & Pitts; Hebb: modeling real neurons

- 1940s-1960s: Cybernetics: Brain like electronic systems, morphed into modern control theory and signal processing.
 - McCulloch & Pitts; Hebb: modeling real neurons
 - Rosenblatt, Widrow-Hoff: : perceptrons
 - 1969: Minskey & Papert, *Perceptrons* book showed formal limitations of onelayer linear network

- 1960s-1980s: **D**igital computers, automata theory, computational complexity theory: simple shallow circuits are very limited...
- 1980s-1990s: Connectionism: complex, non-linear networks, back-propagation.
 - backprop and multi-layer networks
 - Rumelhart and McClelland PDP book set
 - Sejnowski's NETTalk, BP-based text-to-speech
 - Neural Info Processing Systems (NIPS) conference starts
- 1990s-2010s: Computational learning theory, graphical models: Learning is computationally hard, simple shallow circuits are very limited...

• 2006: Deep learning: End-to-end training, large datasets, explosion in applications.

un feedback loop in its image recognition neural network - which

- Layered architecture (the deep part) of simple units.
- Inner layer representations are learned only from end-to-end tasks.
- Depth and complexity seem to be only limited by the amount of data.
 More complex models → better representations → better accuracy.
- This behavior is fundamentally different from classical ML: there is often no obvious performance ceiling.
- Inner layer representations are typically task-independent → easy to reuse models for applications that don't have large training datasets.
- Multi-task learning usually works: another departure from typical behavior of classical ML methods.

The success of NN

- 1. More data
- 2. More computational power

Yann Lecun: DNNs require: "an interplay between intuitive insights, theoretical modeling, practical implementations, empirical studies, and scientific analyses"

3. Improved techniques (though they're not brand-new)

But, Driven primarily by intuition and empirical success

- Good research and progress based on
 - Intuition, Practice (empirical findings)
- Theory lags dramatically
 - No guarantees, little understanding of limitations, limited interpretability
- More interestingly, classic theory suggests currently successful DL practices, wouldn't be likely to succeed.

Why the success of DNNs is surprising

• The most successful DNN training algorithm is a version of gradient descent which will only find local optima. In other words, it's a greedy algorithm. Backprop:

$$Loss = f(g(h(y)))$$
$$\frac{d Loss}{dy} = f'(g) \times g'(h) \times h'(y)$$

Why the success of DNNs

Hierarchical representations are ubiquitous.

Artificial Neuron

Terminologies:x: input, w: weights, b: bias a: pre-activation (input activation) g: activation function y: activation (output activation)

Perceptron

Common Activation Functions

Name	Function	Gradient	Graph
Binary step	sign(a)	$g'(a) = \begin{cases} 0, & a \neq 0\\ NA, & a = 0 \end{cases}$	
Sigmoid	$\sigma(a) = \frac{1}{1 + \exp(-a)}$	g'(a) = g(a)(1 - g(a))	
Tanh	$\tan h(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}$	$g^{\prime(a)} = 1 - g^2(a)$	
ReLU 30, 31 Jan, 05 Fet	$g(a) = \max(0, a)$	$g'(a) = \begin{cases} 1, & a \ge 0 \\ 0, & a < 0 \end{cases}$	

Common Activation Functions

CS60010 / Deep Learning | Neural Networks (c) Abir Das

Multilayer Neural Network

Multilayer Neural Network

Intuition:-Hidden Layer: Extracts better representation of the input data Output layer: Does the classification

30, 31 Jan, 05 Feb, 2020

CS60010 / Deep Learning | Neural Networks (c) Abir Das