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ABSTRACT
The COVID-19 pandemic has made it paramount to maintain social
distance to limit the viral transmission probability. At the same time,

local businesses (e.g., restaurants, cafes, stores, malls) need to oper-

ate to ensure their economic sustainability. Considering the wide

usage of local recommendation platforms like Google Local and

Yelp by customers to choose local businesses, we propose to design

local recommendation systems which can help in achieving both

safety and sustainability goals. Our investigation of existing local

recommendation systems shows that they can lead to overcrowding

at some businesses compromising customer safety, and very low

footfall at other places threatening their economic sustainability.

On the other hand, naive ways of ensuring safety and sustainability

can cause significant loss in recommendation utility for the cus-

tomers. Thus, we formally express the problem as a multi-objective

optimization problem and solve by innovatively mapping it to a

bipartite matching problem with polynomial time solutions. Ex-

tensive experiments over multiple real-world datasets reveal the

efficacy of our approach along with the three-way control over

sustainability, safety, and utility goals.
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1 INTRODUCTION
With the proliferation of GPS-enabled smartphones, local recom-

mendation platforms like Google Local (rendered on Google Maps),
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Yelp, Zomato, etc. have experienced massive growth in the last

few years. For example, since 2011, the use of “near me" service

on Google Local has grown by an astounding 3400% [39]. These

platforms recommend nearby/local businesses (restaurants, cafes,

stores, malls, etc.) to customers based on their physical locations

and other inferred preferences, and in 2016, customers have visited

around 1.5 billion businesses every month using these location-

based services [39]. However, these regular customer-business phys-

ical interactions have been severely impacted due to the spread

of highly contagious SARS-CoV-2 and the resultant COVID-19

pandemic. To limit the viral spread, many countries enforced com-

plete/partial lockdowns for an extended period leading to the clo-

sure of several businesses, and even after reopening, strict adher-

ence to social distancing guidelines is an absolute requirement

to ensure safety of the customers. Considering the extensive use

and influence of local recommendation platforms in attracting cus-

tomers to local businesses, in this paper, we propose to design local

recommendation systems which can help in achieving safety for
customers as well as economic sustainability for businesses in
the post-pandemic world.

Traditionally, these platforms have used different data-driven

models [12, 21, 24, 28, 34, 44] to estimate relevance of local busi-

nesses to individual customers, and then recommended k most

relevant results to them. By gathering data from Google Local and

Yelp, we show that such pre-COVID recommendation practices can

cause a high inequality in the exposure (visibility) of local busi-

nesses, where a few businesses can end up receiving a large fraction

of total exposure while the remaining businesses receive a very low

exposure. This could, on one hand, lead to overcrowding at some

businesses, compromising customer safety. On the other hand, it

could result in a very low footfall at other businesses, question-

ing their sustainability in the ongoing scenario (detailed in §3). A

simple answer to these concerns would be to find a way which

can reduce inequality in business exposures. However, using naive

methods to reduce exposure inequality (e.g., poorest-k : recommend-

ing k least exposed businesses to customers) may result in a huge

loss in customer utility (detailed in §3), thereby rendering the plat-

form inefficient for customers. Therefore, our focus on safety and

sustainability need to go hand-in-hand with customer utility.

We formally define the desired properties for sustainability,

safety, and utility in section 3.1. For sustainability, we propose

to use a minimum exposure guarantee for every business, and for

safety, we propose to keep the exposure of a business below a cer-

tain maximum limit which is proportional to its safe capacity. As

we observe in the case of poorest-k , there is a clear tradeoff between

utility and sustainability/safety, and simultaneously satisfying all
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the constraints is not possible. Thus, we relax the constraints into

the following three optimizable objectives: (i) minimize exposure

deficit for business sustainability (ii) minimize exposure surplus

for customer safety, (iii) minimize utility loss (more details in sec-

tion 4.1).We combine these objectives to formulate amulti-objective

optimization problem and adopt a novel way to map it to a bipar-

tite matching problem with polynomial time solutions (detailed in

section 4.3). Next, we test our local recommendation mechanism

on multiple datasets and evaluate the results with several metrics

(section 5.1) capturing various aspects of local recommendations.

Extensive evaluations reveal the efficacies of our approach along

with the three-way control over sustainability, safety, and utility

goals.

In summary, we make the following contributions in the paper:

(i) we consider very timely and much needed notions of business

sustainability and customer safety in local recommendation sys-

tems, and formally define these notions along with customer utility

requirement (section 3.1)— to our knowledge we are the first to do

so; (ii) we incorporate these goals into a multi-objective optimiza-

tion framework and solve by innovatively mapping it to a bipartite

matching problem with polynomial time solutions (§4); (iii) we

empirically test and evaluate it on multiple real-world datasets

gathered from platforms like Foursquare, Google Local and Yelp to

show the effectiveness of our solution (§5). We believe that such

local recommendation systems designed with sustainability and

safety goals would be a very effective complement to other location-

based services like contact tracing applications [27, 37] aggresively

recommended by various governmental and non-governmental or-

ganizations to abate inconveniences during these unprecedented

times.

2 PRELIMINARIES
2.1 Datasets Gathered
In this paper, we gather the recommendations patterns of local

businesses in New York City (NYC) and San Francisco (SF) on
two platforms: Google Local and Yelp, by using a publicly avail-

able dataset on customer checkins in FourSquare. Note that these

recommendations were gathered during pre-COVID times in 2019.

Customer Locations (Foursquare Check-inData): To get an es-
timate of the locations fromwhere customers are accessing location-

based platforms and looking for nearby businesses, we use a pub-

licly available Foursquare check-in data from NYC and SF [41, 42].

The dataset contains 227, 428 and 572, 338 check-ins posted by cus-

tomers at different restaurants around NYC and SF respectively,

along with their geographic coordinates (i.e., latitude & longitude).

We treat these check-in coordinates as customer locations (from

where they log into platforms like Yelp, Google Local), and attempt

to collect the recommendations provided by the platforms.
1

1
Collecting the recommendation results for every check-in location is not possible

due to API limits. Hence, we cluster the check-in locations of each city into K = 1000

clusters using K-Means clustering [2], where the average cluster diameters came out to

be 498 meter for NYC and 199 meter for SF. While collecting platforms’ recommenda-

tions, we consider the centroids of these clusters as the customer locations. Number of

check-in locations in each cluster serves as the popularity metric of the corresponding

location (cluster centroid).

Yelp Dataset: Yelp.com platform for local restaurants is powered

by a crowd-sourced review forum. For the customer locations de-

scribed earlier, we collect nearby restaurants recommendations

using Yelp Fusion API (yelp.com/fusion). The ranked lists

contain the name and geographic coordinates of the restaurants,

their distance from customer location, average rating, etc. In total,

we have the data on 5702 and 3587 restaurants in NYC and SF re-

spectively. Henceforth, we refer to the Yelp datasets of New York

and San Francisco as YP-NYC and YP-SF respectively.

Google Local Dataset: Using a process similar to Yelp, we gather
recommendation results from Google Local (a nearby recommenda-

tion service rendered on Google Maps) for the customer locations

in NYC and SF using Google Places API [17]. In total, we have data

on 2087 and 1478 restaurants in NYC and SF respectively. We refer

to the datasets of New York and San Francisco as GL-NYC and

GL-SF respectively.

2.2 Notations
In this paper, U and P refer to the set of customers and local

businesses listed on the platform while u, p are instances of cus-

tomer and business respectively, and |U | = m, |P | = n. We use

I (<ui , l i>∈ I) for the sequence of login instances, where any

ith login instance is a tuple <ui , l i> representing the login by cus-

tomer ui from location l i . Each login instance is a single customer

session on the platform. For login instance i , let Ri
represent the

ranking/permutation of the businesses in the recommendation, Ri
p

represent the position/rank of business p in Ri
, and Ri [j] repre-

sent the jth ranked business in Ri
. We use index notations: i for

login instances, and j for rank/positions in recommedations. Su-

perscripts represent the corresponding login instances; subscripts

always represent the corresponding businesses.

2.3 Customer Utility of Ranked
Recommendation

As we consider ranked recommendations, there are two important

factors which drive customer utility: (i) relevance of businesses,

and (ii) attention distribution over different ranks. We define them

first before defining customer utility.

Relevance of a Business: The relevance of a business to a cer-

tain customer from a certain location, represents how likely the

customer is going to visit the business and get a satisfying ex-

perience. Platforms often employ various data-driven algorithms

(e.g., collaborative filtering [24, 44], content-based filtering [28, 34],

learning-to-rank [23] etc.) to estimate the relevance scores. Let V
be the relevance function, and V i (p)= V i

p represent the relevance

of business p to ith login instance. Moreover, V i
p can be thought of

as the amount of utility ui gains if she is recommended p when

she logs in from location l i . Note that we assume all the relevance

scores to be non-negative.

Attention Distribution over Ranks: Prior works have shown

that customers pay varied attention to differently ranked items

and the overall attention distribution follows a drop-off after each

rank/position [1, 11, 20]. In this paper, we consider standard loga-

rithmic drop-off [20] for attention weights. The attention weights
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are given as below.

a(j) =


1

J · log
2
(j + 1)

1 ≤ j ≤ k

0 j > k
(1)

Here J =
∑k
j′=1

1

log
2
(j ′ + 1)

is a normalization parameter, and a(j)

is the normalized amount of attention received by a business in

position j. We consider non-zero attention weights only for posi-

tions 1 till k based on the assumption that low-ranked subjects are

hardly inspected. Note that every customer is assumed to follow

the same attention distribution.

Customer Utility: For a specific login instance i , customer utility

or recommendation utility will be high if highly relevant businesses

are shown in top ranks. Thus, we use the normalized discounted

cumulative gain: NDCG@k metric [20] for customer utility (ϕ). The
utility of Ri

for login instance i can be defined as below.

ϕ(Ri , i) = NDCG@k (Ri , i) =
DCG@k (Ri , i)
IDCG@k (i)

(2a)

where

DCG@k (Ri , i) =
k∑
j=1

V i (Ri [j]
)
× a(j) (2b)

IDCG@k (i) = max

Ri

{
DCG@k (Ri , i)

}
= DCG@k

(
Ri∗, i

)
(2c)

and Ri∗
is the permutation of businesses in descending order of

their relevances V i
p .

When the businesses are sorted in descending order of their

relevance, the DCG will be the highest – i.e., the DCG@k of Ri∗

will be the highest. Thus, the range of customer utility NDCG@k
remains [0, 1].

2.4 Relevance Estimation through Customer
Survey

Current location-based platforms gather different kinds of data

on the customer behaviours and preferences, on which various

data-driven algorithms can be run to estimate relevance scores. In

absence of such data, we run a survey with 140 Amazon Mechanical

Turk (mturk.com) workers to gather data on how customers view

different features like rating, distance, cuisine, etc. while selecting a

nearby restaurant to visit. Each survey participant was asked to rank

top 5 restaurants from a list containing 10 different restaurants with

different ratings, distance and cuisine types; such top 5 ranking was

asked from each participant for 7 times using 7 different lists. We

use this data for personalized relevance estimation. For the purpose

of this paper, we consider customer preferences based on distance

and ratings of restaurants while estimating relevance scores. We

employ a simple linear model (given by following equation) for

point-wise learning-to-rank [22] to estimate personalized relevance

scores.

Vp = w0+w1×

(n + 1 − R
rating*

p

n

)
+w2×

(n + 1 − R
proximity*

p

n

)
(3)

where Rrating*
and Rproximity*

are the permutations of restaurants

in descending order of ratings and descending order of proximity

(or ascending order of distance) correspondingly. Here n = 10 as we

provide 10 different options in each set. We learnW = (w0,w1,w2)

for each of the participants separately. On testing, we find our

model to achieve a mean NDCG@5 of 0.951. We use these learned

customer models (W ) for relevance estimation further in the paper.

However, the platforms can easily replace above method with their

own state-of-the-art relevance estimation method requiring no

change in further formulation, as the relevance scores work just as

inputs to our recommendation mechanism.

2.5 Business Exposure
The exposure of a business is the total amount of attention it gains

from the customers; it explicitly depends on the business’s position

in each of the recommendations over time. The total exposure

gained by a business p till t th login instance can be given as below.

Etp =
∑

i ∈I[1:t ]

a
(
Ri
p
)

(4)

Note that each login instance is assumed to gather a total of 1

attention and thus 1 exposure.

3 MOTIVATION
Next, we simulate a regular local recommendation service. We

consider the customers to be appearing in a random order, and

each of the login instances is assumed to follow a randomly cho-

sen customer model (W ) learned in section 2.4. For each instance,

first we consider two recommendation schemes: (i) the platform’s

recommendation (explained in section 2.1) and (ii) top-k (k most

relevant businesses based on customer modelW ) recommendation.

We record the total exposure received by each of the businesses

over all the customer instances in each scheme.

Exposure Inequality in Conventional Top-k Recommenda-
tion:We plot Lorenz curves for business exposures in figures-1a,

1b, 1c and 1d. In these curves, the cumulative fraction of total ex-

posure is plotted against the cumulative fraction of the number

of corresponding businesses (ranked in increasing order of their

exposures). The extent to which the curve goes below a straight

diagonal line (or an equality mark indicated by light-green broken

lines) indicates the degree of inequality in the exposure distribution.

In all the cases, we see the platform’s recommendations and also the

top-k recommendations using our customer modeling show huge

exposure inequalities; this leads to a small fraction of businesses get-

ting most of customer attention while a majority of the businesses

receive very small amount of exposure. Exposure determines eco-

nomic opportunities in such platforms. Thus, low exposure could

very well mean less footfall and less business. This raises a question

on the sustainability of the businesses. On the other hand, very high

exposure at some of the businesses could lead to huge footfall and

overcrowding at those places, increasing the risk of viral spread.

Therefore, we need a recommendation mechanism which could

answer both sustainability and safety concerns. A simple answer to

sustainability and safety concerns would be to reduce inequality in

business exposures; and a naive approach for that would be poorest-

k recommendation: recommend the k least exposed businesses at

each instance.

Limitations of Poorest-k Recommendation: In figures-1a,1b,1c,1d,
we see the Lorenz curves for poorest-k is very close to the equality

mark. This proves that poorest-k could solve the sustainability and
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Figure 1: Lorenz curves show high inequality in exposure of businesses.

safety issue by distributing the total exposure almost equally; how-

ever, poorest-k reduces overall customer utility by 60-70% (observed

in all the datasets) which could result in customers not liking the

recommendations and a reduced usage of the platform; customers

not following the recommendations could not only defy our goal

of sustainability and safety, but also question the very survival of

location-based platforms. Therefore, there is a need of recommen-

dation mechanism which can address concerns for sustainability,

safety along with overall customer utility.

3.1 Desiderata for Sustainability, Safety, and
Utility

Here we formally define the necessary properties for sustainability,

safety, and utility in recommendation.

Sustainability of businesses: For sustainability, we propose to
ensure a minimum exposure guarantee for every business. This is

comparable to the fairness of minimumwage guarantee [14, 18, 31]),

which has been found to decrease income inequality [13, 25]. We

also hope to reduce exposure inequality here. Formally, we write

the criterion as below.

Ep ≥ E,∀p ∈ P (5)

where E is the minimum exposure guarantee. For online scenario,

we can define the exposure guarantee as a moving guarantee: E
i
=

βi , where E
i
is the amount of exposure to be guaranteed to every

business by ith customer login instance; so β becomes the fraction

of total exposure to be guaranteed as total exposure till ith instance

is i . As there are n businesses in total, we can limit setting β to

βmax =
1

n .

Safety of Customers: For customer safety concerns, we propose

to have a maximum limit on business exposure
2
and keep the

maximum limit proportional to the safe capacity of the business.
3

2
Safety measurements can also make use of crowdsourced hygiene-standards, proxim-

ity of nearby infected clusters using existing contact-tracing apps, etc. However, in

this paper we focus on the business exposure or expected crowd as an indicator for

customer safety.

3
From the floor area statistics of restaurants in the USA (https://www.statista.com/

statistics/587130/average-floor-space-qrs-us/), we find that it varies in between 3000-

4500 square feet. We assume 50% of that space comes available for seating at every

business and take 2 metres as the prescribed safe social distance. Using maximal

occupancy tool (https://covid19.mpi-sws.org/capacity_estimation/), we arrive at safe

capacity range of 26-40 persons. In absence of true maximal capacity, we randomly

sample an integer valued safe capacity from [26, 40] for each business.

This can reduce the chances of overcrowding at businesses thereby

aiding in social distancing and enhancing customer safety. We can

formally define this as below.

Ep ≤ ζp ,∀p ∈ P (6)

where ζp is the maximum exposure for p and ζp ∝ capacity(p).

ζp =
(capacity of p)×(total exposure)
total capacity of all businesses

.

Customer Utility: From the perspective of customers, the recom-

mendations need to be relevant to them. Formally:

NDCG@k(Ri , i) = 1,∀i ∈ L (7)

4 RECOMMENDATIONS TO INDUCE
SUSTAINABILITY AND SAFETY

We design an online recommendation mechanism with sustainabil-

ity, safety, and utility goals, i.e., at each customer login instance

i , we need to find a ranked recommendation Ri
with the goals in

mind. As seen in the case of poorest-k (§3), there is a clear trade-off

between utility and safety/sustainability, so all the three goals may

not be achieved together. Thus we plan to relax the objectives and

then combine them to form a joint optimization problem.

4.1 Relaxed Objectives
Here, we formally define the relaxed objectives for sustainability,

safety, and utility.

Minimize Exposure Deficit: Instead of a hard constraint on ex-

posure guarantee (eq-5 for sustainability), we propose a relaxed

objective using exposure deficit. We define exposure deficit of a

business as the relative difference between her exposure and mini-

mum exposure guarantee if she is lagging behind, and 0 otherwise:

i.e., max{0,
E−Ep
E

}. We would like to minimize the exposure deficit

of all the businesses. Following a utilitarian approach, we formulate

a min-sum objective (minimize the sum of exposure deficits of all

the businesses). For ith login instance, it is as given below.

arg min

Ri

∑
p∈P

max

{
0,

βi −
(
Ei−1p + a(Ri

p )
)

βi

}
(8)

Minimize Exposure Surplus: Instead of a hard constraint on ex-

posure based on safe capacity (eq-6 for safety), we propose a relaxed

objective using exposure surplus. We define exposure surplus of a

business as the relative difference between her exposure and her
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maximum exposure limit if she has a surplus, and 0 otherwise: i.e.,

max{0,
Ep−ζp
ζp

}. Here also we follow a utilitarian approach, and

formulate a min-sum objective for ith login instance.

arg min

Ri

∑
p∈P

max

{
0,

(
Ei−1p + a(Ri

p )
)
− ζ ip

ζ ip

}
(9)

Minimize Utility Loss:While working towards sustainability and

safety goals, we may not be able to ensure maximum utility to cus-

tomers, however we have to care about the customer utility too at

the same time. Thus, instead of a hard constraint of maximum util-

ity (eq-7), we propose to minimize the loss in customer utility while

deciding the recommendation at any ith customer login instance.

arg min

Ri

{
1 − NDCG@k (Ri , i)

}
(10)

Further we reduce the loss minimization objective to a min-sum
objective in proposition 4.1. This reduction will be helpful while

combining this objective with others in eq-8 and eq-9 in order to

form a joint optimization problem.

Proposition 4.1. The objective in equation 10 can be reduced to
a min-sum objective.

arg min

Ri

{∑
p∈P

V i (Ri∗[1])−V i
p

V i (Ri∗[1])
× a(Ri

p )

}
(proof available in extended version of paper at https://bit.ly/3kzBzYz)

4.2 Joint Optimization of Relaxed Objectives
We combine the relaxed objectives: eq-8 for sustainability, eq-9 for

safety, and reduced form of eq-10 in proposition-4.1 for customer

utility with weights λ1, λ2, and (1 − λ1 − λ2) respectively. We write

the joint optimization problem below.

arg min

X i

(
λ1

∑
p∈P

n∑
j=1

max

{
0,

βi −
(
Ei−1p + a(j)

)
βi

}
· X i

p, j

+ λ2
∑
p∈P

n∑
j=1

max

{
0,

(
Ei−1p + a(j)

)
− ζ ip

ζ ip

}
· X i

p, j

+ (1 − λ1 − λ2)
∑
p∈P

n∑
j=1

V i (Ri∗[1]) −V i
p

V i (Ri∗[1])
· a(j) · X i

p, j

)
s.t.

( n∑
j=1

X i
p, j = 1, ∀p ∈ P

)
&

( ∑
p∈P

X i
p, j = 1, ∀j ∈ {1, 2, · · · , n }

)
&

(
X i
p, j ∈ {0, 1}, ∀j ∈ {1, 2, · · · , n }, p ∈ P

)
(11)

where X i
p, j is a binary indicator variable, X i

p, j = 1 represents that

business p is assigned jth rank in the recommendation at ith cus-

tomer login, ∀j ∈ {1, 2, · · · ,n},p ∈ P . Above optimization prob-

lem is an integer linear program which is a discrete optimization

problem and computationally heavy to solve. Thus, we plan to

reorganize this problem and map it to a matching problem with

polynomial time solutions.

4.3 Mapping to Bipartite Min-Cost Perfect
Matching

Here, we outline basic details of general bipartite min-cost matching

problem and then describe our mapping.

Bipartite Min-Cost Perfect Matching Problem: In a general

bipartite minimum-cost perfect matching problem, we are given a

complete bipartite graph with two sets of nodesY ,Z s.t. |Y | = |Z | =
n, and the costs of all the edges between Y ,Z : i.e., c(y, z) = cost of

edge between y, z, ∀y ∈ Y , z ∈ Z ; all the costs are non-negative:
c(y, z) ≥ 0,∀y, z. Here, the goal is to find a perfect matching with

the minimum cost. A matching is a set of pairwise non-adjacent

edges, i.e., no two edges share a common node. A perfect matching

is a matching which covers all the nodes in the graph. There can

be multiple perfect matchings in this problem, however we need to

find the one which costs the least.

We can use a matrix (X ) to represent a matching where element

Xy,z = 1 if edge (y, z) is a part of the matching, and Xy,z = 0

otherwise. Now the min-cost perfect matching problem can be

expressed as a discrete optimization problem using X as given

below.

arg min

X

∑
y∈Y

∑
z∈Z

c(y, z) · Xy,z

s.t.

( ∑
y∈Y

Xy,z = 1, ∀z ∈ Z
)
&

( ∑
z∈Z

Xy,z = 1, ∀y ∈ Y
)

&

(
Xy,z ∈ {0, 1}, ∀y ∈ Y , z ∈ Z

) (12)

The first two constraints ensure that each node from Y and Z is

covered by exactly one edge in the solution such that there are no

pairwise adjacent edges.

LP Relaxation: Relaxing the third constraint Xy,z ∈ {0, 1} to

Xy,z ≥ 0, converts the problem into a linear program (LP) as given

below.

arg min

X

∑
y∈Y

∑
z∈Z

c(y, z) · Xy,z

s.t.

( ∑
y∈Y

Xy,z = 1, ∀z ∈ Z
)
&

( ∑
z∈Z

Xy,z = 1, ∀y ∈ Y
)

&

(
Xy,z ≥ 0, ∀y ∈ Y , z ∈ Z

) (13)

It turns out that this LP in equation 13 has integer solutions as

extreme points (proven in [7, 16, 38] using Birkhoff-von Neumann
theorem). Thus, we no longer need the integrality constraint (third

constraint) of the discrete optimization problem (in equation 12),

and instead solve the LP-relaxation of the same (in equation 13) to

get to the same solution. Next we discuss how we use this to our

advantage in order to efficiently solve our problem.

TheMapping: First, we reorganize our joint optimization problem

(eq-11) a bit and write it as below.

arg min

X i

∑
p∈P

n∑
j=1

(
λ1 ·max

{
0,

βi −
(
Ei−1p + a(j)

)
βi

}
+ λ2 ·max

{
0,

(
Ei−1p + a(j)

)
− ζ ip

ζ ip

}
+ (1 − λ1 − λ2) ·

V i (Ri∗[1]) −V i
p

V i (Ri∗[1])
× a(j)

)
· X i

p, j

s.t.

( n∑
j=1

X i
p, j = 1, ∀p ∈ P

)
&

( ∑
p∈P

X i
p, j = 1, ∀j ∈ {1, 2, · · · , n }

)
&

(
X i
p, j ∈ {0, 1}, ∀j ∈ {1, 2, · · · , n }, p ∈ P

)
(14)
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We can see that this is in the same format as the one for match-

ing problem in eq-12. Thus, we can map our problem of finding

ranked recommendation Ri
at ith customer login instance to a bi-

partite min-cost matching problem. In one set of nodes, we have

all the businesses (P ) and in the other one, we have all the po-

sitions/ranks ([n] = {1, · · · ,n}); there is a cost attached to each

edge between P and [n]. c i (p, j) = λ1 ·max

{
0,

βi−
(
Ei−1p +a(j )

)
βi

}
+ λ2 ·

max

{
0,

(
Ei−1p +a(j )

)
−ζ ip

ζ ip

}
+ (1− λ1 − λ2) ·

V i (Ri∗[1])−V i
p

V i (Ri∗[1])
×a(j) . The terms

multiplied with λ1, λ2, (1 − λ1 − λ2) represent the costs which the

edge between p, j (i.e., p being assigned jth rank) contributes to

exposure deficit objective in eq-8, exposure surplus objective in

eq-9, and customer utility objective in proposition-4.1 respectively.

Now, the goal is to find a perfect matching of minimum cost. We

can use the LP relaxation (just as done for matching problem in

eq-13) to solve this problem (eq-14) in polynomial time. Formally,

we write the problem as below.

arg min

X i

∑
p∈P

n∑
j=1

c i (p, j) · X i
p, j

s.t.

( n∑
j=1

X i
p, j = 1, ∀p ∈ P

)
&

( ∑
p∈P

X i
p, j = 1, ∀j ∈ {1, 2, · · · , n }

)
&

(
X i
p, j ≥ 0, ∀j ∈ {1, 2, · · · , n }, p ∈ P

)
(15)

4.4 Approximate Solution with Prefiltering
As the above defined LP operates on the whole set of businesses,

huge number of businesses in realtime can be a bottleneck resulting

in long processing times. Thus we propose to prefilter the set in the

following two ways: (i) top-k2 businesses based on V i
, which can

help in achieving better customer utility, and (ii) k2 least exposed
businesses, which can help in achieving better sustainability and

safety. We then merge these two filtered lists to get a smaller set of

businesses and run the LP on it.

5 EXPERIMENTAL EVALUATION
Here, we explain the setup and baselines for comparison. Then we

detail evaluation metrics and experimental results.

Setting k: We fix k = 10 in all the experiments.

Setting β :As there are n businesses, we limit setting β to βmax =
1

n .

We vary β from (0.1 × βmax) to (1.0 × βmax).

Setting λ1 and λ2: We vary both λ1 and λ2 in the range [0.1, 0.5].

Baselines: We use the following schemes for ranked recommen-

dations at each customer instance (i) as baselines while we refer
to our proposed recommendation mechanism as LP (as detailed in

§4).

(1) Top-k: Recommendation of most relevant k ranked in descend-

ing order of relevance V i
p .

(2) Top-k (Safe): Top-k relevant businesses out of all those which

satisfy the safety criterion (eq-6).

(3) Mixed-k: Here, we build a k-sized ranking with top

⌊
k
2

⌋
in

descending order of V i
p , and the next (k −

⌊
k
2

⌋
) in ascending or-

der of exposure Ei−1p while ensuring no business is repeated in

recommendation.

(4) Mixed-k (Safe): Mixed-k ranking out of all those businesses

which satisfy the safety criterion (eq-6).

(5) Poorest-k: Here, we build a k-sized ranking in ascending order

of exposure Ei−1p (i.e., k least exposed businesses).

5.1 Evaluation Metrics
We use the following metrics to capture the performance from

sustainability, safety and utility standpoints.

A. Metrics for Business Sustainability:
Inequality in Business Exposures (INQ):We use Gini coefficient

[15] to measure inequality in business exposures.

I NQ =

∑
p1∈P

∑
p2∈P

��Ep1 − Ep2
��

2n
∑
p∈P

Ep
(16)

INQ ∈ [0, 1], and lower value of INQ represents less inequality in

business exposures and more business sustainability.

Mean Exposure Loss on Businesses (ELoss): While we guarantee

a minimum exposure for all the businesses, there will be some

popular businesses who will lose a share of their exposures which

they would have received in conventional top-k recommendations.

Thus here, we measure the mean exposure loss of all the businesses

as defined below.

ELoss =
1

n

∑
p∈P

max

{
0,

Etop-kp − Ep

Etop-kp

}
(17)

where E
top-k

p is the exposure received by p in top-k recommenda-

tions. ELoss ∈ [0, 1], and lower ELoss represents lower exposure
loss for businesses in comparison to top-k recommendations.

B. Metrics for Customer Safety:
Mean Risk for Customers (MRisk): For safety, we measure the

mean chances of customers ending up at an already overexposed

business i.e., the mean customer attention directed towards overex-

posed businesses.

MRisk =
1

|I |

∑
i∈I

∑
p∈Ri

a(Ri
p ) · 1Ei−1p >ζ i−1p

(18)

where 1Ei−1p >ζ i−1p
is 1 if Ei−1p > ζ i−1p , and 0 otherwise. As Ri

p is the

rank of p in Ri
, thus (a(Ri

p ) · 1Ei−1p >ζ i−1p
) becomes the customer

attention to p if p is already overexposed. MRisk ∈ [0, 1]. Lower

MRisk means better customer safety.

Mean Exposure Surplus (ESrp): Along with the previous metric,

we also measure the mean exposure surplus which represents the

expected fraction of overexposure of a business.

ESrp =
1

|I |

∑
i∈I

1

n

∑
p∈P

max

{
0,

Eip − ζ ip
ζ ip

}
(19)

ESrp ∈ [0, 1], and lower ESrp represents less overcrowding and

more customer safety.

C. Recommendation Utility: We also look at the mean (µϕ ) of
customer utilities or recommendation utilities (ϕ defined in sec-

tion 2.3) over the customer instances. While the top-k recommen-

dations ensure maximum utility (ϕ = 1), other recommendation

mechanisms are desired to have small losses in compasion to that.
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Figure 2: Performances on GL-NYC data. For plots in first row, β = βmax and λ2 = 0.4 (fixed). For plots in second row, β = βmax
and λ1 = 0.4 (fixed). For plots in third row, λ1 = λ2 = 0.4.

5.2 Experimental Results
We simulate the recommender system as detailed in §3, and run

all the baseline mechanisms (listed in §5) along with our proposed

LP. Next we calculate the metrics (listed in section 5.1) for each

of the methods, and plot them. Even though we observe similar

performance patterns in all the datasets, due to space constraints, we

show plots only for GL-NYC data in figure-2 in this paper; Results

on other datasets can be found in the extended version of the paper

available at https://bit.ly/3kzBzYz. We test our LP with different

hyperparameter settings in separate simulations. In the first row

of figure-2 (2a, 2b, 2c, 2d, 2e), we fix β = βmax, λ2 = 0.4, and vary

λ1. In the second row of figure-2 (2f, 2g, 2h, 2i, 2j), we fix β = βmax,

λ1 = 0.4, and vary λ2. In the third row of figure-2 (2k, 2l, 2m, 2n, 2o),

we fix λ1 = λ2 = 0.4, and vary β from (0.1 × βmax) to (1.0 × βmax).

On the other hand, the baselines do not have hyperparameters

(λ1, λ2, β), thus we plot baseline performances as horizontal straight

lines in figure-2 (thus same baseline results in all the three rows).

Performance of Baselines: Even though the conventional top-k
recommendation ensures highest customer utility (µϕ in fig-2e), it

is very unsuitable from business sustainability and customer safety

standpoints, as it causes the highest exposure inequality for busi-

nesses (INQ in fig-2a), the highest risk for customers (MRisk in

364

https://bit.ly/3kzBzYz


RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Patro et al.

fig-2c) and the highest amount of exposure surplus (ESrp in fig-2d).

On the other hand the poorest-k recommendation performs the

best in business sustainability with the lowest exposure inequality

(INQ in fig-2a), and better in customer safety with a lower risk for

customers (MRisk in fig-2c) and a much lower overexposure (ESrp
in fig-2d) than top-k ; however, the poorest-k performs the worst

from customer utility standpoint (µϕ in fig-2e), as it does not take

relevance scores into account while deciding the recommendations.

In comparison to top-k and poorest-k , themixed-k recommendation

performs fairly good from all the standpoints—reduced exposure

inequality than top-k (INQ in fig-2a) with smaller exposure loss

than poorest-k (ELoss in fig-2b), lower customer risk (MRisk in

fig-2c) and lower overexposure (ESrp in fig-2d) than top-k with a

much smaller loss in customer utility (µϕ in fig-2e) than poorest-k ;
this is because mixed-k combines highly relevant businesses along

with less exposed businesses in the recommendations thus cover-

ing for both customer utility and exposure inequality. The top-k
(safe) and mixed-k (safe) recommendations with safety as a hard

constraint, perform the best in customer safety with the lowest risk

to customers (MRisk in fig-2c) and the lowest overexposure (ESrp
in fig-2d); they also perform very good in business sustainability

with very low exposure inequality (INQ in fig-2a); however they

perform very poorly from utility standpoint with huge loss in cus-

tomer utility (µϕ in fig-2e) close to that of poorest-k . Out of all the
baselines, only mixed-k performs fairly good in all the metrics of

interest.

Performance of LP: Observed patterns from the first row of plots

in figure-2 suggest that larger settings of λ1 (i.e., larger weight for
sustainability) leads to better business sustainability (lower INQ in

fig-2a) with marginal loss to previously popular businesses (small

ELoss in fig-2b), and better customer safety (lowerMRisk , ESrp in

fig-2c, 2d) with marginal loss in customer utility (µϕ in fig-2e: less

than 20% loss in comparison to top-k). Similarly from the second

row of plots in figure-2, we see that increasing λ2 yields better

business sustainability (lower INQ in fig-2f) with marginal loss to

previously popular businesses (small ELoss in fig-2g), and better

customer safety (lower MRisk , ESrp in fig-2h, 2i) with marginal

loss in customer utility (µϕ in fig-2j: less than 20% loss in com-

parison to top-k). From the above observations, we can say that

increasing weights for either of business sustainability objective

(λ1) or customer safety objective (λ2) leads to improvements in both

sustainability and safety metrics; the reasons behind this can be: (i)

ensuring sustainability through minimum exposure guarantee for

every business preferably allots exposure to less exposed businesses

ultimately leading to less overexposure and better customer safety,

(ii) ensuring safety through capacity-based upper limits on business

exposures leads to redistribution of extra exposure of overexposed

businesses to less exposed ones, thereby resulting in better sus-

tainability for more number of businesses. In summary, we can

say that business sustainability and customer safety comple-
ment each other. In the third row of figure-2, by increasing β
from (0.1×βmax) to (1.0×βmax), we see better sustainability (fig-2k:

decrease in INQ), marginal decrease in customer utility (fig-2o:

decrease in µϕ ), and slightly better safety at first (till β = 0.8 · βmax

in fig-2m, 2n); however after β = 0.8βmax, there is a small increase

in customer risk and overexposure (MRisk,ESrp in fig-2m, 2n); this

is happening as the minimum exposure guarantee (β) is increased
more and more, at some point it grows beyond the upper exposure

limit set based on the capacity of some businesses—especially for

businesses with low capacity—making the sustainability objective

in conflict with safety objective. Thus, the value of β should be

set carefully so that it does not come in conflict with the safety

objective.

In comparison to the best performing baseline (mixed-k), LP
with (λ1, λ2) set around (0.4, 0.4), performs better with less overex-

posure (ESrp in fig-2d, 2i) and better customer utility (µϕ in fig-2e,

2j), while it shows similar performances in other metrics. More-

over our proposed LP gives a three-way control over sustainability,

safety, and utility objectives which the baselines do not possess;

this kind of control can be very useful in the post-pandemic world

as the hyperparameters can be set higher or lower according to the

realtime peaks or drops in viral infection rates.

5.3 Turning Crisis into Opportunity
While sustainability is a business-side requirement, both safety

and utility are customer-side requirements. Besides, the safety re-

quirement has recently become important because of the pandemic

while the sustainability of businesses has been a growing concern

for a longer time [8, 29, 36]. Based on one of the important find-

ings in the last section (“business sustainability and customer safety
complement each other"), we hypothesize that solving only the crisis-
inspired safety problem could ultimately solve the long standing

business sustainability concern. Thus, we also test our LP with only

customer-side objectives (safety and utility) but no sustainability

objective (i.e., λ1 = 0), and plot the results in figure-3. The results

show that increasing the weights of safety objective (λ2) results
in better customer safety (fig-3c, 3d: decrease inMRisk,ESrp) and
also better business sustainability (fig-3a: decrease in INQ). In fact,

the performance of LP with (λ1, λ2) = (0, 0.8) here, is very similar

to that of the best performing LP setting (λ1, λ2) = (0.4, 0.4) in

the last section (section 5.2). Thus, in summary we can say that

the crisis-inspired safety problem could very well be turned into

an opportunity to solve sustainability problem without explicitly

addressing it.

6 RELATEDWORK
Use of Location in Recommender Systems: Extensive use of

ubiquitous location-based services like geo-tagging on social media

posts, realtime reviews of establishments on review forums, maps

with realtime navigation, etc. have resulted in the generation of

huge amount of data on the different user preferences based on

location. This has led to a range of new research problems on how

to utilise this location-based data to design personalised recom-

mender systems. Recommender systems that consider the location

of its users, can have a myriad of applications ranging from recom-

mending nearby restaurants/shops [24, 44] and social events [33],

to endorsing neighborhoods to reside [10, 46] or suggesting friends

who are nearby [45]. They can be further adapted for trajectory

recommendations [47], or recommendation of location sequence

for itinerary planning with time/cost optimization [5, 6].

Advancements in LocalRecommendations:Akey featurewhich

distinguishes location-based recommendation from regular item
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Figure 3: Performances on GL-NYC with only customer-side objectives (safety and utility), and no sustainability objective i.e.,
λ1 = 0.

recommendation is the location data of source (customers) and

destination (establishments/businesses). The approaches used for

local recommendation can be considered to be inspired by those

in item recommendation literature. Initial work on location-based

recommendation have introduced methods to use location data as

a personalised filtering criteria in recommendation, using content

based filtering [28, 34]. Researchers have also proposed techniques

to embed geospatial data into collaborative filtering based recom-

mender systems to suggest nearby places [24, 44]. On the other

hand, studies have also proposed hybrid approaches [33, 43] for

local recommendations. The availability of geo-tagging features

in social media posts on a variety of platforms, has attracted new

research initiatives that exploit the social network structure for

better design of local recommendations. For example, leveraging

social computing techniques to get local experts and then using

it for local recommendations [3], social link analysis using graph-

based modeling for better estimatation of relevance scores [35, 40],

formation of location-based social networks—with individuals con-

nected by the interdependency derived from their locations in the

physical world as well as their location-tagged media content—as a

solution to local recommendation [4, 9, 26], etc. Moreover, advanced

machine learning techniques like deep representation learning for

local recommendation [19, 32] and information retrieval techniques

like learning-to-rank for ranked recommendation [23] have also

been explored for this purpose. However, none of these studies

have considered the notions of customer safety and business sus-

tainability which are of primal importance in the post-pandemic

world. Besides, these works can easily replace our relevance scoring

method (in section 2.4), and serve as inputs to our LP based solution,

as all of them ultimately estimate some form of relevance scores.

Sustainability in Recommender Systems: From an orthogo-

nally different research area of algorithmic fairness, few recent

works have focussed on the sustainability of businesses in recom-

mender systems [8, 29], recommendation updates [30], etc. in a

general online market setup. However, in this paper, we define the

notion of business sustainability in local recommendation setup

and address it along with the notion of customer safety and utility.

7 CONCLUSION
In this work we formally define timely notions of business sustain-

ability and customer safety in local recommendation, and address

them using a novel mapping to min-cost matching problem. Our

proposed mechanism is not only computationally efficient, but also

easily adaptable as it is independent of the selection of relevance

scoring method or any other domain-specific business logic already

in place on the platforms. We demonstrate the efficacies of our

mechanism through extensive evaluations on gathered datasets.

The three-way control over business sustainability, customer safety,

and utility goals, can be very useful in the post-pandemic world as

the hyperparameters can be set higher or lower according to the

need of the situations. Apart from that the idea of capacity-based

safety notion, can also be generalized to design safety-aware lo-

cal recommendations for indoor and outdoor monuments, public

parks, etc. As it is said a crisis opens up new avenues, the change

in recommendation scheme as well as people’s habit would provide

more opportunities to local businesses to flourish which perhaps

earlier could not survive due to existence of ‘popular’ outlets.
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