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ABSTRACT
In this era of Big Data, due to expeditious exchange of information
on the web, words are being used to denote newer meanings, caus-
ing linguistic shift. With the recent availability of large amounts of
digitized texts, an automated analysis of the evolution of language
has become possible. Our study mainly focuses on improving the
detection of new word senses. This paper presents a unique pro-
posal based on network features to improve the precision of new
word sense detection. For a candidate word where a new sense
(birth) has been detected by comparing the sense clusters induced
at two different time points, we further compare the network prop-
erties of the subgraphs induced from novel sense cluster across
these two time points. Using the mean fractional change in edge
density, structural similarity and average path length as features
in an SVM classifier, manual evaluation gives precision values of
0.86 and 0.74 for the task of new sense detection, when tested on
2 distinct time-point pairs, in comparison to the precision values
in the range of 0.23-0.32, when the proposed scheme is not used.
The outlined method can therefore be used as a new post-hoc step
to improve the precision of novel word sense detection in a robust
and reliable way where the underlying framework uses a graph
structure. Another important observation is that even though our
proposal is a post-hoc step, it can be used in isolation and that
itself results in a very decent performance achieving a precision
of 0.54-0.62. Finally, we show that our method is able to detect the
well-known historical shifts in 80% cases.
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1 INTRODUCTION
How do words develop new senses? How does one characterize
semantic change? Is it possible to develop algorithms to track se-
mantic change by comparing historical data at scale? In order to
extract meaningful insights from these data, a very important step
is to understand the contextual sense of a word, e.g., does the word
‘bass’ in a particular context refer to fish or is it related to music?

Most data-driven approaches so far have been limited to either
word sense induction where the the goal is to automatically induce
different senses of a given word in an unsupervised clustering set-
ting, or word sense disambiguation where a fixed sense inventory is
assumed to exist, and the senses of a given word are disambiguated
relative to the sense inventory. However in both these tasks, the
assumption is that the number of senses that a word has, is static,
and also the senses exist in the sense inventory to compare with.
They attempt to detect or induce one of these senses depending
on the context. However, natural language is dynamic, constantly
evolving as per the users’ needs which leads to change of word
meanings over time. For example, by late 20th century, the word
‘float’ has come up with the ‘data type’ sense whereas the word
‘hot’ has started corresponding to the ‘attractive personality’ sense.

1.1 Recent advancements
Recently, with the arrival of large-scale collections of historic texts
and online libraries such as Google books, a new paradigm has
been added to this research area, whereby the prime interest is in
identifying the temporal scope of a sense [10, 14, 16, 25] which,
in turn, can give further insights to the phenomenon of language
evolution. Some recent attempts [5, 8, 11, 12, 15] also have been
made to model the dynamics of language in terms of word senses.

One of the studies in this area has been presented by Mitra et
al. [19] where the authors show that at earlier times, the sense of the
word ‘sick’ was mostly associated to some form of illness; however,
over the years, a new sense associating the same word to something
that is ‘cool’ or ‘crazy’ has emerged. Their study is based on a unique
network representation of the corpus called a distributional thesauri
(DT) network built using Google books syntactic n-grams. They
have used unsupervised clustering techniques to induce a sense of
a word and then compared the induced senses of two time periods
to get the new sense for a particular target word.

1.2 Limitations of the recent approaches
While Mitra et al. [19] reported a precision close to 0.6 over a ran-
dom sample of 49 words, we take another random sample of 100
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words separately and repeat manual evaluation. When we extract
the novel senses by comparing the DTs from 1909-1953 and 2002-
2005, the precision obtained for these 100 words is as low as 0.32.
Similarly if we extract the novel senses comparing the DTs of 1909-
1953 with 2006-2008, the precision stands at 0.23. We then explore
another unsupervised approach presented in Lau et al. [16] over
the same Google books corpus1, apply topic modeling for sense
induction and directly adapt their similarity measure to get the
new senses. Using a set intersecting with the 100 random samples
for Mitra et al. [19], we obtain the precision values of 0.21 and
0.28, respectively. Clearly, none of the precision values are good
enough for reliable novel sense detection. This motivates us to
devise a new approach to improve the precision of the existing
approaches. Further, being inspired by the recent works of applying
complex network theory in NLP applications like co-hyponymy
detection [13], evaluating machine generated summaries [20], de-
tection of ambiguity in a text [4], etc. we opt for a solution using
complex network measures.

1.3 Our proposal and the encouraging results
We propose a method based on the network features to reduce the
number of false positives and thereby, increase the overall preci-
sion of the method proposed by Mitra et al. [19]. In particular, if a
target word qualifies as a ‘birth’ as per their method, we construct
two induced subgraphs of those words that form the cluster corre-
sponding to this ‘birth’ sense from the corresponding distributional
thesauri (DT) networks of the two time points. Next we compare
the following three network properties: (i) the edge density, (ii) the
structural similarity and (iii) the average path length [27, 29] of the
two induced subgraphs from the two time points. A remarkable
observation is that although this is a small set of only three features,
for the actual ‘birth’ cases, each of them has a significantly different
value for the later time point and are therefore very discriminative
indicators. In fact, the features are so powerful that even a small
set of training instances is sufficient for making highly accurate
predictions.
Results: Manual evaluation of the results by 3 evaluators shows
that this classification achieves an overall precision of 0.86 and 0.74
for the two time point pairs over the same set of samples, in contrast
with the precision values of 0.32 and 0.23 by the original method.
Note that we would like to stress here that an improvement of
more than double in the precision of novel sense detection that
we achieve has the potential to be the new stepping stone in many
NLP and IR applications that are sensitive to novel senses of a word.

1.4 Detecting known shifts
Further we also investigate the robustness of our approach by
analyzing the ability to capture known historical shifts in meaning.
Preparing a list of words that have been suggested by different prior
works as having undergone sense change, we see that 80% of those
words get detected by our approach. We believe that the ability
to detect such diachronic shifts in data can significantly enhance
various standard studies in natural language evolution and change.

1http://commondatastorage.googleapis.com/books/syntactic-ngrams/index.html, we
use ‘triarcs’ dataset from ‘English All’

1.5 Impact
We stress that our work could have strong repercussions in histor-
ical linguistics [1]. Besides, lexicography is also expensive; com-
piling, editing and updating sense inventory entries frequently
remains cumbersome and labor-intensive. Time specific knowledge
would make the word meaning representations more accurate. A
well constructed semantic representation of a word is useful for
many natural language processing or information retrieval systems
like machine translation, semantic search, disambiguation, Q&A,
etc. For semantic search, taking into account the newer senses of a
word can increase the relevance of the query result. Similarly, a dis-
ambiguation engine informed with the newer senses of a word can
increase the efficiency of disambiguation, and recognize senses un-
covered by the inventory that would otherwise have to be wrongly
assigned to covered senses. Above all, a system having the ability
to perceive the novel sense of a word can help in automatic sense
inventory update by taking into account the temporal scope of
senses.

2 RELATEDWORK
Our work broadly classifies under data-driven models of language
dynamics. One of the first attempts in this area was made by Erk [6],
where the author tried to model this problem as an instance of out-
lier detection, using a simple nearest neighbor-based approach.
Gulordava and Baroni [10] study the change in the semantic orien-
tation of words using Google book n-grams corpus from different
time periods. In another work, Mihalcea et al. [18] attempted to
quantify the changes in word usage over time. Along similar lines,
Jatowt and Duh [14] used the Google n-grams corpus from two
different time points and proposed a method to identify semantic
change based on the distributional similarity between the word vec-
tors. Tahmasebi et al. [25] attempted to track sense changes from
a newspaper corpus containing articles between 1785 and 1985.
Efforts have been made by Cook et al. [3] to prepare the largest
corpus-based dataset of diachronic sense differences. Attempts have
been made by Lau et al. [17] where they first introduced their topic
modeling based word sense induction method to automatically de-
tect words with emergent novel senses and in a subsequent work,
Lau et al. [16] extended this task by leveraging the concept of pre-
dominant sense. The first computational approach to track and
detect statistically significant linguistic shifts of words has been
proposed by Kulkarni et al. [15]. Recently, Hamilton et al. [12] pro-
posed a method to quantify semantic change by evaluating word
embeddings against known historical changes. In another work,
Hamilton et al. [11] categorized the semantic change into two types
and proposed different distributional measures to detect those types.
Attempts have also been made to analyze time-series model of em-
bedding vectors as well as time-indexed self-similarity graphs in
order to hypothesize the linearity of semantic change by Eger et
al. [5]. A dynamic Bayesian model of diachronic meaning change
has been proposed by Frermann et al. [8]. Recently, researchers
have also tried to investigate the reasons behind word sense evo-
lution and have come up with computational models based on
chaining [21]. Researchers also attempt to apply dynamic word
embeddings as well to detect language evolution [23, 30], analyze
temporal word analogy [24].
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We now describe the two baselines that are relevant for our
work.
Baseline 1: Mitra et al. [19] The authors proposed an unsuper-
vised method to identify word sense changes automatically for
nouns.
Datasets and graph construction: The authors used the Google books
corpus, consisting of texts from over 3.4 million digitized English
books published between 1520 and 2008. The authors constructed
distributional thesauri (DT) networks from the Google books syn-
tactic n-grams data [9]. In the DT network, each word is a node and
there is a weighted edge between a pair of words where the weight
of the edge is defined as the number of features that these twowords
share in common. A snapshot of the DT is shown in leftmost image
of Figure 1. To study word sense changes over time, they divided
the dataset across eight time periods; accordingly DT networks for
each of these time periods were constructed separately.
Sense change detection: The Chinese Whispers algorithm [2] is used
to produce a set of clusters for each target word by decomposing its
neighbourhood in the DT network. The hypothesis is that different
clusters signify different senses of a target word. The clusters for
a target word ‘float’ is shown in the right image of Figure 1. The
authors then compare the sense clusters extracted across two dif-
ferent time points to obtain the suitable signals of sense change.
Specifically, for a candidate word w , a sense cluster in the later
time period is called as a ‘birth’ cluster if at least 80% words of this
cluster do not appear in any of the sense clusters from the previous
time period. The authors then apply multi-stage filtering in order
to obtain meaningful candidate words.
Baseline 2: Lau et al. [16]: The authors proposed an unsupervised
approach based on topic modeling for sense induction, and showed
novel sense identification as one of its applications. For a candidate
word, Hierarchical Dirichlet Process [26] is run over a corpus to
induce topics. The induced topics are represented as word multino-
mials, and are expressed by the top-N words in descending order of
conditional probability. Each topic is represented as a sense of the
target word. The words having highest probability in each topic
represent the sense clusters. The authors treated the novel sense de-
tection task as identifying those sense clusters, which did not align
with any of the recorded senses in a sense repository. They used
Jensen-Shannon (JS) divergence measure to compute alignment
between a sense cluster and a synset. They computed JS divergence
between the multinomial distribution (over words) of the topic clus-
ter and that of the synset, and converted the divergence value into
a similarity score. Similarity between topic cluster tj and synset si
is defined as,

sim(tj , si ) = 1 − JS (T ∥ S ) (1)

where T and S are the multinomial distributions over words for
topic tj and synset si , respectively, and JS(X ∥ Y ) is the Jensen-
Shannon divergence for the distribution X and Y . Since we define
novel senses while comparing sense clusters across two time points,
we use the same JS measure to detect novel sense of a target word. A
sense cluster in the newer time period denotes a new sense (‘birth’)
only if its maximum similarity with any of the clusters in older
time period is below a threshold, which we have set to 0.35 based
on empirical observation.

3 PROPOSED NETWORK-CENTRIC
APPROACH

Mitra et al. [19] selected 49 candidate ‘birth’ words from a total of
2789 candidate ‘birth’ words while comparing 1909-1953 DT with
the 2002-2005 DT for manual evaluation; 31 words were found to be
true positives and 18 words were false positives. We first study these
49 candidate ‘birth’ words and show that network features can be
useful to discriminate the true positives from the false positives. For
each of these candidate wordsw , we take the ‘birth’ cluster from
2002-2005, which is represented by a set of words S . According to
our hypothesis, if the words in set S together represent a new sense
forw in 2002-2005 which is not present in 1909-1953, the network
connection among these words (includingw) would be much more
strong in the 2002-2005 DT than the 1909-1953 DT. The strength of
this connection can be measured if we construct induced subgraphs
of S from the two DTs and measure the network properties of
these subgraphs; the difference would be more prominent for the
actual ‘birth’ cases (true positives) than for the false ‘birth’ signals
(false positives). Note that by definition, the nodes in an induced
subgraph from a DT will be the words in S and there will be an edge
between two words if and only if the edge exists in the original DT;
we ignore the weight of the edge henceforth. Thus, the difference
between the two subgraphs (one each from the older and newer
DTs) will only be in the edge connections. Figure 2 takes one true
positive (‘register’) and one false positive (‘quotes’) word from the
set of 49 words and shows the induced subgraphs obtained by a
subset of their ‘birth’ clusters across the two time points. We can
clearly see that connections among the words in S is much stronger
in the newer DT than in the older one in the case of ‘registers’,
indicating the emergence of a new sense. In the case of ‘quotes’,
however, the connections are not very different across the two time
periods. We choose three cohesion indicating network properties,
(i) the edge density, (ii) the structural similarity and (iii) the average
path length, to capture this change.

Let S = {w1,w2, . . . ,wn } be the ‘birth’ cluster for w . Once we
construct a graph induced by S from the DT, these network proper-
ties are measured as follows:
Edge Density (ED): ED is given by

ED = Na/Np (2)

whereNa denotes the number of actual edges betweenw1,w2, . . . ,wn
and Np denotes the maximum possible edges between these, i.e.,
n(n−1)

2 .
Structural Similarity (SS): For each pair of words (wi ,w j ) in the
cluster S , the structural similarity SS(wi ,w j ) is computed as:

SS (wi , w j ) =
Nc√

deд(wi ) ∗ deд(w j )
(3)

where Nc denotes the number of common neighbors ofwi andw j
in the induced graph and deд(wk ) denotes the degree ofwk in the
induced graph, for k = i, j . The average structural similarity for the
cluster S is computed by averaging the structural similarity of all
the word pairs.
Average Path Length (APL): To compute average path length of
S , we first find the shortest path length betweenw and the words
wi , in the induced graph of S . Let spli denote the shortest path
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Figure 1: Left image is a sample snapshot of the Distributional Thesaurus Network from the time period 2002-2005 where each
node represents a word and the weight of the edge is defined as the number of context features that these two words share
in common. Right image shows Chinese Whisper clusters for the target word ‘float’ extracted from Google books syntactic
n-gram corpus of both the time periods (1909-1953 and 2002-2005). A new sense of the word ‘float’ has emerged with the
‘programming’ related new cluster (C23) in 2002-2005.

Figure 2: Induced subgraphs of the ‘birth’ clusters of ‘registers’ and ‘quotes’ for the two time periods (1909-1953 and 2002-
2005). It shows that edge connections among the neighbours of ‘registers’ have increased significantly over time which leads
to emergence of ‘technology’ related sense of ‘registers’ whereas the connections among the neighbours of ‘quotes’ are almost
same over time, indicating non-emergence of any novel sense.

distance fromw towi . The average path length is defined as:

APL =
∑
i
spli /n (4)

where n is the number of words in the cluster S .
Table 1 notes the values obtained for these network properties

for the induced subgraphs of the reported ‘birth’ clusters for ‘reg-
isters’ and ‘quotes’ across the two time periods. The fractional
changes observed for the three network properties show a clear
demarcation between the two cases. Fractional change (∆) of any
network measure P is defined as,

∆(P) = (P(t2) − P(t1))/P(t1) (5)

where t1 and t2 are old and new timeperiods respectively. The
change observed for the ‘birth’ cluster of ‘registers’ is significantly
higher than that in ‘quotes’2.

We now compute these parameter values for all the 49 candidate
cases. The mean values obtained for the true positives (TP) and
false positives (FP) are shown in Table 2. The findings are consistent
with those obtained for ‘registers’ and ‘quotes’.

2As we have taken the ‘birth’ clusters from new time period (t2), the words in the
clusters are the direct neighbors of the target word always resulting in average path
length of 1 in t2

We, therefore, use the fractional changes in the three network
properties over time as three features to classify the remaining
candidate ‘birth’ words into true positives (actual ‘birth’) or false
positives (false ‘birth’).

4 EXPERIMENTAL RESULTS
For experimental evaluation, we start with the ‘birth’ cases reported
by Mitra et al. [19] – 2740 cases (after removing the 49 used in
training) for 1909-1953 – 2002-2005 (T1) and 2468 cases for 1909-
1953 – 2006-2008 (T2). We run Lau et al. [16] over these birth cases
to detect ‘novel’ sense as per their algorithm. Separately, we also
apply the proposed SVM classification model as a filtering step to
obtain ‘filtered birth’ cases. This helps in designing a comparative
evaluation of these algorithms as follows. From both the time point
pairs (T1 and T2), we take 100 random samples from the birth cases
reported by Mitra et al. [19] and get these manually evaluated. For
the same 100 random samples, we now use the outputs of Lau et
al. [16] and the proposed approach, and estimate the precision as
well as recall of these.

To further evaluate the proposed algorithm, we perform two
more evaluations. First, we take 60 random samples from each
time point pair for computing precision of the ‘filtered birth’ cases.
Secondly, we also take 100 random samples for each time point pair
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Table 1: The network properties of the induced subgraphs of a true positive (‘registers’) and a false positive (‘quotes’) for the
time periods 1909-1953 (t1) and 2002-2005 (t2).

Word ED (t1) ED (t2) SS (t1) SS (t2) APL (t1) APL (t2) ∆ (ED, SS, APL)
registers 0.108 0.546 0.076 0.516 1.9 1 4.045, 5.771, -0.9
quotes 0.858 0.833 0.835 0.622 1.72 1 -0.029, -0.255, -0.72

Table 2: Mean values of the network properties of the induced subgraphs of 31 true positives and 18 false positives for the
time periods 1909-1953 (t1) and 2002-2005 (t2). The mean fractional changes (∆) in network properties are significantly higher
for the true positives (TP) as compared to the false positives (FP).

Word ED (t1) ED (t2) SS (t1) SS (t2) APL (t1) APL (t2) ∆ (ED, SS, APL)
TP 0.34 0.772 0.311 0.647 1.941 1 2.388, 4.654, -0.941
FP 0.576 0.828 0.574 0.681 1.828 1 0.747, 0.507, -0.828

for computing precision of our approach independently of Mitra
et al. [19], i.e., the proposed approach is not informed of the ‘birth’
cluster reported by Mitra et al. [19], instead all the clusters in old
and new time point are shown.

We perform all the evaluations manually and each of the candi-
dateword is judged by 3 evaluators. These evaluators are graduate/post-
graduate students, having good background in Natural Language
Processing. They are unaware of each other, making the annotation
process completely blind and independent. Evaluators are shown
the detected ‘birth’ cluster from the newer time period and all the
clusters from the older time period. They are asked to make a binary
judgment as to whether the ‘birth’ cluster indicates a new sense
of the candidate word, which is not present in any of the sense
clusters of the previous time point3. Majority decision is taken in
case of disagreement. In total, we evaluate the system for a set of
as large as 520 words4 which we believe is significant given the
tedious manual judgment involved.

In this process ofmanual annotation, we obtain an inter-annotator
agreement (Fleiss’ kappa [7]) of 0.745, which is substantial [28]. Ta-
ble 3 shows three example words from T1, their ‘birth’ clusters
as reported in Mitra et al. [19] and the manual evaluation result.
The first two cases belong to computer related sense of ‘searches’
and ‘logging’, which were absent from time point 1909-1953. On
the other hand, the ‘birth’ cluster of ‘pesticide’ represents an old
sense which was also present in 1909-1953. Similarly Table 4 shows
manual evaluations results for 3 example cases, along with their
novel sense as captured by Lau et al. [16].

Table 3: Example ‘birth’ clusters reported in Mitra et al. [19]
and manual evaluation.

Word ‘birth’ cluster Manual Evaluation

searches
folders, templates,
syntax, formats, . . .

Yes, technology related
sense

logging
server, console, security,

service, . . .
Yes, technology related

sense

pesticide fertilizer, sediment,
waste, . . . No

Comparative evaluation: Only 32 and 23 words out of the 100
random samples from two time point pairs are evaluated to be
actual ‘birth’s, respectively, thus giving precision scores of 0.32
and 0.23 for Mitra et al. [19]. Evaluation results for the same set of
random samples after applying the approach outlined in Lau et al.
3An anonymized sample evaluation page can be seen here: https://kwiksurveys.com/
s/7TfSoYF2
4100+100+60, per time point pair (T1 and T2)

Table 4: Example novel senses as per Lau et al. [16] and man-
ual evaluation.

Word Novel sense Manual Evaluation

stereo
system, player,
computer, . . .

Yes, technology related
sense

mailbox
email, pages, postal,

. . .

Yes, technology related
sense

acidification acidosis, renal,
distal, urinary, . . . No

[16] are presented in Table 5. Since the reported novel sense cluster
can in principle be different from the ‘birth’ sense reported by the
method of Mitra et al. [19] for the same word, we get the novel
sense cases manually evaluated by 3 annotators (42 and 28 cases for
the two time periods, respectively). Note that for these 100 random
samples (that are all marked ‘true’ by Mitra et al. [19]), it is possible
to find an upper bound on the recall of Lau et al. [16]’s approach
automatically. While the low recall might be justified because this
is a different approach, even the precision is found to be in the same
range as that of Mitra et al. [19].

Table 6 presents the evaluation results for the same set of 100
random samples after using the proposed SVM filtering. We see
that the filtering using SVM classification improves the precision
for both the time point pairs (T1 and T2) significantly, boosting
it from the range of 0.23-0.32 to 0.74-0.86. Note that, as per our
calculations, indeed the recall of Mitra et al. [19] would be 100%
(as we are taking random samples for annotation from the set of
reported ‘birth’ cases by Mitra et al. [19] only). Even then Mitra
et al. [19]’s F-measure ranges from 0.37-0.48 while ours is 0.67-0.68.
Table 7 represents some of the examples which were declared as
‘birth’ by Mitra et al. [19] but SVM filtering correctly flagged them
as ‘false birth’. The feature values in the third column clearly show
that the network around the words in the detected ‘birth’ cluster did
not change much and therefore, the SVM approach could correctly
flag these. Considering the small training set, the results are highly
encouraging. We also obtain decent recall values for the two time
point pairs, giving an overall F-measure of 0.67-0.68.

Table 5: Evaluation of the approach presented in Lau et
al. [16] with accuracy for 100 random samples.

Time- Lau et al. [16]
point # Novel senses Precision Recall F-measure
T1 1189 0.21 0.28 0.24
T2 787 0.28 0.35 0.31

Further, we check if we can meaningfully combine the results
reported by both the methods of Mitra et al. [19] and Lau et al. [16]
for more accurate sense detection; and how does this compare with
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Table 6: Evaluation of the SVM-based filtering with accuracy
reported for 100 random samples.

Time- SVM filtering
point # birth cases Precision Recall F-measure
T1 318 0.86 0.56 0.68
T2 329 0.74 0.61 0.67

Table 7: Example cases, which Mitra et al. [19] declared as
true ‘birth’ but SVM filtering correctly filtered

Word ‘birth’ cluster ∆(ED, SS, APL)

guaranty acknowledgement, presumption, kind,
. . .

0.11, -0.07, -0.5

troll shellfish, salmon, bait, trout, tuna, . . . -0.04, -0.18, -0.84

nightcap supper, lunch, dinner, nap, luncheon,
. . .

0.04, -0.17, -0.75

the SVM based filtering. Therefore, we filter the words, which are
reported as ‘birth’ by both these methods and the reported ‘birth’
sense clusters have a non-zero overlap. Out of 2789 and 2468 cases
reported as ‘birth’ by the method of Mitra et al. [19], we obtain 132
and 86 cases respectively as having an overlapping sense cluster
with that obtained using Lau’s method. Two such examples are
shown in Table 8; both the senses look quite similar. Table 9 shows
the accuracy results obtained using this approach. Only 6 and 2
words out of those 100 samples were flagged as ‘birth’ for the two
time points T1 and T2 respectively. Thus, the recall is very poor.
While the precision improves slightly forT1 (4 out of 6 are correct), it
is worse forT2 (only 1 out of 6 words is correct). The results confirm
that the proposed SVM classification approach works better than
both the approaches, individually as well as combined.

Table 8: Example cases, which Mitra et al. [19] declared as
‘birth’ represent the same sense as obtained using Lau et
al. [16] (T1).

Word ‘birth’ cluster as reported in
Mitra et al. [19]

Novel senses as obtained
using Lau et al. [16]

burgers rice, pizza, fries, drinks, entrees,
desserts . . .

fries, orders, drinks, entrees,
desserts . . .

semantic
syntactic, analytic, pragmatic,

lexical, metaphoric . . .
syntactic, pragmatic, lexical,

aspect, context . . .

Table 9: Evaluation of the intersection set while taking gold
standard annotation of Mitra et al. [19].

time point Precision Recall F-measure
T1 0.67 (4/6) 0.13 (4/32) 0.22
T2 0.5 (1/2) 0.043 (1/23) 0.08

Feature analysis:We therefore move onto further feature analysis
and error analysis of the proposed approach. To validate the useful-
ness of all the identified features, we perform feature leave-one-out
experiments. The results forT1 are presented in Table 10 and 11. We
see that F-measure drops as we leave out one of the features. While
{ED, SS} turns out to be the best for precision, {SS,APL} gives
the best recall. Table 12 provides three examples to illustrate the
importance of using all the three features. For the word ‘newsweek’,
using {ED,APL} and for the word ‘caring’, using {ED, SS} could
not detect those as ‘birth’. Only when all the three features are
used, these cases are correctly detected as ‘birth’. Edge density,
on the other hand is very crucial for improving precision. For in-
stance, when only {SS,APL} are used, words like ‘moderators’ are
wrongly flagged as ‘true’. Such cases are filtered out when all the
three features are used.

Table 10: Feature leave-one-out results (T1).
Features used Precision Recall F-measure

∆(ED, SS) 0.85 0.53 0.65
∆(ED, APL) 0.84 0.5 0.62
∆(SS, APL) 0.81 0.56 0.66

∆(ED, SS, APL) 0.86 0.56 0.68

Table 11: Feature leave-one-out results (T2).
Features used Precision Recall F-measure

∆(ED, SS) 0.72 0.56 0.63
∆(ED, APL) 0.73 0.6 0.66
∆(SS, APL) 0.66 0.61 0.63

∆(ED, SS, APL) 0.74 0.61 0.67

Table 12: Example cases to show the utility of all the features
(T1). The true positive cases like ‘newsweek’ and ‘caring’ get
successfully detectedwhereas ‘moderators’ gets successfully
detected as false positive if all the three features are consid-
ered together.

Word ‘birth’ cluster ∆(ED, SS, APL)
newsweek probation, counseling, . . . 0.82, 1.58, -1.3
caring insightful, wise, benevolent, . . . 0.2, 0.13, -2.21

moderators correlate, function, determinant,
. . .

0.56, 0.44, -1.78

Extensive evaluation of the proposed approach:We first take
60 random samples each from the ‘birth’ cases reported by the SVM
filtering for the two time point pairs, T1 (from 318 cases) and T2
(from 329 cases). The precision values of this evaluation are found
to be 0.87 (52/60) and 0.75 (45/60) respectively, quite consistent
with those reported in Table 6. We did another experiment in order
to estimate the performance of our model for detecting novel sense,
independent of the method of Mitra et al. [19]. We take 100 random
words from the two time point pairs (T1 and T2), along with all the
induced clusters from the newer time period and run the proposed
SVM filtering approach to flag the novel ‘birth’ senses. According
to our model, forT1 andT2 respectively, 16 and 15 words are flagged
to be having novel sense achieving precision values of 0.54 and 0.62
on manual evaluation, which itself is quite decent. Note that, for
some cases, multiple clusters of a single word have been flagged
as novel senses and we observe that these clusters hold a similar
sense.
Error analysis:We further analyze the cases, which are labeled as
‘true birth’ by the SVM but are evaluated as ‘false’ by the human
evaluators. We find that in most of such cases, the sense cluster
reported as ‘birth’ contained many new terms (and therefore, the
network properties have undergone change) but the implied sense
was already present in one of the previous clusters with very few
common words (and therefore, the new cluster contained > 80%
new words, and is being reported as ‘birth’ in Mitra et al. [19]).
Two such examples are given in Table 13. The split-join algorithm
proposed in Mitra et al. [19] needs to be adapted for such cases.

We also analyze the ‘false positive’ cases, which are labeled as
‘false birth’ by the SVM filtering but are evaluated as ‘true’ by the
human evaluators. Two such examples are given in Table 14. By
looking at the feature values of these cases, it is clear that the
network structure of the induced subgraph is not changing much,
yet they undergo sense change. The probable reason could be that
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Table 13: Example ‘false positives’ after SVM filtering (T1).
These words are flagged ‘true birth’ by SVM but manually
evaluated as ‘false’.

Word ‘birth’ cluster Old cluster

aftercare care, clinic, outpatient,
. . .

treatment, therapy,
hospitalization, . . .

electrophoresis labeling, analysis,
profiling, . . .

analysis, counting,
procedure, . . .

the target word was not in the network of the induced subgraph in
the old time point and enters into it in the new time point. Our SVM
model is unable to detect this single node injection in a network
so far. Handling these cases would be an immediate future step to
improve the recall of the system.

Table 14: Example cases, labeled by SVM as ‘false birth’
but flagged as ‘true birth’ by annotators (T1). The fractional
change of the networkmeasures is very low, leading to erro-
neous classification by SVM.

Word ‘birth’ cluster ∆(ED, SS, APL)

baseplate flywheel, cylinder, bearings,
. . .

0.06, -0.08, -0.84

grating beam, signal, pulse, . . . 0.2, -0.05, -0.88

5 DETECTION OF KNOWN SHIFTS
So far, we have reported experiments on discovering novel senses
from data and measured the accuracy of our method using manual
evaluation. In this section, we evaluate the diachronic validity of
our method on another task of detecting known shifts. We test,
whether our proposed method is able to capture the known histori-
cal shifts in meaning. For this purpose, we create a reference list L
of 15 words that have been suggested by prior work [5, 11, 12] as
having undergone a linguistic change and emerging with a novel
sense. Note that, we focus only on nouns that emerge with a novel
sense between 1900 and 1990. The goal of this task is to find out the
number of cases, our method is able to detect as novel sense from
the list L, which in turn would prove the robustness of our method.
Data: Consistent with the prior work, we use the Corpus of His-
torical American (COHA)5. COHA corpus is carefully created to
be genre balanced and is a well constructed prototype of American
English over 200 years, from the time period 1810 to 2000. We ex-
tract the raw text data of two time slices: 1880-1900 and 1990-2000
for our experiment.

Table 15: Example cases, from the training set for the exper-
iment on detecting known shifts. Evaluation has been done
by annotators

Word ‘birth’ cluster Manual Evaluation

caller phone, message, operator,
customer, . . .

Yes, communication system
related sense

courier transport, purchase, company,
delivery, . . .

Yes, marketing related
sense

public student, economist, general, . . . No
richness joy, happiness, stress, . . . No

5https://corpus.byu.edu/coha

Figure 3: Chinese Whisper clusters for the target word ‘web’
extracted fromCOHA corpus for the time periods 1880-1900
and 1990-2000.

Table 16: Example cases from COHA corpus, having linguis-
tic shifts as suggested by prior literature and correctly de-
tected by our approach. The discriminative feature shows
the networkmeasurewhichhas changed themost over time.

Word ‘birth’ cluster Discriminative
feature

virus weapon, system, aircraft . . . ∆(SSM)
cell network, satellite, phone, . . . ∆(SSM)

monitor computer, TV, screen, . . . ∆(ED)
axis missile, fire, satellite, . . . ∆(ED)

broadcast TV, cable, service, . . . ∆(APL)
check wage, donation, fee, . . . ∆(APL)
film show, concert, script, . . . ∆(ED)
focus concern, ambition, . . . ∆(APL)
major university, discipline, . . . ∆(APL)

program project, database, testing, . . . ∆(ED)
record tape, card, disc, copy . . . ∆(SSM)
web Web, Internet, network . . . ∆(ED)

Experiment details and results:We first construct distributional
thesauri (DT) networks [22] for the COHA corpus at two different
time points, 1880-1900 and 1990-2000. We apply Chinese Whispers
algorithm [2] to produce a set of clusters for each target word
in the DT network. The Chinese Whispers clusters for the target
word ‘web’ are shown in Figure 3. Note that we have reported
only some of the representative words for each cluster. Each of the
clusters represents a particular sense of the target. We now compare
the sense clusters extracted across two different time points to
obtain the suitable signals of sense change following the approach
proposed in Mitra et al. Mitra et al. [19]. After getting the novel
sense clusters, we pick up 50 random samples, of which 25 cases are
flagged as ‘true birth’ and the rest 25 cases are flagged as ‘false birth’
by manual evaluation. We use these 50 samples as our training set
for classification using SVM. Some of the examples of this training
set are presented in Table 15. We ensure that none of the words
in the list L is present in the training set. Using this training set
for our proposed SVM classifier, we are successfully able to detect
80% of the cases (12 out of 15) from the list L as having novel
sense. Table 16 presents all of these detected words along with the
novel senses and the discriminative network feature. Our method is
unable to detect three cases -‘gay’, ‘guy’ and ‘bush’. For ‘gay’, since
there is no sense cluster in the older time period with ‘gay’ being a
noun, cluster comparison does not even detect the ‘birth’ cluster
of ‘gay’. The ‘birth’ sense clusters for ‘guy’, ‘bush’ in the new time
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period, as detected by split-join algorithm contain general terms
like “someone, anyone, men, woman, mother, son" and “cloud, air,
sky, sunlight" respectively. As the network around these words
did not change much over time, our method found it difficult to
detect. Note that even though COHA corpus is substantially smaller
than the Google n-grams corpus, our approach produces promising
result, showing the usability of the proposed method with not so
large corpus as well.

6 CONCLUSION
In this paper, we showed how complex network theory can help
improving the performance of otherwise challenging task of novel
sense detection. This is the first attempt to apply concepts borrowed
from complex network theory to deal with the problem of novel
sense detection. We demonstrated how the change in the network
properties of the induced subgraphs from a sense cluster can be
used to improve the precision of novel sense detection significantly.
Manual evaluation over two different time point pairs shows that
the proposed SVM classification approach boosts the precision
values from 0.23-0.32 to 0.74-0.86. Finally, from the experiments
on the COHA corpus, we have also shown that our approach can
reliably detect the words known to have sense shifts. We have
made the human annotated data used in our experiments publicly
available which could be used as gold standard dataset to validate
systems built for novel sense detection6.

This framework of precise novel sense detection of a word can be
used by lexicographers as well as historical linguistics to design new
dictionaries as well as updating the existing sense repositories like
WordNet where candidate new senses can be semi-automatically
detected and included, thus greatly reducing the otherwise required
manual effort. Computational methods based on large diachronic
corpora are considered to have huge potential to put a light on
interesting language evolution phenomenonwhich can be useful for
etymologists as well. In future, we plan to apply our methodology to
different genres of corpus, like social network data, several product
or movie reviews data which are becoming increasingly popular
source for opinion tracking, to identify short-term changes in word
senses or usages. These analyses would also provide insights on
the evolution of language in a short span of time. Apart from that,
we plan to extend our work to detect the dying senses of words; the
senses which were used in the older texts, but are not being used in
newer time anymore. Our ultimate goal is to prepare a generalized
framework for accurate detection of sense change across languages
and investigate the triggering factors behind language evolution as
well.
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