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ABSTRACT
Public schools in the US offer tuition-free primary and sec-

ondary education to students, and are divided into school

districts funded by the local and state governments. Although

the primary source of school district revenue is public money,

several studies have pointed to the inequality in funding across

different school districts. In this paper, we focus on the spatial

geometry/distribution of such inequality, i.e., how the highly

funded and lesser funded school districts are located relative

to each other. Due to major reliance on local property taxes

for school funding, we find existing school district boundaries

promoting financial segregation, with highly-funded school

districts surrounded by lesser-funded districts and vice-versa.

To counter such issues, we formally propose Fair Parti-

tioning problem to divide a given set of schools intok districts

such that the spatial inequality in district-level funding is min-

imized. However, the Fair Partitioning problem turns out

to be computationally challenging, and we formally show that

it is strongly NP-complete. We further provide a greedy algo-

rithm to offer practical solution to Fair Partitioning, and

show its effectiveness in lowering spatial inequality in school

district funding across different states in the US.
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1 INTRODUCTION
In both online and offline worlds, a population is often grouped

for practical benefits. For example, city residents are grouped
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into municipal wards; faculty and students are grouped into

university departments; voters are grouped into electoral con-

stituencies. Similarly, users in large online systems are grouped

into clusters to provide recommendations at scale. Importantly,

people belonging to a particular group (or cluster) share the
same fate, such as, students share the same departmental re-

sources; ward residents experience similar municipal services;

or users in a cluster receive similar recommendations. When

it concerns the distribution of resources, the group member-

ship effectively determines the amount of resources different

individuals get, raising concerns about the fairness of the dis-

tribution. In this paper, we focus on a prime example of such

scenario – distribution of government funding across the pub-

lic school districts in the United States.

Public schools offer tuition-free elementary and secondary

education to students from all financial backgrounds. Every

school has a school attendance zone which determines the

neighborhood from which children will attend the school. In

most states, schools are grouped into school districts for better

administration, and the geographical area of a district covers

the corresponding school attendance zones [11]. School dis-

tricts are mostly dependent on public money to manage their

expenses, where the major sources of revenues are local gov-

ernment funding (collected mainly from property taxes) and

funding from the state governments (general formula assis-

tance). Although the primary source of school district revenue

is public money, multiple studies have criticized the existing

school district boundaries to be promoting racial and financial

segregation (or gentrification) [16, 36, 38]. For example, a re-

cent report by EdBuild, a non-profit organization focused on

improving the public school finance system in the US, claimed

that “Non-white school districts get $23 Billion less than white
districts, despite serving the same number of students” [16]. Such
funding disparities can play a major role in the long-term ed-

ucational and economic outcomes of the students.

In a departure from past literature, in this work, we focus

on the spatial geometry / distribution of such inequality –

i.e., how the highly funded and lesser funded school districts

are located relative to each other. For instance, it would seem

more unfair if highly-funded school districts were islands sur-

rounded by poorly funded school districts, as opposed to there

being a more gradual spread of high to low-funded school dis-

tricts. This notion of fairness matches with people’s perception
of inequality, where people tend to approximate the overall

income distributions and their place in those distributions by

https://doi.org/10.1145/3442381.3450041
https://doi.org/10.1145/3442381.3450041
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taking cue from their local neighborhood [18, 22, 26]. Such

spatial notion of fairness can also be interpreted as a special

case of the individual fairness notion proposed by Dwork et al.

[15]: similarly located districts (i.e., neighboring districts) should
have similar per-student funding.

In this paper, we propose Spatial Inequality Index to capture
how different individuals in a population are treated compared

to their immediate neighbors. Although it can be applied in any

online or offline setting involving users and some connection

between them, such as inequality in satisfaction from social

recommendations, clustering algorithms, or even broadly com-

paring utilities of ‘similar’ users (given a similarity notion), our

primary focus in this work is on educational inequality – how

different a school district is funded compared to its neighbors.

Our analysis reveals high spatial inequality in the funding

received by different school districts across the US. Essen-

tially, the heavy reliance on local property taxes to fund public

schools have resulted in schools in poor neighborhoods receiv-

ing significantly lower levels of funding compared to schools

in adjacent rich neighborhoods. By distributing funds more

equally across districts, policymakers can equalize access to

quality education—which in turn can end the vicious cycle of

poverty for many students, improving social mobility [23, 27].

Towards that, we propose to redraw the district boundaries

to amalgamate wealthy and poor neighborhoods, to minimize

the spatial inequality in funding. We formally propose Fair

Partitioning problem to divide a given set of nodes into k
partitions such that the spatial inequality in a partition-level

property is minimized. However, the Fair Partitioning prob-

lem turns out to be computationally challenging, and we prove

that it is strongly NP-complete. Thus, we provide Greedy

Partitioning, a greedy algorithm to move nodes between

different partitions, to offer a practical solution to Fair Par-

titioning. Extensive experiments show the effectiveness of

Greedy Partitioning in lowering spatial inequality in school

district funding across different states in the US.

Finally, while our focus has been on the computational

aspects of solving the school redistricting problem, such

proposals would ultimately require community participa-

tion and necessary legal support. To give policymakers and

community leaders a visual idea of the promise redistrict-

ing holds, we have deployed a web-based visualization tool

at https://redistricting.mpi-sws.org. We believe that

wide adoptions of such online tools can help foster further

discussions to lower educational inequality in our societies.

2 INEQUALITY IN SCHOOL FUNDING
Every public school in the United States (be it elementary,

middle or high school) has a dedicated attendance zone – a ge-

ographical area from which it admits students. These schools

are organized into school districts governed by local school

boards, where the district boundary is formed by amalgamat-

ing their constituent school attendance zones. While some

school districts are either Primary (catering only to elemen-

tary schools) or Secondary (catering only to middle and high

schools), majority of the school districts are Unified (i.e., they
cover all type of schools in a geographical area). Given the

existing school district boundaries in the US and their corre-

sponding finances, our focus in this section is to understand

whether all students enrolled into public schools are funded

equally, regardless of the school districts they belong to.

2.1 Dataset gathered
We gathered the data on school district revenues from the

National Center for Education Statistics (NCES) [30], which

presents the detailed breakdown of state, local and federal

funding for the 2015-16 school year (latest information as

of August, 2020). We also collected information about the

schools falling under each of the districts and the number of

students enrolled in them. Additionally, NCES provides the

geographical boundary of the school districts, as well as the

school attendance zone boundaries [31]. Overall, we got data

about 43, 976 schools in 14, 528 districts throughout the US.

After removing the districts (and schools) with missing entries,

no boundary information or zero enrollments, we considered

around 39, 656 schools in 10, 461 districts.

To enable meaningful funding comparisons across school

districts in different states, we adjust absolute revenues with

‘Comparable Wage Index for Teachers (CWIFT)’ at the school

district level [10], again collected from the NCES portal [29].

CWIFT enables normalization of dollar amounts and make

them comparable, so that a school district getting higher fund-

ing in a costly neighborhood can be properly contrasted with

another district getting lesser funding in a cheaper area.

2.2 Distribution of per student funding
across school districts

To compare the funding received by different districts, we fur-

ther normalize the CWIFT-adjusted revenue by the number

of students in each district. Figure 1 shows boxplots of per-

student funding different districts received in every state in

the US. Considering the median funding, we observe that New

York, Wyoming and Alaska have the highest per-student fund-

ing (∼ $25, 000), whereas, Arizona, Idaho and Florida have

the lowest ones (∼ $10, 000). This means that the students

in at least half of the districts in New York or Wyoming get

an educational funding that is at least 2.5 times higher than

what students in half of the districts in Arizona or Florida get.

Such educational inequalities may translate into disparities in

further opportunities, impacting the future livelihood of the

students. As evident from Figure 1, there is no uniformity in

the median funding among other states as well.

Moreover, even within a state, there is high variability in the

funding different districts receive per-student. For example,

Friend Public School District in Nebraska got $26, 048 funding

per-student; whereas in the same state, Elkhorn Public School
District received only $13, 021. Similarly, two districts in New

York – Pine Plains Central School District andOrchard Park Cen-
tral School District – received $31, 040 and $21, 211 funding

respectively, revealing a gap of $10, 000 per-student.

To further investigate the funding inequality within states,

we consider the interquartile range (IQR) (i.e., the difference

between 25th and 75th percentile values) of the box-plots

for each state. We can observe in Figure 1 that New Mexico,
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Figure 1: Box-plots showing funding per student across different school districts in different states. We see high
variability in funding for school districts, both between different states and within individual states.

(a) Texas (b) Montana (c) Washington

Figure 2: In different states, lowly-funded school districts are co-located with highly-funded ones and vice versa (as
evident from their colors in the maps). Due to missing entries (funding or boundary information) for some districts,
the maps are not fully drawn.

Montana and North Dakota have the highest dispersion of

per-student funding among their school districts, with IQR

more than $7, 000. On the other hand, Alabama, Arkansas,

Florida and Delaware have the least inequality of per-student

funding across their districts, with IQR less than $2, 000.

2.3 Source of funding inequality
Since public schools offer tuition-free education, they rely on

government funding to cover their expenditure. The funding

primarily comes from local and state governments, with some

supplementary funding from the federal government. On av-

erage, about 80% of local revenues for public school districts

come from local property taxes [28]. Such reliance on property

taxes creates huge disparity in the amount of funding going

to different school districts, since the collection from property

taxes is much higher in wealthier neighborhoods compared

to poorer neighborhoods.

For multiple districts, the shortfall in local taxes is made

up by the funding from state sources, with higher funding go-

ing to districts with lesser local revenue. Thus, state funding

generally attempts to counterbalance the inequality created

by the local revenue. However, this pattern is not consistent

across states. In states like Arizona or Idaho, state funding is

distributed similarly across school districts; whereas in states

like West Virginia or Montana, few districts with higher lo-

cal revenue end up getting more funding from state sources,

thereby exacerbating the inequality. The contribution of fed-

eral sources is much lower compared to the state and local

funding, and we observed that except few exceptions, federal

funding is distributed more evenly over all school districts.

To summarize, while the revenue from local sources creates

huge disparity, revenue from state governments tries to some-

what reduce the gap. However, since the overall contribution

of federal sources is low, and there is no consistent direction in

the distribution of state funding, the final funding per student

closely mimic the trend in local revenues.

2.4 Spatial distribution of inequality
While the earlier analysis focused on the funding inequality

across different school districts, it missed out on the spatial
geometry / distribution of inequality – i.e., how the highly

funded and lesser funded school districts are located relative
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School District Neighboring Districts
Colton School District, Washington

($46, 137)

Clarkston School District ($14, 483), Pullman School District ($17, 521), Pomeroy School District

($18, 428)

Doss Consolidated Common School

District, Texas ($48, 597)
Edinburg Consolidated Independent School District ($11, 019), La Villa Independent School

District ($10, 908), Mercedes Independent School District ($13, 354)

HouseMunicipal Schools, NewMexico

($31, 070)
South Conejos School District Re00 ($15, 694), Archuleta County School District 50-Jt ($14, 487),
Centennial School District r0 ($13, 166), Chama Valley Independent Schools ($12, 270)

Greenport Union Free School District,

New York ($19, 795)

Sullivan West Central School District ($59, 885), Deposit Central School District ($37, 515),

Downsville Central School District ($30, 098)

Stamford School District, Connecticut

($15, 356)
Regional High School District 19 ($27, 881), Willington School District ($29, 635), Coventry
School District ($23, 054), Ellington School District ($26, 942)

Table 1: Examples of school districts with high disparity in per-student funding compared to their neighboring dis-
tricts (funding amount is within parenthesis). In some places, a highly-funded school district is surrounded by lesser-
funded districts; whereas in other places, a less-funded school district is surrounded by highly-funded districts.

to each other. For instance, for a given set of well-funded and

poorly-funded school districts, it would seem more unfair if

highly-funded school districts were islands surrounded by

poorly funded school districts, as opposed to there being a

more gradual spread of high to low-funded school districts.

Let’s consider the Greenport Union Free School District in
New York, which received $20, 000 per-student funding and

is surrounded by three other districts having per-student fund-

ing $60, 000, $38, 000 and $30, 000 respectively. So, students

in those three districts got 1.5 to 3 times more funding com-

pared to the Greenport students, even though these four school

districts are located next to each other. With such an island

scenario, Greenport students would feel the inequality and

unfairness more, compared to a situation where their neigh-

boring districts had similar funding and higher funded districts

were farther from their location. More examples of islands can

be observed through existing school districts in the US and a

few of them are listed in Table 1. In Figure 2, we can see similar

funding inequalities in the district boundary maps for Texas,

Montana and Washington states, and the pattern is similar in

other states as well.

In summary, the existing school district boundaries create

islands of highly-funded school districts surrounded by dis-

tricts which are poorly-funded (and vice versa). The primary

reliance on property taxes for public school education create

such segregation of students based on their family’s wealth,

and the district boundaries tend to keep the wealth within the

school district. This also has a circular effect of attracting more

funding to the already high-funded schools, and the poorer

districts being further impoverished. For instance, an article in

The Atlantic [21], focusing on the educational inequalities in

Connecticut, showed that high-poverty areas like Bridgeport

have lower home values and thus the local government col-

lects less taxes, whereas, homes in Darien are worth millions

of dollars, resulting in high tax incomes. Schools in Darien

have access to better facilities like school psychologists and

personal laptops, which further attract wealthy homeowners,

pushing up the local revenues further [21]. In this paper, we

attempt to lower such spatial inequalities in school funding,

but to do that, we need a concrete measure to compute the

spatial inequality. Next, we propose one such measure.

3 QUANTIFYING SPATIAL INEQUALITY
A long line of works inwelfare economics have proposed differ-

ent inequality indices to quantify how unequally incomes/ben-

efits are distributed over a population [3, 6, 19, 39, 42]. For-

mally, given a distribution/vector y = (y1, · · · ,yN ) ∈ R
N
⩾0

,

an inequality measure, I :
⋃∞
n=1 R

n
⩾0
→ R⩾0, maps any

distribution/vector y to a non-negative real number I (y). A
distribution y is considered more equal than another distribu-

tion y′ if and only if I (y) < I (y′). A popular inequality index

is Gini Index [19], which captures the relative mean absolute
difference of income between any two people in the population:

Gini =

∑N
i=1

∑N
j=1 |yi − yj |

2N 2ŷ
=

∑N
i=1

∑N
j=1 |yi − yj |

2N
∑N
i=1 yi

(1)

where ŷ is the mean income of the population.Gini ranges be-
tween 0 to 1, with 0 denoting perfect equality. There are many

other inequality indices as well, namely Atkinson Index [3],

Theil Index [42], etc.
However, the inequality indices proposed in the past litera-

ture quantify the inequality in the overall population, missing

an important aspect: how individuals perceive inequality. Re-
cent research efforts have ventured into understanding peo-

ple’s perception of inequalities in different countries. Knell

and Stix [26] have argued that people’s inequality percep-

tion depend on their social position, as individuals typically

do not observe the entire income distribution. Furthermore,

Hauser and Norton [22] showed that people often rely on cues

from their local environment to guess the overall distributions

of income, and their place in those distributions. They fur-

ther showed that these perceived inequalities drive people’s

behavior and preferences for redistribution [22]. Similar ob-

servations have been echoed by Ricci [35] and Gimpelson and

Treisman [18]. Some researchers have also tied this perception

of inequality and unfairness with envy [9, 12].

In this work, we attempt to account for people’s percep-

tion of inequality and propose a measure to compute spatial
inequality, where instead of comparing the income between

every pair of individuals, we only compare the income of the

neighbors. Here the notion of space need not be restricted to

physical geography – it can easily be extended for individuals

put into a n-dimensional abstract space. Such spatial notion
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Figure 3: Spatial inequality in the per-student funding received by different school districts within the states.

of fairness can also be interpreted as a special case of the indi-

vidual fairness notion proposed by Dwork et al. [15]: similar
individuals should have similar decision outcome. In the context

of school funding, we can interpret as: the funding distribu-
tion would be fair if similarly located districts (i.e., neighboring
districts) should have similar per-student funding.

We formally express the inequality perceived by individual

(school district) i as the average difference between the income

(funding) yi of i and its neighboring districts:

SIIN(i) =
1

Ni

Ni∑
j=1
|yi − yj | (2)

where Ni is the number of neighbors of i .

To measure the overall inequality while taking into account

the spatial distribution, we propose Spatial Inequality Index
(SIOV ), adapted from Gini:

SIOV =
1

Nŷ

N∑
i=1
SIIN(i) =

∑N
i=1

1
Ni

∑Ni
j=1 |yi − yj |∑N

i=1 yi
(3)

where, instead of comparing the income of every pair of indi-

viduals, we only compare the neighbors, and then aggregate

over all individuals. The value is further normalized by the

number of individuals and the mean income in the population,

allowing us to compare across different population groups.

SIOV is zero when all individuals (school districts) have sim-

ilar income (per-student funding). Higher the value of SIOV ,

higher the spatial inequality.

Spatial inequality of per-student funding in different
states: To compare the spatial inequality across different

states, we compute SIOV over the per-student funding for

different school districts within a state. We can see in Figure 3

that the spatial inequality in Colorado, Nevada and New Mex-

ico are the highest among the states, implying that there is

a large disparity in the funding students received in neigh-

boring districts. On the other hand, Vermont, West Virginia,

Florida and Alabama have relatively more equal distribution

of per-student funding among co-located districts.

4 MINIMIZING SPATIAL INEQUALITY
In this work, we propose to reduce the existing spatial inequal-

ity in school funding by redistricting schools. We formulate

the problem as a graph partitioning problem, where schools

are the vertices and there is an edge between two schools if

their school attendance zones share a common boundary.

4.1 Formal problem statement
We now formally write our problem definition. Given a graph

G = (V, E) and two disjoint subsetsW1 andW2 of V , we

say thatW1 andW2 are neighbors of each other, and denote

it byW1 ∼ W2, if there exists an edge {u,v} ∈ E such that

u ∈ W1 and v ∈ W2. For a subsetW ⊆ V of vertices, we

denote the number of vertices in it by |W|.

Definition 1 (Fair Partitioning). Given an undi-
rected graph G = (V, E,w : V −→ R+,p : V −→
R+) with two weights per vertex, an integer k denot-
ing the number of districts, two integers Lmin (⩾ 1)
and Lmax , and a real number t , compute if there exits
a partition (V1, . . . ,Vk ) of V such that (i) Lmin ⩽
|Vi | ⩽ Lmax ∀i ∈ [k], (ii) the induced graph G[Vi ] is
connected, and (iii) we have the following

k∑
i=1

∑
i<j⩽k ,Vi∼Vj

�����∑u ∈Vi wu∑
u ∈Vi pu

−

∑
u ∈Vj wu∑
u ∈Vj pu

����� ⩽ t

We denote an arbitrary instance of Fair Partitioning
by (G,k, Lmin, Lmax, t).

4.2 Hardness results
We show that the Fair Partitioning problem is NP-complete

even if the weights of every vertex is encoded in unary; that

is the problem is strongly NP-complete. For that, we reduce

from the 3-Partition problem, known to be strongly NP-
complete [24]. The 3-Partition problem is defined as follows.
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Definition 2 (3-Partition). Given a multi-set A =
{ai : i ∈ [3n]} of 3n positive integers, compute if there
exists a partition (Sj )j ∈[n] of A into n sets such that
each Sj , j ∈ [n] contains exactly 3 elements fromA and
all the sets Sj , j ∈ [m] have the same sum of its elements.
We denote an arbitrary instance of 3-Partition by A.

Theorem 1. The Fair Partitioning problem is strongly
NP-complete even if G is a complete graph and every district
contains exactly 3 vertices.

Proof. The Fair Partitioning problem clearly belongs

to NP. To show NP-hardness, we reduce from 3-Partition.
Let A = {ai : i ∈ [3n]} be an arbitrary in-

stance of 3-Partition. We consider the following instance

(G = (V, E,w) ,k, Lmin, Lmax, t) of Fair Partitioning.

V = {vi : i ∈ [3n]}

wi = ai ,pi = 1

k = n, Lmin = 3, Lmax = 3, t = 0

The graph G is a complete graph. We now claim that the two

instances are equivalent.

In one direction, let us assume that the 3-Partition in-

stance is a yes instance. Let (Sj )j ∈[n] ofA into n sets such that

each set contains exactly 3 elements and all the sets Sj , j ∈ [m]
have the sum of its elements. We define a partition (Vj )j ∈[n]
ofV into k = n districts as:Vj = {vi : i ∈ [3n],ai ∈ Sj } for
j ∈ [n]. Since the sum of the weights of the vertices of every

district is the same and every district has exactly 3 vertices,

we have the following for every i, j ∈ [n].∑
u ∈Vi wu

|Vi |
−

∑
u ∈Vj wu

|Vj |
= 0

Hence the Fair Partitioning instance is also a yes instance.

On the other direction, let us assume that the Fair Parti-

tioning instance is a yes instance. Let (Vj )j ∈[n] be a partition

ofV into k = n districts such that we have the following for

every i, j ∈ [n] (since t = 0).∑
u ∈Vi wu

|Vi |
−

∑
u ∈Vj wu

|Vj |
= 0

We define a partition (Sj )j ∈[n] of A into n sets as follows:

Sj = {ai : i ∈ [3n],vi ∈ Vj } for j ∈ [n]. Since we have

Lmin = Lmax = 3, we have |Sj | = 3. Also if there exists two

indices r , s ∈ [n] such that these two sets have a different sum

of its elements, then we have the following.∑
u ∈Vr wu

|Vr |
−

∑
u ∈Vs wu

|Vs |
, 0

This is a contradiction since we have t = 0. □

The proof of Theorem 1 shows that the Fair Partitioning

problem is also inapproximable in polynomial time within any

factor α(·) where α(·) is any computable function if P , NP.

Corollary 1. Letα(·) is any computable function. Then there
does not exist any polynomial time approximation algorithm for
the Fair Partitioning problem if P , NP.

We show next that Fair Partitioning is NP-complete

even when we wish to partition the graph into 2 districts (that

is k = 2) and the graph is planar. For that, we reduce from

the NP-complete problem Planar 2-Disjoint Connected

Partitioning [20] which is defined as follows.

Definition 3 (Planar 2-Disjoint Connected Partition-

ing). Given a connected planar graph G = (V, E) and two
disjoint nonempty setsZ1,Z2 ⊂ V , compute if there exists a
partition (V1,V2) ofV such thatZ1 ⊆ V1,Z2 ⊆ V2,G[V1]

and G[V2] are both connected. We denote an arbitrary in-
stance of Planar 2-Disjoint Connected Partitioning by
(G,Z1,Z2).

Theorem 2. The Fair Partitioning problem is NP-
complete even if we need to partition the graph into exactly
2 connected districts and the underlying graph is planar.

Proof. The Fair Partitioning problem clearly belongs

to NP. To show NP-hardness, we reduce from the Pla-

nar 2-Disjoint Connected Partitioning problem. Let

(G = (V, E),Z1,Z2) be an arbitrary instance of Planar 2-
Disjoint Connected Partitioning. Let us assume without

loss of generality that |Z1 | ⩾ |Z2 | ⩾ 2, and the number n of

vertices in G is at least 50 since the Planar 2-Disjoint Con-

nected Partitioning problem is known to be NP-complete

even under this restriction [43, Theorem 1]. We consider the

following instance (G′ = (V ′, E ′,w) ,k, Lmin, Lmax, t) of Fair
Partitioning. Let z1 ∈ Z1 and z2 ∈ Z2 be two arbitrary

vertices fromZ1 andZ2.

V ′ = {vu : u ∈ V} ∪ D1 ∪ D2, where

D1 =
{
d1i : i ∈

[
|Z1 | n

5
]}

D2 =
{
d2i : i ∈

[
|Z2 |n

2
]}

E ′ = {{va,vb } : {a,b} ∈ E}

∪ {{d1i ,d
1
j } : i, j ∈

[
|Z1 | n

5
]
, j = i + 1} ∪ {{z1,d

1
1}}

∪ {{d2i ,d
2
j } : i, j ∈

[
|Z2 |n

2
]
, j = i + 1} ∪ {{z2,d

2
1}}

w(x) =


n5 if x = vu for some u ∈ Z1

n2 if x = vu for some u ∈ Z2

1 otherwise

p(x) = 1∀x ∈ V ′

k = 2, Lmin = |Z2 |n
2, Lmax = |V

′ |, t =
6

|Z2 |n
We now claim that the two instances are equivalent. In

one direction, let us assume that the Planar 2-Disjoint Con-

nected Partitioning instance is a yes instance. Let (V1,V2)

be a partition of V such that (i) G[Vi ] is connected and

Zi ⊆ Vi for i ∈ [2]. Let us define ℓi = |Vi \ Zi | for

i ∈ [2]. We consider the partition (V ′1,V
′
2) of V

′
where

V ′1 = {vu : u ∈ V1} ∪D1 andV ′2 = V
′ \V ′1 . Since G[Vi ] is

connected, it follows that G′[V ′i ] is also connected for i ∈ [2].
Also, for the districtV ′1 , we have�����

∑
u ∈V′1 wu

|V ′1 |
−

∑
u ∈V′2 wu

|V ′2 |

�����
=

���� 2|Z1 |n
5 + ℓ1

|Z1 |n5 + |Z1 | + ℓ1
−

2|Z2 |n
2 + ℓ2

|Z2 |n2 + 2 + ℓ2

����
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⩽ max
ℓ1+ℓ2⩽n

���� 2|Z1 |n
5 + ℓ1

|Z1 |n5 + |Z1 | + ℓ1
−

2|Z2 |n
2 + ℓ2

|Z2 |n2 + 2 + ℓ2

����
= max

ℓ1+ℓ2⩽n

���� 2|Z1 | + ℓ1

|Z1 |n5 + |Z1 | + ℓ1
−

ℓ2 + 4

|Z2 |n2 + 2 + ℓ2

����
⩽

n + 4

|Z2 |n2 + n + 2
−

2

n5 + 1
⩽

5

|Z2 |n
< t

In the other direction, let us assume that the Fair Parti-

tioning instance is a yes instance. Let (V ′1,V
′
2) be a partition

ofV ′ such that G[V ′i ] is connected for i ∈ [2] and�����
∑
u ∈V′1 wu

|V ′1 |
−

∑
u ∈V′2 wu

|V ′2 |

����� ⩽ t

Let us define a partition (V1,V2) ofV asV1 = {u ∈ V : vu ∈
V ′1} andV2 = V \V1. We claim thatZ1 ⊆ V1. Suppose not,

then we consider two cases. In the first case, suppose we have

D1 ⊆ V
′
1 , Then we have∑

u ∈V′2 wu

|V ′2 |
⩾ n2 and

∑
u ∈V′1 wu

|V ′1 |
⩽ 2 −

1

n5

and thus we have�����
∑
u ∈V′1 wu

|V ′1 |
−

∑
u ∈V′2 wu

|V ′2 |

����� ⩾ n2 − 2 +
1

n5
> t

which is a contradiction. In the second case, we haveV ′1 ⊆ D1.

Then we have∑
u ∈V′1 wu

|V ′1 |
= 1 and

∑
u ∈V′2 wu

|V ′2 |
⩾

2|Z1 |n
5 + 2n2

|Z1 |n5 + n
> 2

and thus we have�����
∑
u ∈V′1 wu

|V ′1 |
−

∑
u ∈V′2 wu

|V ′2 |

����� > 1 > t

which is a contradiction. We now claim that Z2 ⊆ V2. Sup-

pose not, then we have the following which is a contradiction.�����
∑
u ∈V′1 wu

|V ′1 |
−

∑
u ∈V′2 wu

|V ′2 |

�����
⩾ min

ℓ1+ℓ2⩽n

���� 2|Z1 |n
5 + n2 + ℓ1

|Z1 |n5 + |Z1 | + ℓ1
−
(2|Z2 | − 1)n

2 + ℓ2

|Z2 |n2 + 2 + ℓ2

����
= min

ℓ1+ℓ2⩽n

���� |Z1 |n
5 + n2 − |Z1 |

|Z1 |n5 + |Z1 | + ℓ1
−
(|Z2 | − 1)n

2 − 2

|Z2 |n2 + 2 + ℓ2

����
⩾

1

2|Z2 |

> t

Hence we have Zi ⊆ Vi for i ∈ [2]. Moreover since, for

i ∈ [2], G′[V ′i ] is connected, G[V] is also connected. Hence

the Planar 2-Disjoint Connected Partitioning instance

is a yes instance.

By proving Fair Partitioning is NP-complete under the

aforementioned special settings, we conclude that it is NP-
complete in its general form. Intuitively, if the conclusion is not

true and there is a polynomial time algorithm for the generic

problem, then one can apply the generic algorithm to the

special setting as well, contradicting its NP-hardness result.
Formally, there is a reduction from the special setting to the

general form which simply ignores the additional structures

that the special setting assumes. □

Input: Districts = Set of existing districts in a state.

Result: A partition into Districts with potentially

reduced spatial inequality.

Initialize S ∈ R as the state’s aggregated per-student

funding, D ∈ Districts as an arbitrary district, and

F : Districts → R as a function that, given a district,

returns its funding per-student.

for district ∈ Districts do
if |F (district) − S | > |F (D) − S | then

Set D ← district
end

end
for school ∈ D do

if school is bordering D ′ ∈ Districts then
Set diff

before
← |F (D) − F (D ′)|

Set diff
after
←

|F (D \ {school}) − F (D ′ ∪ {school})|
if diffafter < diffbefore then

Set D ← D \ {school}
Set D ′ ← D ′ ∪ {school}

end
end

end
Algorithm 1: Greedy Partitioning algorithm.

4.3 Greedy algorithm
Given the high complexity of the Fair Partitioning problem,

we propose Greedy Partitioning– a greedy heuristic algo-

rithm to minimize spatial inequality, by redistributing existing

schools into districts, and thus redefining district boundaries.

Greedy Partitioning starts with an initial arbitrary (or the

existing) partitioning and then greedily moves nodes between

adjacent partitions such that spatial inequality is minimized.

More precisely, since minimal SIOV is achieved when all

districts within a state have equal per-student funding (i.e.,

equal to the overall state’s per-student funding), the algorithm

greedily selects the district whose per-student funding most

deviates from the whole state’s. Then, since SIIN is mini-

mized when all neighbors have the same per-student funding,

the algorithm iterates over all schools at selected district’s

border (i.e., all schools which can reasonably be redistricted)

and immediately redistricts any that would bring two districts’

funding closer. This process (illustrated in Algo. 1) is then

repeated iteratively until either no more schools can be redis-

tricted to reduce spatial inequality, or a maximum threshold of

iterations has been reached without significant improvement.

Despite its simplicity, the algorithm requires several con-

siderations when adapting to this use-case. First, only schools

at a district’s border (with an adjacent district) can be selected

as equalization candidates – as opposed to picking any arbi-

trary school. Second, despite spatial inequality easily being

minimized by merging all districts, we enforced that no dis-

trict can cease to exist (i.e., they are forced to retain at least

one school at all times), as to preserve a necessary set of K
partitions for which spatial inequality should be minimized.

And third, every schools’ number of students (and initial total

funding) will be treated as constant, even after redistricting.
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Figure 4: Though the effectiveness in minimizing spatial inequality varies across states, it gets significantly reduced
for every state (while maintaining same number of districts). States like New Mexico and Wyoming demonstrate
substantial improvements – becoming similar to other states with much lower initial inequality values.
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Figure 5: Analysis of Greedy Partitioning applied on the state of Colorado: (a) we observe spatial inequality being
successfully minimized, from 0.31 to below 0.20; (b) the average per-student funding (across districts) comes much
closer to the whole state’s – marked as a dashed red line. We notice in (c) that there is no general trend for districts to
either become disproportionately larger (or smaller) as a byproduct of Greedy Partitioning. But (d) shows that over
80% of schools are still needed to be redistricted for the observed inequality reduction.

Closely following the formal definition for Fair Partitioning,

Greedy Partitioning’s parameterization requires three vari-

ables: (i) G, a school neighborhood graph partitioned into k
districts; (ii) lmin , the minimum number of schools per district

(optional, but required to prevent an initial set of k partitions

frommerging); and (iii) lmax , the maximum number of schools

per district (optional, but required to prevent certain districts

from siphoning too many schools). Unless stated otherwise,

throughout our analysis, we assumeG to be the existing school

district assignment, lmin = 1 and lmax = ∞.

4.4 Complexity of Greedy Partitioning
Greedy Partitioning yields a computational complexity of

O(I × D2 × S), where I ,D and S represent the number of it-

erations, districts and schools respectively. A single iteration

of the algorithm includes two computational loops. The first

iterates over all districts, with each step trivially completing

in O(1). The second loop iterates over all schools, with each

step completing in O(S) as each school’s neighbors would

have to be tested for assignment. This would lead to an overall

complexity of O(I × D × S2). By utilizing dynamic program-

ming, i.e., maintaining/updating necessary information for

the later loop requires O(D), which leads to a final complexity

of O(I × D2 × S).1 Empirically, the algorithm took 16.36 sec-

onds on average across all states in a quad-core 2.4GHz CPU

and 16GB of RAM, compared to an exhaustive brute-force

algorithm taking weeks even for smaller states.

5 EXPERIMENTAL EVALUATION
Since ours is the first attempt at formalizing spatial inequality

and proposing to minimize it, there is no prior baseline. Hence,

we use the existing district assignment as a baseline in our

experiments. In Figure 4, we can observe spatial inequality

indices for all states in the US, before and after applying our

proposed Greedy Partitioning algorithm. Figure 4 shows

that our approach can significantly reduce spatial inequality

for every state. This effect is especially noticeable for states

like New Mexico and Wyoming, among the highest spatial

inequality states. In this section, we further investigate the

impact of Greedy Partitioning along several dimensions.

1
The full algorithm and source codes can be found at

https://github.com/nunomota/spatial-inequality.
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(a) Before redistricting

(b) After redistricting

Figure 6: District maps and their per-student funding
before and after applying Greedy Partitioning, for the
state of Colorado.

5.1 The case of Colorado
As an illustrative example of our algorithm’s effect on a state’s

landscape, we now look into the specific case of Colorado

– one of the two states with highest initial spatial inequal-

ity. In Figure 5a, we observe that Greedy Partitioning was

indeed able to continuously reduce inequality during most

of its iterations, starting from an initial spatial inequality of

0.31 to below 0.20 by the 1000th iteration. Moreover, Fig-

ure 5b shows that the per-student funding observed across

all districts within the sate, become much closer to the state’s

average after the algorithm was applied. In Figure 5c, we see

that districts maintained a similar number of schools before

and after the algorithm was applied – signifying that there is

neither a general tendency for small districts to absorb neigh-

boring schools, nor for large districts to either fragment or

grow. Interestingly, Figure 5d indicates that over 80% of all

schools still needed to be redistricted. Taking into consider-

ation that most schools had already been redistricted before

iteration #300, and that at this stage spatial inequality had

only reached its halfway point (Fig. 5a), it seems unlikely that

an optimal result could have been achieved with a much lower

percentage of schools redistricted. Lastly, in Figure 6 we can

see the maps for the state of Colorado before and after apply-

ing Greedy Partitioning. As expected, we observe a much

smoother gradient between districts’ per-student funding.

5.2 Cross-state similarities
Similar to the artifacts observed for Colorado, even at the

country level, Greedy Partitioning (i) is able to significantly

reduce the variance in per-student funding distributions for

most states (Figure 7); (ii) does not significantly increase sizes

of districts, instead decreasing it for states with larger dis-

tricts (Figure 8); however (iii) requires a substantial amount of

schools to be redistricted in order to minimize spatial inequal-

ity. Figure 9 highlights this, where states like Washington or

New Mexico require more than 75% of their schools being

redistricted. But, we also observe that mitigating the problem

for certain states requires much less change than others. For

example, redistricting only 10% of schools in Nevada would

already originate 75% of the final minimization achieved by

our algorithm, whereas states like Oklahoma would require

redistricting over 40% of their schools before observing even

25% of the achieved spatial inequality reduction.

5.3 Minimizing inequality further
Up to this point, we enforced that our algorithm preserved at

least one school per district, as to prevent them from merging.

If one’s goal is to minimize spatial inequality between districts,

the trivial solution for the problem would be to merge all dis-

tricts into one. However, it would be an administrative night-

mare to have too many schools under the same governance.

As such, preserving the initial set of districts would allow for

a more realistic setting. Alternatively, one could also allow

districts to merge but constrain that no district can surpass a

predefined amount of schools. Figure 10 shows the average

inequality (country-wide) under this setting, with different

thresholds for the maximum number of schools. We see that

by increasing the maximum number of allowed schools per

district – whilst simultaneously allowing districts to merge –

spatial inequality can be reduced further, tending towards 0
as all districts merge within a state.

Though our focus in this paper is on minimizing spatial in-

equality, it is important to note that since minimizing spatial

inequality ensures lesser disparity among neighbors, it would

also lower any inequality index computed over the overall

population (e.g., Gini).

6 RELATEDWORK
In this section, we briefly review the related research efforts in

graph partitioning, fair partitioning and school redistricting.

6.1 Graph partitioning
The field of graph partitioning covers a multidisciplinary spec-

trum of research efforts. Dhillon [14] proposed methods for

similarity-based clustering of words and documents; Karypis

et al. [25] applied similar methods for efficient transistor place-

ment on electronic chips. Despite approximation methods

being available for particular subsets of the problem (e.g., An-

dreev and Racke [2]), due to its generally high complexity,

many algorithms start from an initial partition and then grad-

ually refine it towards an objective. Predari and Esnard [33]

leverage this to maximize parallel computing throughput -

by assigning instructions over k distributed processors. Also,

Qian et al. [34] demonstrated the benefits of distilling social

networks’ partitions with added constraints. We adopted this

approach of starting with an initial partition, and greedily

move schools to lower funding inequality.
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Figure 7: By comparing per student funding before and after redistricting, we observe that we significantly reduce
variance in the later distributions whilst minimizing spatial inequality. This difference is especially noticeable for
states like Colorado, Idaho, New Mexico and Wyoming.
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Figure 8: After redistricting, we observe that the median number of schools per district is generally reduced across
all states. This is most noticeable in Florida, Maryland and Nevada. Moreover, variance in the distributions is broadly
reduced. An interesting exception to this is Florida, where a few large districts have seemingly formed.

6.2 Fair Partitioning
The problem of fair partitioning has been explored in different

domains. Chen et al. [7] proposed methods for proportionally

fair wireless network resources’ attribution; Devulapalli [13]

analyzed methods for workload distribution based on land seg-

mentation. Several works have also looked into fair division

of assets. For instance, Abebe et al. [1] have proposed a a mod-

ification of the cake cutting problem to satisfy envy-freeness

in nodes assigned to different graph partitions. Patro et al.

[32] applied envy-free division in the context of recommen-

dations. Stoica et al. [40] proposed an approach to minimize

margin of victory in political partitions. Similarly, Bredereck

et al. [4] proposed to satisfy value equity in resource alloca-

tion – considering a social network of mediated interactions

among individuals. Chen and Shah [8] created a setting where

imperfect knowledge could be represented as a partial graph

coverage, to estimate perceived disparities among individuals.

Although these works provide empirically proven methods to

reduce some notion of inequity, in our work, we expand on

them and provide a new measure for geospatial inequity – the

spatial inequality index.

6.3 School funding and redistricting
Prior works have looked into different aspects of the current

educational system in the US and their funding situation. Ed-

Build showed that school districts with majority of students

of color receive $23 billion less in education funding than pre-

dominantly white school districts [5]. Moreover, several works,

such as by Satz [37] and Swift [41], have shown that school
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Figure 9: Despite being able to reduce inequality for most states, we now observe that in most cases over half of the
schools in a state would have to be redistricted.Moreover, in states like Oklahoma, to observe just 25% of the observed
inequality reduction (achieved by Greedy Partitioning), one would need to redistrict over 40% of its schools. On the
other hand, states like Nevada would already observe 75% reduction by redistricting 10% of its schools.
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Figure 10: Country-widemean spatial inequality, by en-
forcing different thresholds of maximum schools per
district, lmax ∈ {∞, 10, 20, 30, 40}. lmin is only enforced
in the baseline (with the value of 1). The higher the
number of schools allowed in merged districts, the
lower the spatial inequality.

funding inequalities can significantly affect the quality of edu-

cation for students of varying socio-economical backgrounds –

arguing that such differences directly interfere with principles

like Equality of Opportunity. Beyond school districting, Gentry
et al. [17] highlighted geographical disparity for patients in

need of liver transplant. Vickrey [44] showcased the implica-

tions of existing political district boundaries to control certain

party’s dominance (i.e., gerrymandering). Though we recog-

nize the importance of redistricting as a multi-disciplinary

effort for equitable treatment, in our study, we focus on its

economical impact on equitability of school districts’ funding.

7 CONCLUDING DISCUSSION
In this paper, we propose a new inequality index, named Spa-
tial Inequality Index (SIOV ). As opposed to other indices, this
new proposal assumes a geospatial distribution of inequity as

an important factor for perceived treatment. In other words,

it considers groups of individuals in a population to have a

neighborhood against which they assess their own treatment

(SII N ). Minimizing this index is then analogous to a Fair

Partitioning problem, where K neighboring partitions ulti-

mately yield similar benefits – for some notion of “benefit”.

Due to this problem being NP-complete, we propose Greedy

Partitioning, a heuristic algorithm that leverages local prop-

erties of our index to greedily minimize overall inequality.

To evaluate our proposal, we tackle the problem of school

(re)districting. Prior works have shown the importance of

school district boundaries in determining socio-economical

outcomes of their students [5, 37, 41]. Moreover, this problem

setting shares the same geospatial nature as SIOV , where

a country is partitioned into K districts and each of which

potentially being treated very differently from its immediate

geographical neighbors. By focusing on per-student funding

as a measure of benefit in our districts, our goal in this paper

is to have schools in similar neighborhoods receiving similar

per-student funding.

During our experiments, Greedy Partitioning was able

to reduce spatial inequality for every state. Despite requiring a

large percentage of schools to be redistricted, districts mostly

maintained their dimensions across all states. As expected,

after applying Greedy Partitioning, per-student funding

in neighboring districts indeed became much closer. How-

ever, our algorithm relies on three separate assumptions: (i)

only schools at a district’s border can be redistricted; (ii) exist-

ing districts may not cease to exist (though their shapes may

change); and (iii) all sources of funding assigned to a school

will carry-over when it is redistricted.

While (i) and (ii) are more easily acceptable premises for

our problem, assumption (iii) may not be entirely true in a real

setting. After a school gets redistricted, state and/or federal

criteria for funding attribution may change the amount of

funds going to a particular school. Only funding from local

sources could reasonably be expected to follow the school
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regardless of the district assignment (as the algorithm does

not change a school’s catchment area). One alternative to

our proposal would be to first consider each schools’ funds

to be fully described by their local component, and similarly

solve Fair Partitioning. However, this would require state

and federal funds to still be assigned at the end – implying

complete modeling over these components’ criterion. Due to

the intricacies of this alternative, we leave this for future work.

Despite its potential limitations, Greedy Partition-

ing proved successful in reducing the per-student fund-

ing disparities in public school districts. For reproducibil-

ity, we have made the source code publicly available at

https://github.com/nunomota/spatial-inequality. Fi-

nally, the redistricting proposal would need community partic-

ipation and policy support to have a real impact. To give poli-

cymakers and community leaders a visual idea of the promise

redistricting holds, we have deployed a web-based visualiza-

tion tool at https://redistricting.mpi-sws.org. We be-

lieve that such online tools can help foster further discussions

and help move towards a society with lesser inequities.
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