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Announcements

• Class Test 1 on 19th Jan 2021 (Next Tuesday)

• Assignment 1 Uploaded (Due 22nd Jan Friday 12 pm)

• TA Session on 13th Jan 8 pm to 9 pm



ML Background and Linear 
Models

Based on Slides by Abir Das



Machine Learning Background 

𝒳𝒳 : A space of “observations” (Instance space)

𝒴𝒴 : space of “targets” or “labels”

How the observations determine the targets?

Data: Pairs {(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 )} with 𝑥𝑥(𝑖𝑖) ∈ 𝒳𝒳 and 𝑦𝑦(𝑖𝑖) ∈ 𝒴𝒴.

Prediction: Given a new observation 𝑥𝑥, predict the corresponding 𝑦𝑦.



Prediction Problems
Observation Space 𝓧𝓧: Target Space 𝓨𝓨:

House attributes Price of house
Car attributes, Route attributes, 

Driving behaviour
Battery energy consumption

Email Spam or Non-spam
Images Object: “cat”, “dog” etc.
Images Caption

Face Images User’s identity
Human Speech Waveform Text transcript of the speech

Document Topic of the Document
Scene Description in English Sketch of the Scene

Video from an Automobile Camera Steering, Accelerator,  Braking
General Video Segment Closed Caption Text



Prediction Functions

Assumption about the model �𝑃𝑃(𝑋𝑋,𝑌𝑌), namely that 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), i.e. 𝑦𝑦 takes a single value given 𝑥𝑥.

Inputs often referred to as predictors and features;

Outputs are known as targets and labels.

1. Regression: y = 𝑓𝑓(𝑥𝑥) is the predicted value of the output, and 𝑦𝑦 ∈ ℛ is a real value. 

2. Classifier:   𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is the predicted class of 𝑥𝑥, 
and 𝑦𝑦 ∈ {1, … , 𝑘𝑘} is the class number. 
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Prediction Functions

Linear regression, y = 𝑓𝑓(𝑥𝑥) is a linear function.      Examples: 
• (Outside temperature, People inside classroom, target room temperature | Energy requirement)

• (Size, Number of Bedrooms, Number of Floors, Age of the Home | Price)

A set of N  observations of y as 𝑦𝑦(1), … ,𝑦𝑦(𝑚𝑚) and the corresponding inputs 𝑥𝑥(1), … , 𝑥𝑥(𝑚𝑚)
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Regression

• The input and output variables are assumed to be related via a 
relation, known as hypothesis,  �𝑦𝑦 = ℎ𝜃𝜃(𝑥𝑥)
𝜃𝜃 is the parameter vector.

• The goal is to predict the output variable 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) for an arbitrary 
value of the input variable 𝑥𝑥.



Loss Functions

Hypothesis: ℎ𝜃𝜃 𝑥𝑥 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥

There may be no “true” target value 𝑦𝑦 for an observation 𝑥𝑥

There may also be noise or unmodeled effects in the dataset
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So we try to predict a value that is “close to” the observed target values. 

A loss function measures the difference between a target prediction and target 
data value.

e.g. squared loss 𝐿𝐿2 �𝑦𝑦,𝑦𝑦 = �𝑦𝑦 − 𝑦𝑦 2 where �𝑦𝑦 = ℎ𝜃𝜃 𝑥𝑥 is the prediction, 

Optimization objective: Find model parameters 𝛉𝛉 that will minimize the loss.



Linear Regression
Simplest case, �𝑦𝑦 = ℎ 𝑥𝑥 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥
The loss is the squared loss 𝐿𝐿2 �𝑦𝑦,𝑦𝑦 = �𝑦𝑦 − 𝑦𝑦 2
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Linear Regression
The total loss across all points is

𝐿𝐿 = �
𝑖𝑖=1

𝑚𝑚
�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

= �
𝑖𝑖=1

𝑚𝑚

𝜃𝜃0 + 𝜃𝜃1𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

𝐽𝐽 𝜃𝜃0,𝜃𝜃1 =
1
𝑁𝑁
�
𝑖𝑖=1𝑚𝑚

ℎ𝜃𝜃 𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

We want the optimum values of 𝜃𝜃0,𝜃𝜃1 that will minimize the sum of squared errors. Two approaches: 
1. Analytical solution via mean squared error
2. Iterative solution via MLE and gradient ascent
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Linear Regression

Since the loss is differentiable, we set

𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃0

= 0 and      
𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃1

= 0

We want the loss-minimizing values of 𝛉𝛉, so we set

𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃1

= 0 = 2𝜃𝜃1�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥(𝑖𝑖) 2 + 2𝜃𝜃0�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥(𝑖𝑖) − 2�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥(𝑖𝑖)𝑦𝑦(𝑖𝑖)

𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃0

= 0 = 2𝜃𝜃1�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥(𝑖𝑖) + 2𝜃𝜃0𝑁𝑁 − 2�
𝑖𝑖=1

𝑁𝑁

𝑦𝑦(𝑖𝑖)

These being linear equations of θ, have a unique closed form solution
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Univariate Linear Regression Closed Form Solution

𝜃𝜃1 =
𝑚𝑚∑𝑖𝑖=1𝑚𝑚 𝑦𝑦(𝑖𝑖)𝑥𝑥(𝑖𝑖) − ∑𝑖𝑖=1𝑚𝑚 𝑥𝑥(𝑖𝑖) ∑𝑖𝑖=1𝑚𝑚 𝑦𝑦(𝑖𝑖)

𝑚𝑚∑𝑖𝑖=1𝑚𝑚 𝑥𝑥(𝑖𝑖) 2 − ∑𝑖𝑖=1𝑚𝑚 𝑥𝑥(𝑖𝑖) 2

𝜃𝜃0 =
1
𝑚𝑚

�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦(𝑖𝑖) − 𝜃𝜃1�
𝑖𝑖=1

𝑚𝑚

𝑥𝑥(𝑖𝑖)



Risk Minimization

We found 𝜃𝜃0,𝜃𝜃1 which minimize the squared loss on data we already have. What 
we actually minimized was an averaged loss across a finite number of data points. 
This averaged loss is called empirical risk. 

What we really want to do is predict the 𝑦𝑦 values for points 𝑥𝑥 we haven’t seen yet. 
i.e. minimize the expected loss on some new data: 

𝐸𝐸 �𝑦𝑦 − 𝑦𝑦 2

The expected loss is called risk.

Machine learning approximates risk-minimizing models with empirical-risk 
minimizing ones. 
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Risk Minimization

Generally minimizing empirical risk (loss on the data) instead of true risk works fine, 
but it can fail if:

• The data sample is biased. e.g. you cant build a (good) classifier with 
observations of only one class.

• There is not enough data to accurately estimate the parameters of the model. 
Depends on the complexity (number of parameters, variation in gradients, 
complexity of the loss function, generative vs. discriminative etc.).
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Multivariate Linear Regression

𝑥𝑥 ∈ ℛ𝑑𝑑

𝑦𝑦 = ℎ𝜃𝜃 𝑥𝑥 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + … + 𝜃𝜃𝑑𝑑𝑥𝑥𝑑𝑑

Define 𝑥𝑥0 = 1
ℎ𝜃𝜃 𝐱𝐱 = 𝜃𝜃𝑇𝑇𝐱𝐱

Cost Function:

𝐽𝐽 𝛉𝛉 = 𝐽𝐽(𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑑𝑑) =
1
𝑚𝑚

𝛉𝛉𝑇𝑇x(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2
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Multivariate Linear Regression

�𝑦𝑦(1)

�𝑦𝑦(2)

⋮
�𝑦𝑦(𝑚𝑚)

=

𝑥𝑥0(1) 𝑥𝑥1 1 𝑥𝑥2(1)

𝑥𝑥0(2)

⋮
𝑥𝑥1(2)

⋮
𝑥𝑥2(2)

⋮
𝑥𝑥0(𝑚𝑚) 𝑥𝑥1(𝑚𝑚) 𝑥𝑥2(𝑚𝑚)

⋯ 𝑥𝑥𝑑𝑑 1

⋯
⋱

𝑥𝑥𝑑𝑑 2

⋮
⋯ 𝑥𝑥𝑑𝑑 𝑚𝑚

𝜃𝜃0
𝜃𝜃1
𝜃𝜃2
⋮

𝜃𝜃𝑑𝑑

�y = 𝐗𝐗𝛉𝛉



Multivariate Linear Regression

𝐽𝐽 𝛉𝛉 =
1
𝑚𝑚

𝛉𝛉𝑇𝑇x(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2 =
1
𝑚𝑚

�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

=
1
𝑚𝑚

�𝑦𝑦 − 𝑦𝑦 2
2 =

1
𝑚𝑚

�𝑦𝑦 − 𝑦𝑦 𝑇𝑇 �𝑦𝑦 − 𝑦𝑦

=
1
𝑚𝑚

𝐗𝐗𝛉𝛉 − 𝐲𝐲 𝑇𝑇 𝐗𝐗𝛉𝛉 − 𝐲𝐲

=
1
𝑚𝑚

𝜃𝜃𝑇𝑇 𝑋𝑋𝑇𝑇𝑋𝑋 𝜃𝜃 − 𝜃𝜃𝑇𝑇𝑋𝑋𝑇𝑇𝑦𝑦 − 𝑦𝑦𝑇𝑇𝑋𝑋 𝜃𝜃 + 𝑦𝑦𝑇𝑇𝑌𝑌

=
1
𝑚𝑚

𝜃𝜃𝑇𝑇 𝑋𝑋𝑇𝑇𝑋𝑋 𝜃𝜃 − 𝑋𝑋𝑇𝑇𝑦𝑦 𝑇𝑇𝜃𝜃 − 𝑋𝑋𝑇𝑇𝑦𝑦 𝑇𝑇 𝜃𝜃 + 𝑦𝑦𝑇𝑇𝑌𝑌

=
1
𝑚𝑚

𝜃𝜃𝑇𝑇 𝑋𝑋𝑇𝑇𝑋𝑋 𝜃𝜃 − 2 𝑋𝑋𝑇𝑇𝑦𝑦 𝑇𝑇𝜃𝜃 + 𝑦𝑦𝑇𝑇𝑌𝑌



Multivariate Linear Regression

• Equating the gradient of the cost function to 0,

𝛻𝛻𝜃𝜃𝐽𝐽 𝛉𝛉 =
1
𝑚𝑚

2𝐗𝐗𝑇𝑇𝐗𝐗𝛉𝛉 − 2𝐗𝐗𝑇𝑇𝐲𝐲 + 0 = 0

𝛻𝛻𝜃𝜃𝐽𝐽 𝛉𝛉 =
2
𝑚𝑚

𝐗𝐗𝑇𝑇𝐗𝐗𝛉𝛉 − 𝐗𝐗𝑇𝑇𝐲𝐲 = 0

𝐗𝐗𝑇𝑇𝐗𝐗𝛉𝛉 − 𝐗𝐗𝑇𝑇𝐲𝐲 = 0

𝐗𝐗𝑇𝑇𝐗𝐗𝛉𝛉 = 𝐗𝐗𝑇𝑇𝐲𝐲

𝛉𝛉 = 𝐗𝐗𝑇𝑇𝐗𝐗 −1𝐗𝐗𝑇𝑇𝐲𝐲



Multivariate Linear Regression

• Equating the gradient of the cost function to 0,

𝛻𝛻𝜃𝜃𝐽𝐽 𝛉𝛉 =
1
𝑚𝑚

2𝐗𝐗𝑇𝑇𝐗𝐗𝛉𝛉 − 2𝐗𝐗𝑇𝑇𝐲𝐲 + 0 = 0

𝐗𝐗𝑇𝑇𝐗𝐗𝛉𝛉 − 𝐗𝐗𝑇𝑇𝐲𝐲 = 0

𝛉𝛉 = 𝐗𝐗𝑇𝑇𝐗𝐗 −1𝐗𝐗𝑇𝑇𝐲𝐲

This gives a closed form solution, but another option is to use iterative 
solution

𝜕𝜕𝐽𝐽 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

=
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

ℎ𝜃𝜃 𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 𝑥𝑥𝑗𝑗(𝑖𝑖)



Iterative Gradient Descent

• Iterative Gradient Descent needs to perform many iterations and 
need to choose a stepsize parameter judiciously. But it works equally 
well even if the number of features (𝑑𝑑) is large.

• For the least square solution, there is no need to choose the step size 
parameter or no need to iterate. But, evaluating 𝐗𝐗𝑇𝑇𝐗𝐗 −1 can be 
slow if 𝑑𝑑 is large.



Linear Regression as Maximum Likelihood Estimation

Considers the following

• 𝑦𝑦(𝑖𝑖) are generated from the 𝑥𝑥(𝑖𝑖) following a underlying hyperplane.

• But we don’t get to “see” the generated data. Instead we “see” a 
noisy version of the 𝑦𝑦(𝑖𝑖)’s.

• Maximum likelihood models this uncertainty in determining the 
data generating function.

Data assumed to be generated as

𝑦𝑦(𝑖𝑖) = ℎ𝜃𝜃 𝑥𝑥(𝑖𝑖) + 𝜖𝜖(𝑖𝑖)

where 𝜖𝜖(𝑖𝑖) is an additive noise following some probability distribution.
• Assume a parameterized probability distribution on the noise (e.g., Gaussian with 0 mean and 

covariance 𝜎𝜎2)
• Then find the parameters (both 𝜃𝜃 and 𝜎𝜎2) that is “most likely” to generate the data.



Loss Function Optimization Maximum Likelihood



Maximum Likelihood for Linear Regression

• Assume that the noise is Gaussian distributed with mean 0 and 
variance 𝜎𝜎2

𝑦𝑦(𝑖𝑖) = ℎ𝜃𝜃 𝑥𝑥(𝑖𝑖) + 𝜖𝜖(𝑖𝑖) = 𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝜖𝜖(𝑖𝑖)

• Noise  𝜖𝜖(𝑖𝑖)~𝒩𝒩 0,𝜎𝜎2

• Thus 𝑦𝑦(𝑖𝑖)~𝒩𝒩 𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖),𝜎𝜎2



Maximum Likelihood for Linear Regression
𝑦𝑦(𝑖𝑖)~𝒩𝒩 𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖),𝜎𝜎2

Compute the likelihood.

m

m

m
m

m



Maximum Likelihood for Linear Regression

• So we have got the likelihood as

𝑝𝑝 |𝐲𝐲 𝐗𝐗;𝛉𝛉,𝜎𝜎2 = 2𝜋𝜋𝜎𝜎2 −𝑚𝑚2 (𝐲𝐲 − 𝐗𝐗𝛉𝛉)𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝜽𝜽

• The log likelihood is 

𝑙𝑙 𝛉𝛉,𝜎𝜎2 = −
𝑚𝑚
2

log(2𝜋𝜋𝜎𝜎2)(𝐲𝐲 − 𝐗𝐗𝐗𝐗)𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝜽𝜽



Maximum Likelihood for Linear Regression

• Likelihood:    𝑝𝑝 |𝐲𝐲 𝐗𝐗;𝛉𝛉,𝜎𝜎2 = 2𝜋𝜋𝜎𝜎2 −𝑚𝑚2 (𝐲𝐲 − 𝐗𝐗𝛉𝛉)𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝜽𝜽

• The log likelihood: 𝑙𝑙 𝛉𝛉,𝜎𝜎2 = −𝑚𝑚
2

log(2𝜋𝜋𝜎𝜎2)(𝐲𝐲 − 𝐗𝐗𝐗𝐗)𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝜽𝜽

• Maximizing the  likelihood w.r.t. θ means maximizing −(𝐲𝐲 − 𝐗𝐗𝐗𝐗)𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝜽𝜽

which in turn means minimizing (𝐲𝐲 − 𝐗𝐗𝐗𝐗)𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝜽𝜽

• Note the similarity with what we did earlier.

• Thus linear regression can be equivalently viewed as minimizing error sum 
of squares as well as maximum likelihood estimation under zero mean 
Gaussian noise assumption.



In a similar manner, the maximum likelihood estimate of 𝜎𝜎2 can also be 
calculated.
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