#### CS60010: Deep Learning Spring 2021

Sudeshna Sarkar and Abir Das

Linear Models Sudeshna Sarkar

12 Jan 2021



- Class Test 1 on 19<sup>th</sup> Jan 2021 (Next Tuesday)
- Assignment 1 Uploaded (Due 22<sup>nd</sup> Jan Friday 12 pm)
- TA Session on 13<sup>th</sup> Jan 8 pm to 9 pm



## ML Background and Linear Models

Based on Slides by Abir Das

#### Machine Learning Background



```
\mathcal{Y} : space of "targets" or "labels"
```

How the observations determine the targets?

```
Data: Pairs \{(x^{(i)}, y^{(i)})\} with x^{(i)} \in \mathcal{X} and y^{(i)} \in \mathcal{Y}.
```

**Prediction:** Given a new observation x, predict the corresponding y.



#### **Prediction Problems**



| Observation Space $oldsymbol{\mathcal{X}}$ :           | Target Space $oldsymbol{y}$ :  |
|--------------------------------------------------------|--------------------------------|
| House attributes                                       | Price of house                 |
| Car attributes, Route attributes,<br>Driving behaviour | Battery energy consumption     |
| Email                                                  | Spam or Non-spam               |
| Images                                                 | Object: "cat", "dog" etc.      |
| Images                                                 | Caption                        |
| Face Images                                            | User's identity                |
| Human Speech Waveform                                  | Text transcript of the speech  |
| Document                                               | Topic of the Document          |
| Scene Description in English                           | Sketch of the Scene            |
| Video from an Automobile Camera                        | Steering, Accelerator, Braking |
| General Video Segment                                  | Closed Caption Text            |

#### **Prediction Functions**



Assumption about the model  $\hat{P}(X, Y)$ , namely that y = f(x), i.e. y **takes a single value** given x.

Inputs often referred to as predictors and features;

Outputs are known as targets and labels.

- **1.** Regression: y = f(x) is the predicted value of the output, and  $y \in \mathcal{R}$  is a real value.
- 2. Classifier: y = f(x) is the predicted class of x, and  $y \in \{1, ..., k\}$  is the class number.

#### **Prediction Functions**



**Linear regression**, y = f(x) is a linear function. Examples:

- (Outside temperature, People inside classroom, target room temperature | Energy requirement)
- (Size, Number of Bedrooms, Number of Floors, Age of the Home | Price)

A set of N observations of y as  $\{y^{(1)}, ..., y^{(m)}\}\$  and the corresponding inputs  $\{x^{(1)}, ..., x^{(m)}\}\$ 



#### Regression



• The input and output variables are assumed to be related via a relation, known as hypothesis,  $\hat{y} = h_{\theta}(x)$ 

 $\boldsymbol{\theta}$  is the parameter vector.

• The goal is to predict the output variable y = f(x) for an arbitrary value of the input variable x.

#### Loss Functions



Hypothesis:  $h_{\theta}(x) = \theta_0 + \theta_1 x$ 

There may be no "true" target value y for an observation xThere may also be noise or unmodeled effects in the dataset



So we try to predict a value that is "close to" the observed target values.

A loss function measures the difference between a target prediction and target data value.

e.g. squared loss  $L_2(\hat{y}, y) = (\hat{y} - y)^2$  where  $\hat{y} = h_{\theta}(x)$  is the prediction,

Optimization objective: Find model parameters **0** that will minimize the loss.

#### Linear Regression

Simplest case,  $\hat{y} = h(x) = \theta_0 + \theta_1 x$ 

The loss is the squared loss  $L_2(\hat{y}, y) = (\hat{y} - y)^2$ 

y

15

10

10

20

30

40

50

60 X

-20

-10



 $\nu \cdot \cdot \cdot$ 



#### Linear Regression



The total loss across all points is

$$L = \sum_{i=1}^{m} (\widehat{y^{(i)}} - y^{(i)})^{2}$$
$$= \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{(i)} - y^{(i)})^{2}$$
$$(\theta_{0}, \theta_{1}) = \frac{1}{N} \sum_{i=1m} (h_{\theta} (x^{(i)}) - y^{(i)})^{2}$$

We want the optimum values of  $\theta_0$ ,  $\theta_1$  that will minimize the sum of squared errors. Two approaches:

- 1. Analytical solution via mean squared error
- 2. Iterative solution via MLE and gradient ascent

#### Linear Regression



Since the loss is differentiable, we set

$$\frac{dL}{d\theta_0} = 0$$
 and  $\frac{dL}{d\theta_1} = 0$ 

We want the loss-minimizing values of  $\theta$ , so we set

$$\frac{dL}{d\theta_1} = 0 = 2\theta_1 \sum_{i=1}^N (x^{(i)})^2 + 2\theta_0 \sum_{i=1}^N x^{(i)} - 2\sum_{i=1}^N x^{(i)} y^{(i)}$$
$$\frac{dL}{d\theta_0} = 0 = 2\theta_1 \sum_{i=1}^N x^{(i)} + 2\theta_0 N - 2\sum_{i=1}^N y^{(i)}$$

These being linear equations of  $\theta$ , have a unique closed form solution





$$\theta_1 = \frac{m \sum_{i=1}^m y^{(i)} x^{(i)} - \left(\sum_{i=1}^m x^{(i)}\right) \left(\sum_{i=1}^m y^{(i)}\right)}{m \sum_{i=1}^m (x^{(i)})^2 - \left(\sum_{i=1}^m x^{(i)}\right)^2}$$

$$\theta_0 = \frac{1}{m} \left( \sum_{i=1}^m y^{(i)} - \theta_1 \sum_{i=1}^m x^{(i)} \right)$$



We found  $\theta_0$ ,  $\theta_1$  which minimize the squared loss on data we already have. What we actually minimized was an averaged loss across a finite number of data points. This averaged loss is called **empirical risk**.

What we really want to do is predict the *y* values for points *x* we haven't seen yet. i.e. minimize the expected loss on some new data:

 $E[(\hat{y}-y)^2]$ 

The expected loss is called **risk**.

Machine learning approximates risk-minimizing models with empirical-risk minimizing ones.

#### **Risk Minimization**



Generally minimizing empirical risk (loss on the data) instead of true risk works fine, but it can fail if:

- The **data sample is biased**. e.g. you cant build a (good) classifier with observations of only one class.
- There is **not enough data** to accurately estimate the parameters of the model. Depends on the complexity (number of parameters, variation in gradients, complexity of the loss function, generative vs. discriminative etc.).

$$x \in \mathcal{R}^d$$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

 $h_{\theta}(\mathbf{x}) = \theta^T \mathbf{x}$ 

Define  $x_0 = 1$ 

Cost Function:

$$J(\mathbf{\theta}) = J(\theta_0, \theta_1, \dots, \theta_d) = \frac{1}{m} \left( \mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right)^2$$







 $\hat{\mathbf{y}} = \mathbf{X}\mathbf{\Theta}$ 



$$J(\mathbf{\theta}) = \frac{1}{m} (\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 = \frac{1}{m} (\hat{y}^{(i)} - y^{(i)})^2$$
  
$$= \frac{1}{m} \|\hat{y} - y\|_2^2 = \frac{1}{m} (\hat{y} - y)^T (\hat{y} - y)$$
  
$$= \frac{1}{m} (\mathbf{X} \mathbf{\theta} - \mathbf{y})^T (\mathbf{X} \mathbf{\theta} - \mathbf{y})$$
  
$$= \frac{1}{m} \{ \theta^T (X^T X) \theta - \theta^T X^T y - y^T X \theta + y^T Y \}$$
  
$$= \frac{1}{m} \{ \theta^T (X^T X) \theta - (X^T y)^T \theta - (X^T y)^T \theta + y^T Y \}$$
  
$$= \frac{1}{m} \{ \theta^T (X^T X) \theta - 2(X^T y)^T \theta + y^T Y \}$$



$$\nabla_{\theta} J(\theta) = \frac{1}{m} \{ 2\mathbf{X}^T \mathbf{X} \theta - 2\mathbf{X}^T \mathbf{y} + 0 \} = 0$$
$$\nabla_{\theta} J(\theta) = \frac{2}{m} \{ \mathbf{X}^T \mathbf{X} \theta - \mathbf{X}^T \mathbf{y} \} = 0$$
$$\mathbf{X}^T \mathbf{X} \theta - \mathbf{X}^T \mathbf{y} = 0$$
$$\mathbf{X}^T \mathbf{X} \theta = \mathbf{X}^T \mathbf{y}$$
$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$





• Equating the gradient of the cost function to 0,

$$\nabla_{\theta} J(\boldsymbol{\theta}) = \frac{1}{m} \{ 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} + 0 \} = 0$$
$$\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - \mathbf{X}^T \mathbf{y} = 0$$
$$\boldsymbol{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

This gives a closed form solution, but another option is to use iterative solution

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

#### Iterative Gradient Descent



- Iterative Gradient Descent needs to perform many iterations and need to choose a stepsize parameter judiciously. But it works equally well even if the number of features (*d*) is large.
- For the least square solution, there is no need to choose the step size parameter or no need to iterate. But, evaluating (X<sup>T</sup>X)<sup>-1</sup> can be slow if d is large.



Considers the following

- $y^{(i)}$  are generated from the  $x^{(i)}$  following a underlying hyperplane.
- But we don't get to "see" the generated data. Instead we "see" a noisy version of the  $y^{(i)}$ 's.
- Maximum likelihood models this uncertainty in determining the data generating function.

Data assumed to be generated as

 $y^{(i)} = h_{\theta} \big( x^{(i)} \big) + \epsilon^{(i)}$ 

where  $\epsilon^{(i)}$  is an additive noise following some probability distribution.

- Assume a parameterized probability distribution on the noise (e.g., Gaussian with 0 mean and covariance  $\sigma^2$ )
- Then find the parameters (both  $\theta$  and  $\sigma^2$ ) that is "most likely" to generate the data.







#### **Loss Function Optimization**

#### Maximum Likelihood





## Maximum Likelihood for Linear Regression

 $\bullet$  Assume that the noise is Gaussian distributed with mean 0 and variance  $\sigma^2$ 

$$y^{(i)} = h_{\theta} \left( x^{(i)} \right) + \epsilon^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

- Noise  $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$
- Thus  $y^{(i)} \sim \mathcal{N}(\theta^T x^{(i)}, \sigma^2)$



## Maximum Likelihood for Linear Regression

$$y^{(i)} \sim \mathcal{N}(\theta^T x^{(i)}, \sigma^2)$$

Compute the likelihood.

$$p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta},\sigma^{2}) = \prod_{i=1}^{\mathsf{m}} p(y^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta},\sigma^{2})$$
$$= \prod_{i=1}^{\mathsf{m}} (2\pi\sigma^{2})^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^{2}} \left(y^{(i)} - \boldsymbol{\theta}^{T}\mathbf{x}^{(i)}\right)^{2}}$$
$$= (2\pi\sigma^{2})^{-\frac{\mathsf{m}}{2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{\mathsf{m}} \left(y^{(i)} - \boldsymbol{\theta}^{T}\mathbf{x}^{(i)}\right)^{2}}$$
$$= (2\pi\sigma^{2})^{-\frac{\mathsf{m}}{2}} e^{-\frac{1}{2\sigma^{2}} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\right)^{T} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\right)}$$





$$p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta},\sigma^2) = (2\pi\sigma^2)^{-\frac{m}{2}} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

• The log likelihood is

$$l(\boldsymbol{\theta}, \sigma^2) = -\frac{m}{2} \log(2\pi\sigma^2) (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$







- The log likelihood:  $l(\theta, \sigma^2) = -\frac{m}{2} \log(2\pi\sigma^2) (\mathbf{y} \mathbf{X}\theta)^T (\mathbf{y} \mathbf{X}\theta)$
- Maximizing the likelihood w.r.t.  $\theta$  means maximizing  $-(\mathbf{y} \mathbf{X}\theta)^T(\mathbf{y} \mathbf{X}\theta)$ which in turn means minimizing  $(\mathbf{y} - \mathbf{X}\theta)^T(\mathbf{y} - \mathbf{X}\theta)$
- Note the similarity with what we did earlier.
- Thus linear regression can be equivalently viewed as minimizing error sum of squares as well as maximum likelihood estimation under zero mean Gaussian noise assumption.



# In a similar manner, the maximum likelihood estimate of $\sigma^2$ can also be calculated.

