CS60010: Deep Learning
Spring 2021

Sudeshna Sarkar and Abir Das

Module 2 Part 2
Linear Models for Classification
Sudeshna Sarkar

18 Jan 2021

\IXIXI/

Announcements

* Class Test 1 on 19t Jan 2021 (tomorrow)

\IXIXl/
i L |

ZUN

ML Background and Linear Models

Logistic Regression

\IXIXI/

Classification

A binary classifier is a mapping from R% - {—1,+1}

X = h -y

Training data set
D, = {(x(l),y(l)) (x(m),y(m))}
e Assume that each x® is a d x 1 column vector

 Given a training set D,,, and a classifier h, we can define the training error of h to be

1 R(x®) % y©
0 otherwise

1 m
gm(h) - {

m

* For now, we will try to find a classifier with small training error (and hope it generalizes well
to new data, and has a small test error

\I)fl?(l/
U\

Learning algorithm

\I%I?fl/
71NN

* A hypothesis class H is a set (finite or infinite) of possible classifiers,
each of which represents a mapping from R — {—1, +1}

e A learning algorithm is a procedure that takes a data set D,, as input
and returns an element h € H

x — learningalg (H) |-y

e Choice of H so as to get low test error

\xixi/
AN

Hypothesis class :Linear classifiers

e Alinear classifier in d dimensions is defined by
e A vector of parameters 0 € R and scalar 8,eR
Assume a d x 1 column vector

T
h(x; 6,0,) = sign(6Tx + 6,) = | T1 0 x+6,>0
—1 otherwise

7.5 © Earthguale
7 1 eNuclear explosion Gg o]
€65 °° - . .
g 6 ° o5 8.8 8 0, 0, specifies a hyperplane (decision
T 5.5 - o e .-
c . « . .
Do 51, 6 @f).---._.. boundary) that divides the instance
4541 o RS 1
= Q. o8 .
g 4{ ° T, _" space into two half-spaces.
© 3.5 - e .
A 3 '
2.5 = . ' ' ' '
4.5 5 5.5x 6 6.5 7
Body wave magnitude

Linear classifiers
h(x;0,0y) = sign(0Tx + 8,)

_J+1 if 0Tx+6,>0
—1 otherwise

e 0,0, specifies a hyperplane that divides the
instance space into two half-spaces.

e The one that is on the same side as the normal
vector is the positive half-space, and we classify all
points in that space as positive.

* The half-space on the other side is negative and all
points in it are classified as negative.

\I)fl?.(l/
N

F 3
X2
b 4 % g
. % xx*
"".\ % ® » xx
~ 9 xx
~[AF X X
St e X %%
- Q¢ "
ol o SIS
o o e 06 .'ﬁ- 'xj
o o°, N
(o e ~
o
X3
© o°° |0°°
oco ° % 0
o <>°°e o X1
o0
O O o
o0
o

Linear Classifier with Hard Threshold

e The linear separator in the associated fig
is given by

\IXIXI/
Lol

ZUN\

— 1 7 — 4 9 75 O Earthqualke
X = 1./Xq . T 1 eNuclear explosion g (o}
2 6.5 - 9%o0
— —4.9 + 17X1 — Xy = 0 '% 6 - o 9 0] g -
255 °g 608 .
£~ 0@ o .
X0 o 51 o 8 @,.-"f.i
$451 o o sagh!
- [-49 1.7 —1]|x1|=0 S I 8.
xz h§3.5 iy ™ * ...
5
0'x =0 ” 2§ '
Classification Rule: 4.5 5 5.5 . 6 6.5

Body wave magnitude

+1 if0T'x >0
xX) =
y () {—1 otherwise

Linear Classifier with Hard Threshold

Classification Rule:

Z(X) | -

_)+1 if0Tx >0
y () {—1 otherwise

We can think y as the result of passing the linear
function 87 x through a threshold function.

\I)fl?(l/
U\

e Find the 8 which minimizes classification error on e e
the training set.

 We cannot use gradient descent at all points for
the above threshold function

Perceptron

0 =1[6,0,..0,]7 andx = [x; x5 ..x4]"

d
(x) =6 0,x; = [67D] |7
Z(Xx 0+; X [1]
y = g(z(x))

Terminologies

X: input, 8: weights, b: bias
Z: pre-activation (input activation)
g: activation function

y: activation (output activation)

\IXIXl/
I .-I.. l

AN

Perceptron

x € R% and y € {0, 1} for Binary Classification

>
g(z) = {(1)’ ; Z 8 (Rosenblatt, 1957)

Or, the response may be takenasy € {—1,1}

\I)fl?.(l/
U\

1, z>0 1

9(z) = {—1, z<0 g(2)

1 0Tx+bh>0 0" x + b = 0 represents
Yy = {_1’ 0Tx+bh<0 a hyperplane.

Perceptron (Geometrically)

he(x) = sign(07x)

X

© p©©°

o
L=

o o°°

o o
o

» 07 x is the (signed) distance of point x to hyperplane

e Example: http://mathinsight.org/distance point plane

12

\I)fl?.(l/
U\

http://mathinsight.org/distance_point_plane

Perceptron Learning Algorithm

Training Set: {(x“),y(”)» e (x(m),y(m))}
x® e R, yO e {—1,+1)

1. t<1;60=0
2. // Loop until all examples are correctly classified
While exists i such that x(™) is not correctly classified
Picka js.t. y). (01, xU)) < 0) then
(D) = 9O 4 y(Nx ()
t—t+1
3. Output 0D

0 —x pushes vector 8 away from x

\IXIXI/

Perceptron Learning Algorithm

1 t<1;,00 =0
2. While there exists i such that x(™) is not
correctly classified
Picka j s.t. yU). (61, xW)) < 0)
ot+1) — g(®) 4 y(j)x(j)
t—t+1
3. Output 6

If such a separating hyperplane exists, then the data is known
to be linearly separable.

Convergence Theorem

For a finite and linearly separable set of data, the perceptron

2
learning algorithm will find a linear separator in at most '8—2
)4

iterations where the maximum length of any data pointis 5 and
Y is the maximum margin of the linear separators.

18-Jan-21

\I)fl?.(l/
AN

N

/IXIXI\

4

-101

10 4

-10

10

—10 1

10 4

-10

-101

10 4

-10

10

-10

-101

18-Jan-21

Perceptron Rule

\I)fl?(l/
U\

* Perceptron Learning Rule can find a linear separator given the data is
linearly separable.

e For data that are not linearly separable, the Perceptron algorithm
fails.

I

\IXIXI/

I.. '
P o =

Linear Classifiers by Gradient Descent

For a gradient based optimization approach, we
need to approximate hard threshold function o(z)
with something smooth.

e Logistic regression classifier

1
O-(Z) o 1 _I_ e_Z 05

y = o(hg(x)) = 0(0"x)

z=0Tx

Likelihood Function for Logistic Regression

 The probability that an example belongs to class 1 is

P(yW =1]x®;0) = o(67xW)
Thus P(y® =0|x®;08) =1 —o(07x®)
Thus

Py 1xD;)

= (O‘(GTX(i)))

y® (1 - O-(GTx(i)))l_y(i)

\IXIXI/

7@ — gT 5

P(y(l) = 1|x(l))0'(z(l))

Thus P(y® =0|x®W) =1 -0 (2zW)

P(y®)x®)
y@

— (a(z(i))) (1 _ U(Z(o))

1—y(i)

I

Maximum Likelihood Estimation of Logistic Regression

The probability that an example belongs to class 1 is P(y(i) = 1|x(i); (-)) = O'(GTX(i))
Thus P(y® =0]x®;0) =1 —o(087x®)

Thus P(y©[x(;0) = (a(eTx“')))y(i) (1- a(eTX(o))l_y(i)
The joint probability of all the labels

ik ®

[[(s(07x®))" (1~ o(07x®))
i=1

So the log likelihood for logistic regression is given by

_y®

m

[(0) = z y®Dlog (U(OTX(i))) + (1 —yW)log (1 — a(OTx(i)))

=1

\IXIXI/

AT

Maximum Likelihood Estimation of Logistic Regression

\IXI?.(I/
U\

Derivative of log likelihood w.r.t. one component of 0

m
52‘2?9) B é;z > ¥V loga(67x¥) + (1 - y)log (1 — o (87xV)) derivative of sum of terms
J mj - derivative of log f (x)
= ’ - 7 T (3) | o
; Lo (8Tx®)) 1—0(0Tx®)]100; (0" x') chain rule + derivative of o
S e
e L. — VY 1 0TV (1 - o (0Tx @))@
; o (6Tx®) 11— o (8TxD) _5(9 b3)(1 a6 x))xj
[¥9—o(e7x®) | .
- ’ il T+ (7) _ T 5 (4)
_; -J(QTX(i))(lJ(HTx(i)))}J(Q X)(1 J(Q X))xj
m- =
- Z 3@ J(QTX(E'))}X;E') (12)

&
I
—

\I)fl?.(l/
AN

Calculating derivatives

e Since the likelihood function is a sum over all of the data, and in calculus the derivative of
a sum is the sum of derivatives, we can focus on computing the derivative of one
example. The gradient of theta is simply the sum of this term for each training data point.

e The derivative of gradient for one data point (x, y):
p=0(07x)

e 7 =0Tx

0l(0) _al(®) ap

_0l(B) dp 0z
~ dp 0z 06,

Derivative of logistic function

logistic function

1 0.8

0 0 =
—O'(Z) — 1+e % S

0z 0z 3
— _1 . e—Z . _1 0.0—8 6 -4 2 0 2 4 6 8
-7 2 z

(1 + e) derivative of the logistic function
1 —z 0.25
— € 0.20
l1+e21+e” -
a(z)(1—a(2)) oo

0.05

=y(1-) -

\I)fl?.(l/
U\

Calculating derivatives

oL(8) _ d1(8) dp 0z

00 dp 0z 06;
[(6) = ylogp + (1 — y)log(1 — p)
ole) _y _1-y

ap p 1-p

P =0(x)(1-0(2) p=0

0z _
Xj

g z=0Tx
36

oL(6) _ d1(6) dp 0z

36

VIR T

=R
< S

1

op 9z 96;

=

: a(z)(l — a(z)) © Xj

'P(l—P)°Xj

y(1—=p) —p(A—-y)]|-x
y —p] " Xj
y—0o(0"x)] ' Xj

p=0a(07x)

\I)fl?.(l/
U\

Gradient of Log Likelihood

\I)fl?.(l/
AN

al(e)

z[y(o — o (8Tx®)]x,®

 We need to chose the values of theta that maximize the log-likelihood.

e Unfortunately, if we try just setting the derivative equal to zero, there’s no closed
form for the maximum.

e However, we can find the best values of theta by using an optimization algorithm.

Gradient Ascent Optimization

0 l(@Old)
90,

orev = 091 4 7).

m
= g0l 4. z[ya) — o(8Tx®)]x; @

=1

\IXIXI/

\I%I?*FI/
71NN

Cross-Entropy Loss Function

* We need a loss function L(y, y) that expresses, for an observation x, how close
the classifier output y is to the correct output y (whichis 0 or 1).

e A loss function that prefers the correct class labels of the training examples to be
more likely. This is called conditional maximum likelihood estimation: we choose
the parameters that maximize the log probability of the true y labels in the
training data given the observations x.

* The resulting loss function is the negative log likelihood loss, generally called the
cross-entropy loss

 Minimizing the negative of this function (minimizing the negative log likelihood)
corresponds to maximizing the likelihood. This error function L(,y) is typically
known as the cross-entropy error function (also known as log-loss):

http://en.wikipedia.org/wiki/Cross_entropy

Cross entropy loss

\I%I?(I/
71NN

p(ylx) =97 (1 =97
log(p(ylx)) = ylogy + (1 — y)log(1 — %) log likelihood

cross-entropy loss:

Leg(®,y) = —log(p(yIx)) = —[ylogy + (1 — y)log(1 —)]
Leg(@,y) = —[yloga(6"x) + (1 —y)log(1 — a(67x))]

\IXIXI/

Cross Entropy v.s. Square Error

Total
Loss

f Square
~ Error

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

Gradient Descent

\IXIXI/

Multiclass Classification

\IXIXI/

Multi-class Classification

Cp: 0;,b; 21 =01 -x+b Probability:

C,: 6y b — 0, x+b, i)

2: Y2, 2 Zy = 2.x+2 .Ziyizl

C;: 03, b3 z3 = 03 - x + b3 yi = P(Ci|x)

Softmax

ezl 20
e ——

T~
A

<
Il
[y

T~
DA

(-
Il
—_

-
Il
[

T~
N

\I)fl?.(l/
U\

Presenter
Presentation Notes
2 class

[Bishop, P209-210]

Multi-class Classification

y y
/ 7 =0 x4 by Y, Cross Entropy Yo
W
o)
X— Z2 =02 X+ by g—h —)72< 3 >Y2
m N\
\Z3=63‘x+b3 > " _zyllnyl
— — y . 3
3 =1
target
If x € class 1 If x € class 2 If x € class 3
(1 0] 0
y=10 y =11 y=10
0. 0 1]

PN N\

—Iny, —Iny, —Iny;

\IXIXl/
I .-I.. '

U\

	CS60010: Deep Learning�Spring 2021��Sudeshna Sarkar and Abir Das
	Announcements
	ML Background and Linear Models
	Classification
	Learning algorithm
	Hypothesis class :Linear classifiers
	Linear classifiers
	Linear Classifier with Hard Threshold
	Linear Classifier with Hard Threshold
	Perceptron
	Perceptron
	Perceptron (Geometrically)
	Perceptron Learning Algorithm
	Perceptron Learning Algorithm�
	Slide Number 15
	Perceptron Rule
	Linear Classifiers by Gradient Descent
	Likelihood Function for Logistic Regression
	Maximum Likelihood Estimation of Logistic Regression
	Maximum Likelihood Estimation of Logistic Regression
	Calculating derivatives
	Derivative of logistic function
	Calculating derivatives
	Gradient of Log Likelihood
	Gradient Ascent Optimization
	Cross-Entropy Loss Function
	Cross entropy loss
	Cross Entropy v.s. Square Error
	Gradient Descent
	Multiclass Classification
	Multi-class Classification
	Multi-class Classification

