
CS60010: Deep Learning
Spring 2021

Sudeshna Sarkar and Abir Das

Module 2 Part 2
Linear Models for Classification

Sudeshna Sarkar

18 Jan 2021

Announcements

• Class Test 1 on 19th Jan 2021 (tomorrow)

• Assignment 1 due 22nd Jan 12 pm

ML Background and Linear Models
Logistic Regression

Classification
A binary classifier is a mapping from 𝑅𝑅𝑑𝑑 → −1, +1

𝑥𝑥 → ℎ → 𝑦𝑦

Training data set

𝒟𝒟𝑚𝑚 = 𝑥𝑥(1),𝑦𝑦(1) , … , 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚)

• Assume that each 𝑥𝑥(𝑖𝑖) is a 𝑑𝑑 × 1 column vector

• Given a training set 𝒟𝒟𝑚𝑚 and a classifier ℎ, we can define the training error of ℎ to be

𝜀𝜀𝑚𝑚 ℎ =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

�1 ℎ 𝑥𝑥(𝑖𝑖) ≠ 𝑦𝑦(𝑖𝑖)

0 otherwise

• For now, we will try to find a classifier with small training error (and hope it generalizes well
to new data, and has a small test error

• A hypothesis class ℋ is a set (finite or infinite) of possible classifiers,
each of which represents a mapping from 𝑅𝑅𝑑𝑑 → {−1, +1}

• A learning algorithm is a procedure that takes a data set 𝒟𝒟𝑛𝑛 as input
and returns an element ℎ ∈ ℋ

• Choice of ℋ so as to get low test error

Learning algorithm

𝑥𝑥 → learning alg (ℋ) → 𝑦𝑦

Hypothesis class :Linear classifiers
• A linear classifier in 𝑑𝑑 dimensions is defined by

• A vector of parameters 𝜃𝜃 𝜖𝜖 𝑅𝑅𝑑𝑑 and scalar 𝜃𝜃0𝜖𝜖ℛ
Assume a d × 1 column vector

ℎ 𝑥𝑥; 𝜃𝜃,𝜃𝜃0 = sign 𝜃𝜃𝑇𝑇𝑥𝑥 + 𝜃𝜃0 = �+1 𝑖𝑖𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥 + 𝜃𝜃0 > 0
−1 otherwise

𝜃𝜃,𝜃𝜃0 specifies a hyperplane (decision
boundary) that divides the instance
space into two half-spaces.

Linear classifiers
ℎ 𝑥𝑥; 𝜃𝜃,𝜃𝜃0 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑇𝑇𝑥𝑥 + 𝜃𝜃0

= �+1 if 𝜃𝜃𝑇𝑇𝑥𝑥 + 𝜃𝜃0 > 0
−1 otherwise

• 𝜃𝜃,𝜃𝜃0 specifies a hyperplane that divides the
instance space into two half-spaces.

• The one that is on the same side as the normal
vector is the positive half-space, and we classify all
points in that space as positive.

• The half-space on the other side is negative and all
points in it are classified as negative.

Linear Classifier with Hard Threshold
• The linear separator in the associated fig

is given by

𝑥𝑥2 = 1.7𝑥𝑥1 − 4.9

→ −4.9 + 1.7𝑥𝑥1 − 𝑥𝑥2 = 0

→ −4.9 1.7 − 1
𝑥𝑥0
𝑥𝑥1
𝑥𝑥2

= 0

𝛉𝛉𝑇𝑇𝐱𝐱 = 0
Classification Rule:

𝑦𝑦(𝑥𝑥) = �+1 𝑖𝑖𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥 > 0
−1 otherwise

Linear Classifier with Hard Threshold
Classification Rule:

𝑦𝑦(𝑥𝑥) = �+1 if 𝜃𝜃𝑇𝑇𝑥𝑥 > 0
−1 otherwise

We can think 𝑦𝑦 as the result of passing the linear
function 𝜃𝜃𝑇𝑇𝑥𝑥 through a threshold function.
• Find the 𝜃𝜃 which minimizes classification error on

the training set.
• We cannot use gradient descent at all points for

the above threshold function

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑

𝜃𝜃1
𝜃𝜃2

𝜃𝜃𝑑𝑑
1

𝜃𝜃0 = 𝑏𝑏

z(𝒙𝒙)∑ 𝑔𝑔(𝑧𝑧) 𝑦𝑦

Terminologies
𝒙𝒙: input, 𝜽𝜽: weights, 𝒃𝒃: bias
𝑧𝑧: pre-activation (input activation)
𝑔𝑔: activation function
𝑦𝑦: activation (output activation)

Perceptron
𝜽𝜽 = 𝜃𝜃1 𝜃𝜃2 …𝜃𝜃𝑑𝑑 𝑇𝑇 and 𝒙𝒙 = 𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑑𝑑 𝑇𝑇

𝑧𝑧 𝒙𝒙 = 𝜃𝜃0 + �
𝑖𝑖=1

𝑑𝑑

𝜃𝜃𝑖𝑖𝑥𝑥𝑖𝑖 = 𝜽𝜽𝑇𝑇𝑏𝑏 𝒙𝒙
1

𝑦𝑦 = 𝑔𝑔(𝑧𝑧 𝒙𝒙)

Perceptron
𝒙𝒙 ∈ ℛ𝑑𝑑 and 𝑦𝑦 ∈ {0, 1} for Binary Classification

𝑔𝑔(𝑧𝑧) = �1, 𝑧𝑧 ≥ 0
0, 𝑧𝑧 < 0

(Rosenblatt, 1957)

Or, the response may be taken as 𝑦𝑦 ∈ {−1, 1}

𝑔𝑔(𝑧𝑧) = � 1, 𝑧𝑧 ≥ 0
−1, 𝑧𝑧 < 0

𝑦𝑦 = � 1, 𝜽𝜽𝑇𝑇𝒙𝒙 + 𝑏𝑏 ≥ 0
−1, 𝜽𝜽𝑇𝑇𝒙𝒙 + 𝑏𝑏 < 0

The perceptron classification rule, thus, translates to

𝜽𝜽𝑇𝑇𝒙𝒙 + 𝑏𝑏 = 0 represents
a hyperplane.

𝑔𝑔(𝑧𝑧)

𝑧𝑧

Perceptron (Geometrically)

• 𝛉𝛉𝑇𝑇𝐱𝐱 is the (signed) distance of point x to hyperplane
• Example: http://mathinsight.org/distance_point_plane

12

ℎ𝛉𝛉 𝐱𝐱 = sign(𝛉𝛉𝑇𝑇𝐱𝐱)

http://mathinsight.org/distance_point_plane

Perceptron Learning Algorithm

Training Set: 𝑥𝑥(1),𝑦𝑦(1) , … , 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚)

𝑥𝑥(𝑖𝑖) ∈ 𝑅𝑅𝑑𝑑; 𝑦𝑦(𝑖𝑖) ∈ −1, +1

1. 𝑡𝑡 ← 1; 𝜃𝜃(𝑡𝑡) = 𝟎𝟎
2. // Loop until all examples are correctly classified

While exists 𝑖𝑖 such that 𝑥𝑥(𝑚𝑚) is not correctly classified

Pick a 𝑗𝑗 s.t. 𝑦𝑦(𝑗𝑗). 𝜃𝜃(𝑡𝑡), 𝑥𝑥(𝑗𝑗) ≤ 0) then

𝛉𝛉(𝑡𝑡+1) = 𝛉𝛉(𝑡𝑡) + 𝑦𝑦(𝑗𝑗)𝑥𝑥(𝑗𝑗)

𝑡𝑡 ← 𝑡𝑡 + 1
3. Output 𝛉𝛉(𝑡𝑡)

𝛉𝛉 + 𝐲𝐲𝐲𝐲

𝛉𝛉 +x pushes vector 𝛉𝛉 towards x

𝛉𝛉 −x pushes vector 𝛉𝛉 away from x

𝛉𝛉

𝛉𝛉

𝜸𝜸

𝜷𝜷

Perceptron Learning Algorithm

18-Jan-21

If such a separating hyperplane exists, then the data is known
to be linearly separable.

Convergence Theorem
For a finite and linearly separable set of data, the perceptron

learning algorithm will find a linear separator in at most 𝛽𝛽
2

𝛾𝛾2

iterations where the maximum length of any data point is 𝛽𝛽 and
𝛾𝛾 is the maximum margin of the linear separators.

1. 𝑡𝑡 ← 1; 𝜃𝜃(𝑡𝑡) = 𝟎𝟎
2. While there exists 𝑖𝑖 such that 𝑥𝑥(𝑚𝑚) is not

correctly classified
Pick a 𝑗𝑗 s.t. 𝑦𝑦(𝑗𝑗). 𝜃𝜃(𝑡𝑡), 𝑥𝑥(𝑗𝑗) ≤ 0)
𝛉𝛉(𝑡𝑡+1) = 𝛉𝛉(𝑡𝑡) + 𝑦𝑦(𝑗𝑗)𝑥𝑥(𝑗𝑗)

𝑡𝑡 ← 𝑡𝑡 + 1
3. Output 𝛉𝛉(𝑡𝑡)

18-Jan-21

Perceptron Rule

• Perceptron Learning Rule can find a linear separator given the data is
linearly separable.

• For data that are not linearly separable, the Perceptron algorithm
fails.

Linear Classifiers by Gradient Descent
For a gradient based optimization approach, we
need to approximate hard threshold function
with something smooth.

• Logistic regression classifier

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

𝑦𝑦 = 𝜎𝜎 ℎ𝜃𝜃(𝐱𝐱) = 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱

𝑧𝑧 = 𝛉𝛉𝑇𝑇𝐱𝐱

𝜎𝜎(𝑧𝑧)

Likelihood Function for Logistic Regression

• The probability that an example belongs to class 1 is

𝑃𝑃 𝑦𝑦(𝑖𝑖) = 1|𝑥𝑥(𝑖𝑖);𝛉𝛉 = 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)

Thus 𝑃𝑃 𝑦𝑦(𝑖𝑖) = 0|𝑥𝑥(𝑖𝑖);𝛉𝛉 = 1 − 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)

Thus

𝑃𝑃 𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖);𝛉𝛉

= 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)
𝑦𝑦(𝑖𝑖)

1 − 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)
1−𝑦𝑦(𝑖𝑖)

𝑧𝑧(𝑖𝑖) = θ𝑇𝑇𝑥𝑥(𝑖𝑖)

𝑃𝑃 𝑦𝑦(𝑖𝑖) = 1|𝑥𝑥(𝑖𝑖) 𝜎𝜎 𝑧𝑧(𝑖𝑖)

Thus 𝑃𝑃 𝑦𝑦(𝑖𝑖) = 0|𝑥𝑥(𝑖𝑖) = 1 − 𝜎𝜎 𝑧𝑧(𝑖𝑖)

𝑃𝑃 𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖)

= 𝜎𝜎 z(𝑖𝑖)
𝑦𝑦(𝑖𝑖)

1 − 𝜎𝜎 z(𝑖𝑖)
1−𝑦𝑦(𝑖𝑖)

Maximum Likelihood Estimation of Logistic Regression

The probability that an example belongs to class 1 is 𝑃𝑃 𝑦𝑦(𝑖𝑖) = 1|𝑥𝑥(𝑖𝑖);𝛉𝛉 = 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)

Thus 𝑃𝑃 𝑦𝑦(𝑖𝑖) = 0|𝑥𝑥(𝑖𝑖);𝛉𝛉 = 1 − 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)

Thus 𝑃𝑃 𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖);𝛉𝛉 = 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)
𝑦𝑦(𝑖𝑖)

1 − 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)
1−𝑦𝑦(𝑖𝑖)

The joint probability of all the labels

�
𝑖𝑖=1

𝑚𝑚

𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)
𝑦𝑦(𝑖𝑖)

1 − 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)
1−𝑦𝑦(𝑖𝑖)

So the log likelihood for logistic regression is given by

𝑙𝑙 𝜃𝜃 = �
𝑖𝑖=1

𝑚𝑚

𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖) + 1 − 𝑦𝑦 𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 1 − 𝜎𝜎 𝛉𝛉𝑇𝑇𝐱𝐱(𝑖𝑖)

Maximum Likelihood Estimation of Logistic Regression

Derivative of log likelihood w.r.t. one component of 𝛉𝛉
m

m

m

m

m

derivative of sum of terms

derivative of log f (x)

chain rule + derivative of σ

Calculating derivatives

• Since the likelihood function is a sum over all of the data, and in calculus the derivative of
a sum is the sum of derivatives, we can focus on computing the derivative of one
example. The gradient of theta is simply the sum of this term for each training data point.

• The derivative of gradient for one data point (x, y):
• 𝑝𝑝 = 𝜎𝜎(𝜃𝜃𝑇𝑇𝑥𝑥)
• 𝑧𝑧 = 𝜃𝜃𝑇𝑇𝑥𝑥

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

=
𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝑝𝑝

�
𝜕𝜕𝑝𝑝
𝜕𝜕𝜃𝜃𝑗𝑗

=
𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

�
𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃𝑗𝑗

Derivative of logistic function

𝜕𝜕
𝜕𝜕𝑧𝑧
𝜎𝜎 𝑧𝑧 =

𝜕𝜕 1
1 + 𝑒𝑒−𝑧𝑧
𝜕𝜕𝜕𝜕

=
−1

1 + 𝑒𝑒−𝑧𝑧 2 � 𝑒𝑒
−𝑧𝑧 � −1

=
1

1 + 𝑒𝑒−𝑧𝑧
𝑒𝑒−𝑧𝑧

1 + 𝑒𝑒−𝑧𝑧

𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧
= 𝑦𝑦(1 − 𝑦𝑦)

Calculating derivatives

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

= 𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝑙𝑙 𝜃𝜃 = 𝑦𝑦 log𝑝𝑝 + 1 − 𝑦𝑦 log(1 − 𝑝𝑝)

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

= 𝑦𝑦
𝑝𝑝
− 1−𝑦𝑦

1−𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

= 𝑥𝑥𝑗𝑗

𝑝𝑝 = 𝜎𝜎 𝑧𝑧

𝑧𝑧 = 𝜃𝜃𝑇𝑇𝑥𝑥

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

= 𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

= 𝑦𝑦
𝑝𝑝
− 1−𝑦𝑦

1−𝑝𝑝
� 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧 � 𝑥𝑥𝑗𝑗

= 𝑦𝑦
𝑝𝑝
− 1−𝑦𝑦

1−𝑝𝑝
� 𝑝𝑝 1 − 𝑝𝑝 � 𝑥𝑥𝑗𝑗

= 𝑦𝑦 1 − 𝑝𝑝 − 𝑝𝑝(1 − 𝑦𝑦) � 𝑥𝑥𝑗𝑗
= 𝑦𝑦 − 𝑝𝑝 � 𝑥𝑥𝑗𝑗
= 𝑦𝑦 − 𝜎𝜎(𝜃𝜃𝑇𝑇𝑥𝑥) � 𝑥𝑥𝑗𝑗 𝑝𝑝 = 𝜎𝜎(𝜃𝜃𝑇𝑇𝑥𝑥)

Gradient of Log Likelihood

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑚𝑚

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖) 𝑥𝑥𝑗𝑗(𝑖𝑖)

• We need to chose the values of theta that maximize the log-likelihood.

• Unfortunately, if we try just setting the derivative equal to zero, there’s no closed
form for the maximum.

• However, we can find the best values of theta by using an optimization algorithm.

Gradient Ascent Optimization

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 �
𝜕𝜕 𝑙𝑙 𝜃𝜃old

𝜕𝜕𝜃𝜃𝑗𝑗

= 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ��
𝑖𝑖=1

𝑚𝑚

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖) 𝑥𝑥𝑗𝑗(𝑖𝑖)

Cross-Entropy Loss Function

• We need a loss function 𝐿𝐿(�𝑦𝑦,𝑦𝑦) that expresses, for an observation 𝑥𝑥, how close
the classifier output �𝑦𝑦 is to the correct output 𝑦𝑦 (which is 0 or 1).

• A loss function that prefers the correct class labels of the training examples to be
more likely. This is called conditional maximum likelihood estimation: we choose
the parameters that maximize the log probability of the true y labels in the
training data given the observations x.

• The resulting loss function is the negative log likelihood loss, generally called the
cross-entropy loss

• Minimizing the negative of this function (minimizing the negative log likelihood)
corresponds to maximizing the likelihood. This error function 𝐿𝐿(�𝑦𝑦,𝑦𝑦) is typically
known as the cross-entropy error function (also known as log-loss):

http://en.wikipedia.org/wiki/Cross_entropy

Cross entropy loss

𝑝𝑝 𝑦𝑦 𝑥𝑥 = �𝑦𝑦𝑦𝑦 1 − �𝑦𝑦 1−𝑦𝑦

log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = 𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦) log likelihood

cross-entropy loss:

𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = − 𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)
𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − 𝑦𝑦 log𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥 + 1 − 𝑦𝑦 log(1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥)

Cross Entropy v.s. Square Error

Total
Loss

w1
w2

Cross
Entropy

Square
Error

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

Gradient Descent

Multiclass Classification

C1:

C2:
C3:

𝜃𝜃1, 𝑏𝑏1
𝜃𝜃2, 𝑏𝑏2
𝜃𝜃3, 𝑏𝑏3

𝑧𝑧1 = 𝜃𝜃1 � 𝑥𝑥 + 𝑏𝑏1
𝑧𝑧2 = 𝜃𝜃2 � 𝑥𝑥 + 𝑏𝑏2
𝑧𝑧3 = 𝜃𝜃3 � 𝑥𝑥 + 𝑏𝑏3

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

Softmax

𝑒𝑒

𝑒𝑒

𝑒𝑒

𝑒𝑒𝑧𝑧1

𝑒𝑒𝑧𝑧2

𝑒𝑒𝑧𝑧3

+

�𝑦𝑦1 = �𝑒𝑒𝑧𝑧1 �
𝑗𝑗=1

3

𝑒𝑒𝑧𝑧𝑗𝑗

�
𝑗𝑗=1

3

𝑒𝑒𝑧𝑧𝑗𝑗

÷

÷

÷

3

-3

1 2.7

20

0.05

0.88

0.12

≈0

�𝑦𝑦2 = �𝑒𝑒𝑧𝑧2 �
𝑗𝑗=1

3

𝑒𝑒𝑧𝑧𝑗𝑗

�𝑦𝑦3 = �𝑒𝑒𝑧𝑧3 �
𝑗𝑗=1

3

𝑒𝑒𝑧𝑧𝑗𝑗

Probability:
• 1 > �𝑦𝑦𝑖𝑖 > 0
• ∑𝑖𝑖 �𝑦𝑦𝑖𝑖 = 1

𝑦𝑦𝑖𝑖 = 𝑃𝑃 𝐶𝐶𝑖𝑖|𝑥𝑥

Multi-class Classification

Presenter
Presentation Notes
2 class

𝑦𝑦 =
1
0
0

Softm
ax

𝑥𝑥

1y

2y

3y

y

1ŷ

ŷ

2ŷ

3ŷ

Cross Entropy

−�
𝑖𝑖=1

3

𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙 �𝑦𝑦𝑖𝑖

𝑦𝑦 =
0
1
0

𝑦𝑦 =
0
0
1

If x ∈ class 1 If x ∈ class 2 If x ∈ class 3
target

[Bishop, P209-210]

−𝑙𝑙𝑙𝑙 �𝑦𝑦1

Multi-class Classification

−𝑙𝑙𝑙𝑙 �𝑦𝑦2 −𝑙𝑙𝑙𝑙 �𝑦𝑦3

𝑧𝑧1 = 𝜃𝜃1 � 𝑥𝑥 + 𝑏𝑏1

𝑧𝑧2 = 𝜃𝜃2 � 𝑥𝑥 + 𝑏𝑏2

𝑧𝑧3 = 𝜃𝜃3 � 𝑥𝑥 + 𝑏𝑏3

	CS60010: Deep Learning�Spring 2021��Sudeshna Sarkar and Abir Das
	Announcements
	ML Background and Linear Models
	Classification
	Learning algorithm
	Hypothesis class :Linear classifiers
	Linear classifiers
	Linear Classifier with Hard Threshold
	Linear Classifier with Hard Threshold
	Perceptron
	Perceptron
	Perceptron (Geometrically)
	Perceptron Learning Algorithm
	Perceptron Learning Algorithm�
	Slide Number 15
	Perceptron Rule
	Linear Classifiers by Gradient Descent
	Likelihood Function for Logistic Regression
	Maximum Likelihood Estimation of Logistic Regression
	Maximum Likelihood Estimation of Logistic Regression
	Calculating derivatives
	Derivative of logistic function
	Calculating derivatives
	Gradient of Log Likelihood
	Gradient Ascent Optimization
	Cross-Entropy Loss Function
	Cross entropy loss
	Cross Entropy v.s. Square Error
	Gradient Descent
	Multiclass Classification
	Multi-class Classification
	Multi-class Classification

