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As the amount of user-generated textual content grows rapidly, text summarization algorithms are increasingly
being used to provide users a quick overview of the information content. Traditionally, summarization
algorithms have been evaluated only based on how well they match human-written summaries (e.g. as
measured by ROUGE scores). In this work, we propose to evaluate summarization algorithms from a completely
new perspective that is important when the user-generated data to be summarized comes from different
socially salient user groups, e.g. men or women, Caucasians or African-Americans, or different political groups
(Republicans or Democrats). In such cases, we check whether the generated summaries fairly represent these
different social groups. Specifically, considering that an extractive summarization algorithm selects a subset of
the textual units (e.g. microblogs) in the original data for inclusion in the summary, we investigate whether this
selection is fair or not. Our experiments over real-world microblog datasets show that existing summarization
algorithms often represent the socially salient user-groups very differently compared to their distributions in
the original data. More importantly, some groups are frequently under-represented in the generated summaries,
and hence get far less exposure than what they would have obtained in the original data. To reduce such
adverse impacts, we propose novel fairness-preserving summarization algorithms which produce high-quality
summaries while ensuring fairness among various groups. To our knowledge, this is the first attempt to
produce fair text summarization, and is likely to open up an interesting research direction.
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1 INTRODUCTION
Recently, there has been an explosion in the amount of user-generated information on the Web. To
help Web users deal with the information overload, text summarization algorithms are commonly
used to get a quick overview of the textual information. Recognizing the business opportunities,
many startups have mushroomed recently to offer content summarization services. For example,
Agolo (agolo.com/splash) provides a summarization platform to get the most relevant informa-
tion from both public and private documents. Aylien (aylien.com/text-api/summarization)
or Resoomer (resoomer.com) present relevant points and topics from a piece of text. Multiple
smartphone apps (e.g. News360, InShorts) have also been launched to provide short summaries of
news stories.
A large number of text summarization algorithms have been devised, including algorithms to

summarize a single large document, as well as for summarizing a set of documents (e.g. a set of
microblogs or tweets); interested readers can check [3] for a survey on summarization algorithms.
Most of these summarization algorithms are extractive in nature, i.e. they form the summary by
extracting some of the textual units in the input [31] (e.g. individual sentences in a document,
or individual tweets in a set of tweets). Additionally, some abstractive algorithms have also been
devised, that attempt to generate natural language summaries [3]. In this paper, we restrict our
focus to the more prevalent extractive summarization.
Extractive summarization algorithms essentially perform a selection of a (small) subset of the

textual units in the input, for inclusion in the summary, based on some measure of the relative
quality or importance of the textual units. Traditionally, these algorithms are judged based on how
closely the algorithmic summary matches gold standard summaries that are usually written by
human annotators. To this end, measures such as ROUGE scores are used to evaluate the goodness of
algorithmic summaries [41]. The underlying assumption behind this traditional evaluation criteria
is that the data to be summarized is homogeneous, and the sole focus of summarization algorithms
should be to identify summary-worthy information.

However, user-generated content constitutes a large chunk of information generated on the Web
today, and such content is often heterogeneous, coming from users belonging to different social
groups. For example, on social media, different user groups (e.g. men and women, Republicans
and Democrats) discuss socio-political issues, and it has been observed that different social groups
often express very different opinions on the same topic or event [15]. Hence, while summarizing
such heterogeneous user-generated data, one needs to check whether the summaries are properly
representing the opinions of these different social groups. Since the textual units (e.g. tweets) that
are included in the summary get much more exposure than the rest of the information (similar
to how top-ranked search results get much more exposure than other documents [8, 68]), if a
particular group is under-represented in the summary, their opinion will get much less exposure
than the opinion of other groups.

Therefore, in this paper, we propose to look at summarization algorithms from a completely new
perspective, and investigate whether the selection of the textual units in the summary is fair, i.e.
whether the generated summary fairly represents every social group in the input data. We experiment
with three datasets of tweets generated by different user groups (men and women, pro-republican
and pro-democratic users). We find that most existing summarization algorithms do not fairly
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represent different groups in the generated summaries, even though the tweets written by these
groups are of comparable textual quality. More worryingly, some groups are found to be systemically
under-represented in the process. Note that we, by no means, claim such under-representation to be
intentionally caused by the existing algorithms. Rather it is most likely an inadvertent perpetuation
of the metrics that the algorithms are trying to optimize. Since the applications of summarization
algorithms may extend from product reviews to citizen journalism, the question of whether existing
algorithms are fair and how we can potentially improve them become even more important.

Having observed that existing summarization algorithms do not give fair summaries inmost cases,
we next attempt to develop algorithms for fair summarization. Recently, there have been multiple
research works attempting to incorporate fairness in machine learning algorithms [24, 33, 38].
Primarily, there are three ways in which these research works make fairness interventions in
an existing system – pre-processing, in-processing and post-processing, depending on whether the
interventions are applied at the input, algorithm or the output stage [26]. Following this line of
work, in this paper, we develop three novel fairness-preserving summarization algorithms which
select highly relevant textual units in the summary while maintaining fairness in the process.
Our proposed in-processing algorithm is based on constrained sub-modular optimization (where
the fairness criteria are applied as constraints). The post-processing algorithm is based on fair
ranking of textual units based on some goodness measure, and the pre-processing approach groups
the tweets on the basis of their association to different classes, and then summarizes each group
separately to generate fair summaries. Extensive evaluations show that our proposed algorithms are
able to generate summaries having quality comparable to state-of-the-art summarization algorithms
(which often do not generate fair summaries), while being fair to different user groups.

In summary, wemake the following contributions in this paper: (1) ours is one of the first attempts
to consider the notion of fairness in summarization, and the first work on fair summarization
of textual information; (2) we show that, while summarizing content generated by different user
groups, existing summarization algorithms often do not represent the user groups fairly; and (3) we
propose summarization algorithms that produce summaries that are of good quality as well as fair
according to different fairness notions, including equal representation, proportional representation,
and so on. We have made the implementation of our fair summarization algorithms and our datasets
publicly available at https://github.com/ad93/FairSumm.

We believe that this work will be an important addition to the growing literature on incorporating
fairness in algorithmic systems. Generation of fair summaries would not only benefit the end users
of the summaries, but also many downstream applications that use the summaries of crowdsourced
information, e.g., summary-based opinion classification and rating inference systems [44].

The rest of the paper is structured as follows. Section 2 gives a background on summarization and
discusses related works. Section 3 describes the datasets we use throughout the paper. Thereafter,
we motivate the need for fair summarization in Section 4. Section 5 introduces some possible notions
of fairness in summarization, and Section 6 shows how existing text summarization algorithms do
not adhere to these fairness notions. In Section 7, we discuss a principled framework for achieving
fairness in summarization, followed by details of three fair summarization algorithms in Sections 8
and 9. We evaluate the performance of our proposed algorithms in Section 10. Finally, we conclude
the paper, discussing some limitations of the proposed algorithms and possible future directions.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss two strands of prior works that are relevant to our paper. First, we
focus on text summarization. Then, we relate this paper to prior works on bias and fairness in
information systems.
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2.1 Text Summarization
Text summarization is a well-studied problem in Natural Language Processing, where the task
is to produce a fluent and informative summary given a piece of text or a collection of text
documents. A large number of text summarization algorithms have been proposed in literature;
the reader can refer to [3, 31] for surveys. As discussed in the introduction, there are two variants
of summarization algorithms – extractive and abstractive summarization algorithms. While most
classical summarization algorithms were unsupervised, the recent years have seen the proliferation
of many supervised neural network-based models for summarization; the reader can refer to [21]
for a survey on neural summarization models. To contextualise our work, next we discuss different
types of extractive text summarization algorithms in the literature.
Single-Document Summarization: Traditional single document extractive summarization deals
with extraction of useful information from a single document. A series of single-document summa-
rization algorithms have been proposed [25, 28, 29, 36, 45, 50, 51]. We will describe some of these
algorithms in Section 6. One of the most commonly used class of summarization algorithms is cen-
tered around the popular TF-IDF model [61]. Different works have used TF-IDF based similarities for
summarization [2, 57]. Additionally, there has been a series of works where summarization has been
treated as a sub-modular optimization problem [5, 43]. One of the fair summarization algorithms
proposed in this work, is also based on a sub-modular constrained optimization framework, and
uses the notion of TF-IDF similarity.
Multi-Document Summarization: Multi-document extractive summarization deals with extrac-
tion of information from multiple documents (pieces of text) written about the same topic. For
instance, NeATS [42] is a multi-document summarization system that, given a collection of news-
paper articles as input, generates a summary in three stages – content selection, filtering, and
presentation. Hub/Authority [72] is another multi-document summarization system which uses the
Markov Model to order the sub-topics that the final summary should contain, and then outputs the
summary according to the sentence ranking score of all sentences within one sub-topic. Generic
Relation Extraction (GRE) [32] is another multi-document text summarization approach, which
aims to build systems for relation identification and characterization that can be transferred across
domains and tasks without modification of model parameters. Celikyilmaz et al. [11] described
multi-document summarization as a prediction problem based on a two-phase hybrid model and
proposed a hierarchical topic model to discover the topic structures of all sentences. Wong et al. [66]
proposed a semi-supervised method for extractive summarization, by co-training two classifiers
iteratively. In each iteration, the unlabeled training sentences with top scores are included in the
labeled training set, and the classifiers are trained on the new training data.
Summarization of User Generated Text on Social Media:With the proliferation of user gener-
ated textual content on social media (e.g., Twitter, Facebook), a number of summarization algorithms
have been developed specifically for such content. For instance, Carenini et al. [10] proposed a novel
summarization algorithm that summarizes e-mail conversations using fragment quotation graph
and clue words. Nichols et al. [52] described an algorithm that generates a journalistic summary of
an event using only status updates from Twitter as information source. They used temporal cues
to find important moments within an event and a sentence ranking method to extract the most
relevant sentences describing the event. Rudra et al. [60] proposed a summarization algorithm
for tweets posted during disaster events. Kim et al. [37] used narrative theory as a framework for
identifying the links between social media content and designed crowdsourcing tasks to generate
summaries of events based on commonly used narrative templates. Zhang et al. [71] proposed
a recursive summarization workflow where they design a summary tree that enables readers to
digest the entire abundance of posts. Zhang et al. [70] developed Tilda, which allows participants
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of a discussion to collectively tag, group, link, and summarize chat messages in a variety of ways,
such as by adding emoji reactions to messages or leaving written notes.

2.2 Bias and Fairness in Information Filtering Algorithms

Bias in applications on user-generated content: Powerful computational resources along with
the enormous amount of data from social media sites has driven a growing school of works that uses
a combination of machine learning, natural language processing, statistics and network science for
decision making. In [6], Baeza-Yates has discussed how human perceptions and societal biases creep
into social media, and how different algorithms fortify them. These observations raise questions of
bias in the decisions derived from such analyses. Friedman et al. [27] broadly categorized these biases
into 3 different classes, and essentially were the first to propose a framework for comprehensive
understanding of the biases. Several recent works have investigated different types of biases
(demographic, ranking, position biases etc.) and their effects on online social media [9, 14, 15]. Our
observations in this work show that summaries generated by existing algorithms (which do not
consider fairness) can lead to biases towards/against socially salient demographic groups.

Rooney Rule: The notion of implicit bias has been an important component in understanding
discrimination in activities such as hiring, promotion, and school admissions. Research on implicit
bias hypothesizes that when people evaluate others – e.g., while hiring for a job – their unconscious
biases about membership in particular groups can have an effect on their decision-making, even
when they have no deliberate intention to discriminate against members of these groups. To this
end, the Rooney Rule was proposed hoping to reduce the adverse effects of such implicit biases.
The Rooney Rule is a National Football League policy in the USA, that requires league teams to
interview ethnic-minority candidates for head coaching and senior football operation jobs. Roughly
speaking, it requires that while recruiting for a job opening, one of the candidates interviewed
must come from an underrepresented group. As per [19], there are two variants of the Rooney rule.
The ‘soft’ affirmative action programs encompass outreach attempts like minority recruitment and
counseling etc., while the ‘hard’ affirmative action programs usually include explicit preferences or
quotas that reserve a specific number of openings exclusively for members of the preferred group.

In the context of summarization, any summarization algorithm will adhere to the ‘soft’ variant of
Rooney Rule, since all the textual units (be it from majority or minority groups) have candidature
to enter the summary. However, existing summarization algorithms are not guaranteed to adhere to
the ‘hard’ variant of the Rooney rule. The algorithms proposed in this paper (detailed in Sections 8
and 9) are guaranteed to also cohere to the ‘hard’ variant of the Rooney Rule since they maintain a
specific level of representation of various social groups in the final summary.

Fairness in information filtering algorithms: Given that information filtering algorithms
(search, recommendation, summarization algorithms) have far-reaching social and economic con-
sequences in today’s world, fairness and anti-discrimination have been recent inclusions in the
algorithm design perspective [24, 33, 38]. There have been several recent works on defining and
achieving different notions of fairness [35, 39, 67, 69] as well as on removing the existing unfairness
from different methodologies [34, 40, 69]. Different fairness-aware algorithms have been proposed
to achieve group and/or individual fairness for tasks such as clustering [17], classification [67],
ranking [68], matching [65], recommendation [16] and sampling [12].

To our knowledge, only two prior works have looked into fairness in summarization. Celis et al.
proposed a methodology to obtain fair and diverse summaries [13]. They applied their determinantal
point process based algorithm on an image dataset and a categorical dataset (having several
attributes), and not on textual data. The problem of fair text summarization was first introduced
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in our prior work [62], which showed that many existing text summarization algorithms do not
generate fair summaries; however, no algorithm for fair summarization was proposed in [62]. To
our knowledge, ours is the first work to propose algorithms for fair summarization of textual data.

3 DATASETS USED
Since our focus in this paper is to understand the need for fairness while summarizing user-
generated content, we consider datasets containing tweets posted by different groups of users, e.g.
different gender groups, or groups of users with different political leanings. Specifically, we use the
following three datasets throughout this paper.

(1) Claritin dataset: Patients undergoingmedication often post the consequences of using different
drugs on social media, especially highlighting the side-effects they endure [53]. Claritin (loratadine)
is an anti-allergic drug that reduces the effects of natural chemical histamine in the body, which
can produce symptoms of sneezing, itching, watery eyes and runny nose. However, this drug may
also have some adverse effects on the patients.

To understand the sentiments of people towards Claritin and different side-effects caused by it,
tweets posted by users about Claritin were collected, analyzed and later publicly released by ‘Figure
Eight’ (erstwhile CrowdFlower). This dataset contains tweets in English about the effects of the
drug. Each tweet is annotated with the gender of the user (male/female/unknown) posting it [18].
Initial analyses on these tweets reveal that women mentioned some serious side effects of the drug
(e.g. heart palpitations, shortness of breathe, headaches) while men did not [18]. From this dataset,
we ignored those tweets for which the gender of the user is unknown. We also removed exact
duplicate tweets, since they do not have any meaningful role in summarization. Finally, we have
4, 037 tweets in total, of which 1, 532 (37.95%) are written by men, and 2, 505 (62.05%) by women.

(2) US-Election dataset: This dataset consists of tweets related to the 2016 US Presidential Election
collected by the website TweetElect (https://badrit.com/work/Tweetelect) during the period from
September 1, 2016 to November 8, 2016 (the election day) [20]. TweetElect used an initial set of 38
keywords related to the election (including all candidate names and common hashtags about the
participating parties) for filtering relevant tweets. Subsequently, state-of-the-art adaptive filtering
methods were used to expand the set of keywords with additional terms that emerged over time [47],
and their related tweets were added to the collection.

In this dataset released by Darwish et al. [20], each tweet is annotated as supporting or attacking
one of the presidential candidates (Donald Trump and Hillary Clinton) or neutral or attacking
both. For simplicity, we grouped the tweets into three classes: (i) Pro-Republican: tweets which
support Trump and / or attack Clinton, (ii) Pro-Democratic: tweets which support Clinton and / or
attack Trump, and (iii) Neutral: tweets which are neutral or attack both candidates. After removing
duplicates, we have 2, 120 tweets, out of which 1, 309 (61.74%) are Pro-Republican, 658 (31.04%)
tweets are Pro-Democratic, and remaining 153 (7.22%) are Neutral tweets.

(3) MeToo dataset: We collected a set of tweets related to the #MeToo movement in October 2018.
We initially collected 10, 000 English tweets containing the hashtag #MeToo using the Twitter
Search API [1]. After removing duplicates, we were left with 3, 982 distinct tweets. We asked three
human annotators to examine the name and bio of the Twitter accounts who posted the tweets.
The annotators observed three classes of tweets based on who posted the tweets – tweets posted
by male users, tweets posted by female users, and tweets posted by organizations (mainly news
media agencies). Also, there were many tweets for which the annotators could not understand the
type/gender of the user posting the tweet. For purpose of this study, we decided to focus only on
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those tweets for which all the annotators were certain that they were written by men or women. In
total, we had 488 such tweets, out of which 213 are written by men and 275 are written by women.
In summary, two of our datasets contain tweets posted by two social groups (men and women)
which the other dataset contains three categories of tweets (pro-democratic, pro-republican and
neutral tweets, presumably written by users having the corresponding political leanings).

Human-generated summaries for evaluation: The traditional way of evaluating the ‘goodness’
of a summary is to match it with one or more human-generated summaries (gold standard), and
then compute ROUGE scores [41]. ROUGE scores are between [0, 1], where a higher ROUGE score
means a better algorithmic summary that has higher levels of ‘similarity’ with the gold standard
summaries. Specifically, the similarity is computed in terms of common unigrams (in case of
ROUGE-1) or common bigrams (in case of ROUGE-2) between the algorithmic summary and the
human-generated summaries. For creating the gold standard summaries, we asked three human
annotators to summarize the datasets. Each annotator is well-versed with the use of social media
like Twitter, is fluent in English, and none is an author of this paper. The annotators were asked to
generate extractive summaries independently, i.e., without consulting one another. We use these
three human-generated summaries for the evaluation of algorithmically-generated summaries, by
computing the average ROUGE-1 and ROUGE-2 Recall and F1 scores [41].

4 WHY DOWE NEED FAIR SUMMARIES?
Traditionally, summarization algorithms have only considered including (in the summary) those
textual units (tweets, in our case) whose contents are most ‘summary-worthy’. In contrast, in this
paper, we argue for giving a fair chance to textual units written by different social groups to appear
in the summary. Before making this argument, two questions need to be investigated –
(1) Are the tweets written by different social groups of comparable textual quality? If not, someone
may argue for discarding lower quality tweets generated by a specific user group.
(2) Do the tweets written by different social groups actually reflect different opinions? This question
is important since, if the opinions of the different groups are not different, then it can be argued
that selecting tweets of any group (for inclusion in the summary) is sufficient.
We attempt to answer these two questions in this section.

4.1 Are tweets written by different social groups of comparable quality?
We use three measures for estimating the textual quality of individual tweets. (i) First, the NAVA
words (nouns, adjectives, verbs, adverbs) are known to be the most informative words in an English
text [49]. Hence we consider the count of NAVA words in a tweet as a measure of its textual
quality. We consider two other measures of textual quality that are specific to the application of
text summarization – (ii) ROUGE-1 precision and (iii) ROUGE-2 precision scores. Put simply, the
ROUGE-1 (ROUGE-2) precision score of a tweet measures what fraction of the unigrams (bigrams)
in the tweet appears in the gold standard summaries for the corresponding dataset (as described
in Section 3). Thus, these scores specifically measure the utility of selecting a particular tweet for
inclusion in the summary.

For a particular dataset, we compare the distributions of the three scores – ROUGE-1 precision
score, ROUGE-2 precision score, and count of NAVA words – for the subsets of tweets written by
different user groups. For all cases, we found that ROUGE-1 precision scores and ROUGE-2 precision
scores show similar trends; hence we report only the ROUGE-2 precision scores. Figure 1(a) and
Figure 1(b) respectively compare the distributions of ROUGE-2 precision scores and NAVA word
counts among the tweets written by male and female users in the MeToo dataset. We find that the
distributions are very close to each other, thus implying that the tweets written by both groups
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Fig. 1. Comparing textual quality of individual tweets of the two user groups in MeToo dataset –
distributions of (a) ROUGE-2 Precision scores and (b) Count of NAVA words, of individual tweets.
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Fig. 2. Comparing textual quality of individual tweets of the three groups in US-Election dataset –
distributions of (a) ROUGE-2 Precision scores and (b) Count of NAVA words.

are of comparable textual quality. Similarly, Figure 2 shows that, in the US-Election dataset, the
pro-democratic, pro-republican and neutral tweets are of comparable textual quality. The textual
quality of the tweets written by male and female users in the Claritin dataset are also very similar –
the mean number of NAVA words are 8.19 and 8.61 respectively for tweets written by male and
female users, while the mean ROUGE-2 Precision scores are 0.22 for male and 0.20 for female
(detailed results omitted for brevity). All these values show that the textual quality is very similar
for the different groups of tweets, across all the three datasets.

4.2 Do tweets written by different user groups reflect different opinion?
To answer this question, we asked our human annotators (those who prepared the gold standard
summaries) to observe the tweets written by different user groups in the datasets. For all three
datasets, the annotators observed that the tweets posted by different social groups mostly contain
very different information/opinion.

For instance, Table 1 shows some sample tweets written by male and female users in the MeToo
dataset, along with some of the hashtags that are frequently posted by male and female users
(highlighted). We observe that most tweets written by women support the #MeToo movement, and
give examples of relevant experiences of themselves or of other women. On the other hand, many
of the tweets written by male users point out undesirable side-effects of the movement, and call for
gender equality.
Similarly, in the US-Election dataset, the pro-republican tweets criticize Hillary Clinton and/or

support the policies of Donald Trump (e.g., ‘Wemust not let #CrookedHillary take her criminal scheme
into the Oval Office. #DrainTheSwamp’), while the pro-democratic tweets have the opposite opinion
(e.g. ‘Yes America. This is the election where Hillary’s cough gets more furious coverage than Trump
asking people to shoot her #InterrogateTrump’). The neutral tweets either give only information
(and no opinion), or criticize both Clinton and Trump. For the Claritin dataset as well, there is
large difference in opinion among the tweets written by male and female users – the female users
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Tweets on #MeToo from male users Tweets on #MeToo from female users
If a woman shares a #metoo without evidence, it‘s
taken to be true coz it‘s a women‘s testimony, a
man coming out with #HeToo story, people would
be doubtful, & question the evidences, the intent
& will never except the man as victim. #misandry
must be understood. #SpeakUpMan

If a woman is unveiled it gives a man the right 2
demand sexual favors.When it comes 2 sexual ha-
rassment in Islamic Republic it is always your fault
if U dont wear hijab.Women using camera to expose
sexual harassment. #MyCameraIsMyWeapon is
like #MeToo movement in Iran

Instead of arresting this women @CPMumbaiPolice
taking common man coz its #MeToo #MeTooIn-
dia #MeToo4Publicity This is why #Feminis-
mIsCancer #feminismIsMisandry #CrimeBy-
Women

Whatever happens to you in your life, you al-
ways have the choice to rise above your challenges.
Choose NOT to be a victim. #feminism #metoo

Pain knows no gender. When it hurts, it hurts
equally, whether its a man or woman. Why there
is discrimination on Gender. Every person de-
serves dignified treatment and happy life. #MeToo
#MeToo4Publicity

ONLY 40 charges and thousands of cries for help.
Toomany are victim to #UberRape and their voices
aren‘t being heard. #TimesUp #Metoo

When Settlement amount is the motive by falsely
charging a man’ it’s called #MeToo Pls tk action
on ppl filing #FakeCases & bring #GenderNeu-
tralLaws #MeToo4publicity #MensCommis-
sion.

A long term solution would be the exact opposite
of the two suggested here - gender sensitisation,
not segregation so that exchange between different
genders is normalised instead of being stigmatised
further. #MeToo

Table 1. Example tweets containing the hashtags that are most frequently posted by male and fe-
male users, in the MeToo dataset. Even though all tweets have high textual quality, the opinions
expressed by the two groups of users are quite diverse.

criticize the drug much more than the male users (details omitted for brevity). Thus, it is clear that
tweets posted by different social groups often reflect very different opinions.

4.3 Need for fairness in summarization
The fact that tweets written by different social groups are of very similar quality/merit implies
that all groups should have ‘equality of opportunity’ [59] for their opinions to be reflected in the
summary. This fact, coupled with the diversity in opinion of the different groups, calls for a fair
representation of the opinions of different groups in the summary. This is similar in spirit to the
need for fairness in top crowdsourced recommendations [16] or top search results [8]. Since the
tweets that get included in the summary are likely to get much more exposure than the rest of the
information (just like how top search and recommendation results get much more exposure [8, 16]),
under-representation of any of the social groups in the summary can severely suppress their
opinion. These factors advocate the need for fair summaries when data generated by various social
groups is being summarized.

5 NOTIONS OF FAIR SUMMARIZATION
Having established the need for fair summarization, we now define two fairness notions that
are applicable in the context of summarization. Essentially, when the input data (e.g. tweets) are
generated by users belonging to different social groups, we require the summaries to fairly represent
these groups. Next, we consider two notions for fairness in representation.
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5.1 Equal Representation
The notion of equality finds its roots in the field of morality and justice, which advocates for the
redress of undeserved inequalities (e.g. inequalities of birth or due to natural endowment) [58].
Formal equality suggests that when two people or two groups of people have equal status in at
least one normatively relevant aspect, they must be treated equally [30]. In terms of selection, equal
representation requires that the number of representatives from different classes in the society
having comparable relevance has to be equal.
In the context of user-generated content, we observed that different sections of the society

have different opinion on the same topic, either because of their gender or ideological leaning [4].
However, if we consider the textual quality, i.e. their candidature for inclusion in the summary, then
tweets from both the groups are comparable (as discussed in section 4). Thus, the notion of equal
representation requires that a summarization algorithm will be fair if different groups generating
the input data are represented equally in the output summary. Given the usefulness of summaries
in many downstream applications, this notion of fairness ensures equal exposure to the opinions of
different socially salient groups.

5.2 Proportional Representation
Often it may not be possible to equally represent different user groups in the summary, especially if
the input data contains very different proportions from different groups. Hence, we consider another
notion of fairness: Proportional Representation (also known as Statistical Parity [46]). Proportional
representation requires that the representation of different groups in the selected set should be
proportional to their distribution in the input data.

In certain scenarios such as hiring for jobs, relaxations of this notion are often used. For instance,
the U.S. Equal Employment Opportunity Commission uses a variant of Proportional Representation
to determine whether a company’s hiring policy is biased against (has any adverse impact on) a
demographic group [7]. According to this policy, a particular class c is under-represented in the
selected set (or adversely impacted), if the fraction of selected people belonging to class c is less
than 80% of the fraction of selected people from the class having the highest selection rate.
In the context of summarization, Proportional Representation requires that the proportion of

content from different user groups in the summary should be same as in the original input. A relaxed
notion of proportional fairness is one which would ensure no adverse impact in the generated
summary. In other words, ‘no adverse impact’ requires that the fraction of textual units from any
class, that is selected for inclusion in the summary, should not be less than 80% of the fraction of
selected units from the class having the highest selection rate (in the summary). These notions
of fairness ensure that the probability of selecting an item is independent of which user group
generated it.

It should be noted that, we are not advocating for any particular notion of fairness to be better in
the context of summarization. We also note that different applications may require different types
of fairness. Hence, in this work, we propose mechanisms that can accommodate different notions
of fairness, including the ones stated above, and produce fair summaries accordingly.

6 DO EXISTING ALGORITHMS PRODUCE FAIR SUMMARIES?
Having discussed the need for fair summarization, we now check whether existing algorithms
generate fair summaries.
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6.1 Summarization algorithms
We consider a set of well-known extractive summarization algorithms, that select a subset of the
textual units for inclusion in the summary. Some of the methods are unsupervised (the traditional
methods) and some are recent supervised neural models.
Unsupervised summarization algorithms: We consider six well-known summarization algo-
rithms. These algorithms generally estimate an importance score for each textual unit (sentence /
tweet) in the input, and the k textual units having the highest importance scores are selected to
generate a summary of length k .
(1) Cluster-rank [28] which clusters the textual units to form a cluster-graph, and uses graph
algorithms (e.g., PageRank) to compute the importance of each unit.
(2) DSDR [36] which measures the relationship between the textual units using linear combinations
and reconstructions, and generates the summary by minimizing the reconstruction error.
(3) LexRank [25], which creates a graph representation based on similarity of the units, where
edges are placed depending on the intra-unit cosine similarity, and then computes the importance
of textual units using eigenvector centrality on this graph.
(4) LSA [29], which constructs a terms-by-units matrix, and estimates the importance of the textual
units based on Singular Value Decomposition on the matrix.
(5) LUHN [45], which derives a ‘significance factor’ for each textual unit based on occurrences
and placements of frequent words within the unit.
(6) SumBasic [51], which uses frequency-based selection of textual units, and reweights word
probabilities to minimize redundancy.
Supervised neural summarization algorithms:With the recent popularity of neural network
based models, the state of the art techniques for summarization have shifted to data-driven super-
vised algorithms [21]. We have considered two recently proposed extractive neural summarization
models, proposed in [50]:
(7) SummaRuNNer-RNN, a Recurrent Neural Network based sequence model that provides a
binary label to each textual unit: – a label of 1 implies that the textual unit can be part of the
summary, while 0 implies otherwise. Each label has an associated confidence score. The summary
is generated by picking textual units labeled 1 in decreasing order of their confidence score.
(8) SummaRuNNer-CNN is a variant of the above model where the sentences are fed to a two
layer Convolutional Neural Network (CNN) architecture before using GRU-RNN in the third layer.
For both the SummaRuNNer models, the authors have made the pretrained models available1 which
are trained on the CNN/Daily Mail news articles corpus2. We directly used the pretrained models
for the summarization.

6.2 Verifying if the summaries are fair
We applied the summarization algorithms stated above on the datasets described in Section 3,
to obtain summaries of length 50 tweets each. Table 2 shows the results of summarizing the
Claritin dataset, while Table 3 and Table 4 show the results for the US-Election and MeToo datasets
respectively. In all cases, shown are the numbers of tweets of the different classes in the whole
dataset (first row), and in the summaries generated by the different summarization algorithms
(subsequent rows), and the average ROUGE-1 and ROUGE-2 Recall and F1 scores of the summaries.

We check whether the generated summaries are fair, according to the fairness notions of equal
representation, proportional representation and the principle of ‘no adverse impact’ [7] (which were

1https://github.com/hpzhao/SummaRuNNer
2https://github.com/deepmind/rc-data

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 172. Publication date: November 2019.

https://github.com/hpzhao/SummaRuNNer
https://github.com/deepmind/rc-data


172:12 Abhisek Dash et al.

Method Nos. of tweets ROUGE-1 ROUGE-2
Female Male Recall F1 Recall F1

Whole data 2,505 (62%) 1,532 (38%) NA NA NA NA
ClusterRank 33 (66%) 17 (34%)†⋆ 0.437 0.495 0.161 0.183

DSDR 31 (62%) 19 (38%)⋆ 0.302 0.425 0.144 0.203
LexRank 34 (68%) 16 (32%)#†⋆ 0.296 0.393 0.114 0.160
LSA 35 (70%) 15 (30%)#†⋆ 0.515 0.504 0.151 0.147
LUHN 34 (68%) 16 (32%)#†⋆ 0.380 0.405 0.128 0.136

SumBasic 27 (54%)#† 23 (46%)⋆ 0.314 0.434 0.108 0.149
SummaRNN 33 (66%) 17 (34%)†⋆ 0.342 0.375 0.126 0.147
SummaCNN 30 (60%)† 20 (40%)⋆ 0.377 0.409 0.126 0.146

Table 2. Results of summarizing the Claritin dataset: Number of tweets posted by the two user
groups, in the whole dataset and in summaries of length 50 tweets generated by different algo-
rithms. Also given are ROUGE-1 and ROUGE-2 Recall and F1 scores of each summary. The symbols
⋆, † and # respectively indicate under-representation of a group according to the fairness notions
of equal representation, proportional representation, and ‘no adverse impact’ [7].

Method Nos. of tweets ROUGE-1 ROUGE-2
Pro Rep Pro Dem Neutral Recall F1 Recall F1

Whole data 1,309 (62%) 658 (31%) 153 (7%) NA NA NA NA
ClusterRank 32 (64%) 15 (30%)⋆ 3 (6%)⋆ 0.247 0.349 0.061 0.086

DSDR 28 (56%)#† 19 (38%) 3 (6%)#⋆ 0.215 0.331 0.067 0.104
LexRank 27 (54%)#† 20 (40%) 3 (6%)#⋆ 0.252 0.367 0.078 0.114
LSA 24 (48%)#† 20 (40%)# 6 (12%)⋆ 0.311 0.404 0.083 0.108
LUHN 34 (68%) 13 (26%)#†⋆ 3 (6%)#⋆ 0.281 0.375 0.085 0.113

SumBasic 27 (54%)#† 23 (46%) 0 (0%)#†⋆ 0.200 0.311 0.051 0.080
SummaRNN 34 (68%) 15 (30%)⋆ 1 (2%)#†⋆ 0.347 0.436 0.120 0.160
SummaCNN 32 (64%) 17 (34%) 1 (2%)#†⋆ 0.337 0.423 0.108 0.145

Table 3. Results of summarizing the US-Election dataset: Number of tweets of the three groups in
the whole data and summaries of length 50 tweets generated by different algorithms. The symbols
⋆, † and # denote under-representation of the corresponding group, similar to Table 2.

Method Nos. of tweets ROUGE-1 ROUGE-2
Female Male Recall F1 Recall F1

Whole data 275 (56.3%) 213 (43.7%) NA NA NA NA
ClusterRank 24 (48%)#†⋆ 26 (52%) 0.550 0.560 0.216 0.223

DSDR 32 (64%) 18 (36%)#†⋆ 0.233 0.358 0.092 0.141
LexRank 34 (68%) 16 (32%)#†⋆ 0.285 0.414 0.105 0.153
LSA 20 (40%)#†⋆ 30 (60%) 0.511 0.534 0.175 0.183
LUHN 22 (44%)#†⋆ 28 (56%) 0.520 0.522 0.219 0.184

SumBasic 27 (54%)† 23 (46%)⋆ 0.464 0.499 0.216 0.229
SummaRNN 23 (46%)#†⋆ 27 (54%) 0.622 0.636 0.385 0.394
SummaCNN 23 (46%)#†⋆ 27 (54%) 0.622 0.636 0.385 0.394

Table 4. Results of summarizing the MeToo dataset: Number of tweets of the two classes, in the
whole dataset and in summaries of length 50 tweets generated by different algorithms. The sym-
bols ⋆, † and # denote under-representation of the corresponding group, similar to Table 2.

explained in Section 5). We find under-representation of particular groups of users in the summaries
generated by many of the algorithms; these cases are marked in Table 2, Table 3 and Table 4 with the
symbols⋆ (where equal representation is violated), † (where proportional representation is violated)
and # (cases where there is adverse impact). Especially, the minority groups are under-represented
in most of the cases.
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We repeated the experiments for summaries of lengths other than 50 as well, such as for
100, 200, . . . , 500 (details omitted due to lack of space). We observed several cases where the
same algorithm includes very different proportions of tweets of various groups, while generating
summaries of different lengths.

Thus, there is no guarantee of fairness in the summaries generated by the existing summarization
algorithms – one or more groups are often under-represented in the summaries, even though the
quality of the tweets written by different groups are quite similar (as was shown in Section 4).

7 ACHIEVING FAIRNESS IN SUMMARIZATION
Recently, there has been a flurry of research activities focusing on fairness issues in algorithmic
decision making systems, with the main emphasis on classification algorithms [24, 67, 69]. Ap-
proaches proposed in these works can be broadly categorised into three types [26]: pre-processing,
in-processing and post-processing, based on the stage where the fairness intervention is applied.
To achieve fairness, pre-processing approaches attempt to change the input data/representation,
in-processing approaches change the underlying algorithm itself, and post-processing methods
change the outputs of the algorithm before they get used in downstream applications.
Following this line of work, in this paper, we develop three novel fairness-preserving summa-

rization algorithms (adhering to the principles of pre-, in- and post-processing) which select highly
relevant textual units in the summary while maintaining fairness in the process. Next, we discuss
the key ideas behind the proposed algorithms. Each of the algorithms will be explained in detail in
subsequent sections.
(1) Pre-processing: As mentioned above, pre-processing approaches attempt to change the input
to the algorithms to make the outcome fair. The idea originated from classification algorithms where
the biases in the training data may get translated into the learned model, and hence by making the
training data or the input unbiased, the algorithm can be made non-discriminatory. In our context,
to ensure fair representation, we propose a pre-processing technique ClasswiseSumm (described
in Section 9.1), where we first group tweets on the basis of their association to different classes.
Then, we propose to summarize each group separately using any state-of-the-art algorithm, and
generate {l1, l2, ...} length summaries for different groups, where the lengths {l1, l2, ...} would be
determined based on the fairness objective. Finally, these individual summaries would be combined
to generate the final fair summary.
(2) In-processing: In-processing methods work by changing the underlying learning algorithms
and making them adhere to the fairness objectives (for instance, by putting additional fairness
constraints). Our proposed algorithm FairSumm (detailed in Section 8) is one such algorithm, where
we summarize using a constrained sub-modular optimization, with the fairness criteria applied as
matroid constraints to an objective function ensuring goodness of the summary.
(3) Post-processing: The third approach for bringing fairness into algorithmic systems is by mod-
ifying the outputs of an algorithm to achieve the desired results for different groups. Intervention
at the output stage becomes necessary when the summarization algorithm is already decided,
and there is no option to change its working. For example, in our context, if some organization
intends to stick to its proprietary summarization algorithm, then post-processing on the generated
summaries (or the ranked list of textual units) becomes necessary to produce fair summaries. Hence,
we propose ReFaSumm (Reranking Fairly the Summarization outputs) where we attempt to fairly
re-rank the outputs generated by existing summarization algorithms (detailed in Section 9.2).
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8 FAIRSUMM: IN-PROCESSING ALGORITHM FOR FAIR SUMMARIZATION
Our proposed in-processing algorithm, named FairSumm, treats summarization as a constrained
optimization problem of an objective function. The objective function is designed so that optimizing
it is likely to result in a good quality summary, while the fairness requirements are applied as
constraints which must be obeyed during the optimization process.

Some notations: Let V denote the set of textual units (e.g., tweets) that is to be summarized. Our
goal is to find a subset S (⊆ V ) such that |S | ≤ k , where k (an integer) is the desired length of the
summary (specified as an input),

8.1 Formulating summarization as an optimization problem
We need an objective function for extractive summarization, optimizing which is likely to lead to a
good summary. Following the formulation by Lin et al. [43], we consider two important aspects of
an extractive text summarization algorithm, viz. Coverage and Diversity reward, described below.
Coverage: Coverage refers to amount of information covered in the summary S . Clearly, the
summary cannot contain the information in all the textual units. We consider the summary S to
cover the information contained in a particular textual unit i ∈ V if either S contains i , or if S
contains another textual unit j ∈ V that is very similar to i . Here we assume a notion of similarity
sim(i, j) between two textual units i ∈ V and j ∈ V , which can be measured in various ways. Thus,
the coverage will be measured by a function – say, L – whose generic form can be

L(S) =
∑

i ∈S, j ∈V

sim(i, j) (1)

Thus, L(S) measures the overall similarity of the textual units included in the summary S with all
the textual units in the input collection V .
Diversity reward: The purpose of this aspect is to avoid redundancy and reward diverse informa-
tion in the summary. Usually, it is seen that the input set of textual units can be partitioned into
groups, where each group contains textual units that are very similar to each other. A popular way
of ensuring diversity in a summary is to partition the input set into such groups, and then select a
representative element from each group [23].
Specifically, let us consider that the set V of textual units is partitioned into K groups. Let

P1, P2, . . . , PK comprise a partition of V . That is, ∪iPi = V (V is formed by the union of all Pi )
and Pi ∩ Pj = ∅ (Pi , Pj have no element in common) for all i , j. For instance, the partitioning
P1, P2, . . . , PK can be achieved by clustering the setV using any clustering algorithm (e.g.,K-means),
based on the similarity of items as measured by sim(i, j).
Then, to reduce redundancy and increase diversity in the summary, including textual units

from different partitions needs to be rewarded. Let the associated function for diversity reward be
denoted as R. A generic formulation of R is

R(S) =
K∑
i=1

√ ∑
j ∈Pi∩S

r j (2)

where r j is a suitable function that estimates the importance of adding the textual unit j ∈ V to the
summary. The function r j is called a ‘singleton reward function’ since it estimates the reward of
adding the singleton element j ∈ V to the summary S . One possible way to define this function is
by measuring the average similarity of j to the other textual units in V . Mathematically,

r j =
1
N

∑
i ∈V

sim(i, j) (3)
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Justifying the functional forms of Coverage and Diversity Reward: We now explain the sig-
nificance of the functional form of L(S) in Equation 1 and R(S) in Equation 2. We give only an
intuitive explanation here; more mathematical details are given in the Supplementary Information
accompanying the paper3.
The functions L(S) and R(S) are designed to be ‘monotonic non-decreasing submodular’ func-

tions (or ‘monotone submodular’ functions), since such functions are easier to optimize. A mono-
tonic non-decreasing function is one that does not decrease (usually increases) as the set over
which the function is employed grows. A submodular function has the property of diminishing
returns which intuitively means that as the set (over which the function is employed) grows, the
increment of the function decreases.
L is monotone submodular. L is monotonic since coverage increases by the addition of a new

sentence in the summary. At the same time, L is submodular since the increase in L would be
more when a sentence is added to a shorter summary, than when it is added to a longer summary.

Also R is a monotone submodular function. The diversity of a summary increases considerably
only for the initial growth of the set (when new, ‘novel’ elements are added to the summary) and
stabilizes later on, and thus prevents the incorporation of similar elements (redundancy) in the
summary. R(S) rewards diversity since there is more benefit in selecting a textual unit from a
partition (cluster) that does not yet have any of its elements included in the summary. As soon as
any one element from a cluster Pi is included in the summary, the other elements in Pi start having
diminishing gains, due to the square root function in Equation 2.
Combining Coverage and Diversity reward: While constructing a summary, both coverage and
diversity are important. Only maximizing coverage may lead to lack of diversity in the resulting
summary and vice versa. So, we define our objective function for summarization as follows:

F = λ1L + λ2R (4)

where λ1, λ1 ≥ 0 are the weights given to coverage and diversity respectively.
Our proposed fairness-preserving summarization algorithm will maximize F in keeping with

some fairness constraints. Note that F is monotone submodular since it is a non-negative linear
combination of two monotone submodular functions L and R. We have chosen F such that it is
monotone submodular, since there exist standard algorithms to efficiently optimize such functions
(as explained later in the section).

8.2 Proposed fair summarization scheme
Our proposed scheme is based on the concept of matriods that are typically used to generalize the
notion of liner independence in matrices [55]. Specifically, we utilize a special type of matroids,
called partition matroids. We give here a brief, intuitive description of our method. More details can
be found in the Supplementary Information.
Brief background on matroids and related topics: In mathematical terms, a matroid is a pair
M = (Z, I), defined over a finite setZ (called the ground set) and a family of sets I (called the
independent sets), that satisfies the three properties:
(1) ∅ (empty set) ∈ I.
(2) If Y ∈ I and X ⊆ Y , then X ∈ I.
(3) If X ∈ I, Y ∈ I and |Y | > |X |, then there exists e ∈ Y \ X such that X ∪ {e} ∈ I.

Condition (1) simply means that I can contain the empty set, i.e., the empty set is independent.
Condition (2) means that every subset of an independent set is also independent. Condition (3)
3http://cse.iitkgp.ac.in/~saptarshi/docs/DashEtAl-CSCW2019-fair-summarization-SuppleInfo.pdf
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means that if X is independent and there exists a larger independent set Y , X can be extended to a
larger independent set by adding an element in Y but not in X .4

Partition matroids refer to a special type of matroids where the ground setZ is partitioned into s
disjoint subsetsZ1,Z2, ...,Zs for some s , and I = {S | S ⊆ Z and |S ∩Zi | ≤ ci , for all i = 1, 2, ..., s}
for some given parameters c1, c2, ..., cs . Thus, S is a subset of Z that contains at least ci items from
the partitionZi (for all i), and I is the family of all such subsets.
Consider that we have a set of control variables zj (e.g., ‘gender’, ‘political leaning’). Each item

in Z has a particular value for each zj . Also consider that zj takes tj distinct values, e.g., the
control variable ‘gender’ takes the two distinct values ‘male’ and ‘female’, while the control variable
‘political leaning’ takes the values ‘Democrat’, ‘Republican’ and ‘Neutral’.

For each control variable zj , we can partitionZ into tj disjoint subsetsZj1,Zj2, ...,Zjtj , each
corresponding to a particular value of this control variable. We now define a partition matriodMj
= (Z, Ij ) such that

Ij = {S | S ⊆ Z and |S ∩ Z ji | ≤ c j , for all i = 1, 2, . . . , tj }
for some given parameters c1, c2, ..., ctj .

Now, for a given submodular objective function f , a submodular optimization under the partition
matriod constraints with P control variables can be designed as follows:

MaximizeS ⊆Z f (S) (5)

subject to S ∈
⋂P

j=1 I.
A prior work by Du et al. [22] has established that this submodular optimization problem under
the matroid constraints can be solved efficiently with provable guarantees (see [22] for details).
Formulating the fair summarization problem: In the context of the fair summarization prob-
lem, the ground set is V (= Z), the set of all textual units (sentences/tweets) which we look to
summarize. The control variables are analogous to the sensitive attributes with respect to which
fairness is to be ensured, such as ‘gender’ or ‘political leaning’. In this work, we consider only
one sensitive attribute for a particular dataset (the gender of a user for the Claritin and MeToo
datasets, and political leaning for the US-Election dataset). Let the corresponding control variable
be z, and let z take t distinct values (e.g., t = 2 for the Claritin and MeToo datasets, and t = 3 for
the US-Election dataset). Note that, the formulation can be extended to multiple sensitive attributes
(control variables) as well.

Each textual unit in V is associated with a class, i.e., a particular value of the control variable z
(e.g., is posted either by a male or a female). Let Z1, Z2, ..., Zt (Zi ⊆ V , for all i) be disjoint subsets
of the textual units from the t classes, each associated with a distinct value of z. We now define a
partition matroidM = (V , I) in which V is partitioned into disjoint subsets Z1, Z2, ..., Zt and

I = {S | S ⊆ V and |S ∩ Zi | ≤ ci , i = 1, 2, ..., t }
for some given parameters c1, c2, ..., ct . In other words, I will contain all the sets S containing at
most ci textual units from Zi , i = 1, 2, ..., t .

Nowwe add the fairness constraints. Outside the purview of the matroid constraints, we maintain
the restriction that ci ’s are chosen such that
(1)

∑t
i=1 ci = k (the desired length of the summary S), and

(2) a desired fairness criterion is maintained in S . For instance, if equal representation of all classes
in the summary is desired, then ci = k

t for all i .
We now express our fairness-constrained summarization problem as follows:

MaximizeS ⊆V F (S) (6)
4For details, refer to http://www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
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Algorithm 1 : FairSumm (in-processing approach for fair summarization)
1: Set d =maxz∈V F ({z}).
2: Setwt = d

(1+δ )t for t = 0, . . ., l where l = arдmini [wi ≤
δd
N ], andwl+1 = 0.

3: Set G = ∅
4: for t = 0, 1, . . ., l , l + 1 do
5: for each z ∈ V and G ∪ {z} ∈ I do
6: if F (G ∪ {z}) - F (G) ≥ wt then
7: Set G ← G ∪ {z}
8: end if
9: end for
10: end for
11: Output G as the summary

subject to S ∈ I.
where the objective function F (S) is as stated in Equation 4. Given that F is a submodular function
(as explained earlier in this section), the algorithm proposed by Du et al. [22] is suitable to solve
this constrained submodular optimization problem.
An example: Let us illustrate the formulation of the fair summarization problem with an example.
Assume that we are applying the equal representation fairness notion over the MeToo dataset,
and we want a summary of length k = 50 tweets. Then, the control variable z corresponds to the
sensitive attribute ‘gender’ which takes t = 2 values (‘male’ and ‘female’) for this particular dataset.
The set of tweets V will be partitioned into two disjoint subsets Z1 and Z2 which will comprise
the tweets posted by male and female users respectively. To enforce equal representation fairness
constraint, we will set the parameters c1 = 25 and c2 = 25 (since we want equal number of tweets
from Z1 and Z2 in the summary). Thus, I contains all the possible sets S that contain at most 25
tweets written by male users and 25 tweets written by female users. Each such S is a valid summary
(that satisfies the fairness constraints). Solving the optimization problem in Equation 6 will give us
that summary S for which F (S) will be maximum, i.e. for which coverage and diversity reward
will be the highest.
Algorithm for fair summarization: Algorithm 1 presents the algorithm to solve this constrained
submodular optimization problem, based on the algorithm developed by Du et al. [22]. TheG output
by Algorithm 1 is the solution of Equation 6. We now briefly describe the steps of Algorithm 1.
In Step 1, the maximum value of the objective function F that can be achieved for a text unit

z (∈ V ) is calculated and stored in d . The purpose of this step is to compute the maximum value
of F for a single text unit z and set a selection threshold (to be described shortly) with respect to
this value. This step will help in the subsequent selection of textual units for the creation of the
summary to be stored in G. wt (defined in Step 2) is such a threshold at the t th time step. wt is
updated (decreased by division with a factor 1 + δ ) for t = 0, 1, . . ., l . l is the minimum value of
i for which wi ≤

δd
N holds (see Du et al. [22] for details) and wl+1 is set to zero. In Step 3, G (the

set that will contain the summary) is initialized as an empty set. Note that G is supposed to be an
independent set according to the definition of matroid given earlier in this section. By condition (1)
in the definition of matroids (stated earlier in this section), an empty set is independent. Step (4)
iterates through the different values of t . Step (5) tests, for each z (text element) ∈ V , if G remains
an independent set by the inclusion of z. Only those z’s are chosen in this step whose inclusion
expands G (already an independent set) to another independent set. Step (6) selects a z (permitted
by Step (5)) for inclusion inG if F (G ∪ {z}) - F (G) ≥ wt . This z is added toG in Step (7). That is, z
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is added to G if the increment of F by the addition of z is not less than the thresholdwt . For t = 0,
wt = d , that is, the maximum value of F for any z (∈ V ). This means, the z which maximizes F is
added to G. Note that, there can be multiple z’s for which F is maximized. In that case, the tie is
broken arbitrarily. The remaining z’s may or may not be added to G based on the threshold value.

Another important point to note is that, our chosen F (see equation (4)) is designed to maximize
both coverage and diversity. So, even if multiple z’s satisfy Step (5), they may not be added toG
in Step (7) if they contain redundant information. The value of wt is relaxed for the subsequent
values of t to allow text elements z producing relatively lower increments of F to be considered for
possible inclusion inG .wl+1 = 0 indicates that for the final value of t , at least one text unit z which
does not decrement F is added toG. This ensures that the coverage of the summary produced is
not compromised while preserving diversity. This process (Steps (5) to (7)) is repeated for t = 0, 1,
. . ., l , l + 1 resulting in the final output G.
The reason for the efficiency of Algorithm 1 is the fact that this algorithm does not perform

exhaustive evaluation of all the possible submodular functions evolving in the intermediate steps
of the algorithm. The reduction in the number of steps in the algorithm is achieved mainly by
decreasingwt geometrically by a factor of 1 + δ . In addition, multiple elements z can be added toG
for a single threshold which also expedites the culmination of the algorithm.

9 PRE AND POST-PROCESSING MECHANISMS FOR FAIR SUMMARIZATION
In this section, we discuss our proposed pre-processing and post-processing summarization algo-
rithms to produce fair summaries.

9.1 ClasswiseSumm: Pre-processing algorithm for fair summarization
We now describe a simple pre-procesing algorithm for fair summarization. Suppose that the textual
units in the input belong to t classes Z1,Z2, . . . ,Zt , and to conform to a desired fairness notion,
the summary should have ci units from class Zi , i = 1, 2, . . . , t (using the same notations as in
Section 8). The simplest way to generate a fair summary is to separately summarize the textual
units belonging to each class Zi , to produce a summary of length ci , and finally to combine all the t
summaries to obtain the final summary of length k . We refer to this method as theClasswiseSumm
method. Specifically, in this work, we use our proposed algorithm FairSumm, without any fairness
constraints, to summarize each class separately. However, any other summarization algorithm can
be used to summarize each class separately.

9.2 ReFaSumm: Post-processing algorithm for fair summarization
In this section, we discuss our proposed post-processing mechanism for generating fair summaries,
which can be used along with any existing summarization algorithm. Many summarization algo-
rithms (including the ones stated in Section 6) generate an importance score of each textual unit in
the input. The textual units are then ranked in decreasing order of this importance score, and the
top-ranked k units are selected to form the summary. Hence, if the ranked list of the textual units
can be made fair (according to some desired fairness notion), then selecting the top k from this
fair ranked list can generate a fair summary. We refer to this algorithm as ReFaSumm (Re-ranking
Fairly the Summarization output).

Fairness in ranking systems is an important problem that has been addressed recently by some
works [8, 68]. We adopt the fair-ranking methodology developed by Zehlike et al. [68] to generate
fair summaries. The fair-ranking scheme in [68] considers a two-class setting, with a ‘majority
class’ and a ‘minority class’ for which fairness has to be ensured adhering to a ranked group fairness
criterion . Their proposed ranking algorithm (named FA*IR [68]) ensures that the proportion of
the candidates/items from the minority class in a ranked list never falls below a certain specified
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threshold. Specifically, two fairness criteria are ensured – selection utility which means every
selected item is more qualified than those not selected, and ordering utility which means for every
pair of selected candidates, either the more qualified is ranked above or the difference in their
qualifications is small [68].

We propose to use the algorithm in [68] for fair extractive text summarization as follows. Note
that this scheme is only applicable to cases where there are two groups (e.g., the Claritin and
MeToo datasets). We consider that group to be the majority class which has the higher number of
textual units (tweets) in the input data, while the group having lesser textual units in the input is
considered the minority class.
Input and Parameter settings: The algorithm takes as input a set of textual units (to be summa-
rized); the other input parameters (k , qi , дi and p) taken by the algorithm in [68] are set as follows.
• Qualification (qi ) of a candidate: In our summarization setting, this is the goodness value of a
textual unit in the data to be summarized. We set this value to the importance score computed by
some standard summarization algorithm (e.g., the ones discussed in Section 6) that ranks the text
units by their importance scores.
• Expected size (k) of the ranking: The expected number of textual units in the summary (k).
• Indicator variable (дi ) indicating if the candidate is protected: We consider that group to be the
minority class which has the lesser number of textual units in the input data. All tweets posted by
the minority group are marked as ‘protected’.
• Minimum proportion (p) of protected candidates: We will set this value in the open interval ]0, 1[
(0 and 1 excluded) so that a particular notion of fairness is ensured in the summary. For instance, if
we want equal representation of both classes in the summary, we will set p = 0.5.
• Adjusted significance level (αc ): We regulate this parameter in the open interval ]0, 1[.
Working of the algorithm: Two priority queues P0 (for the textual units of the majority class)
and P1 (for the textual units of the minority class), each with capacity k , are set to empty. P0 and P1
are initialized by the goodness values (qi ) of the majority and minority textual units respectively.
Then a ranked group fairness table is created which calculates the minimum number of minority
textual units at each rank, given the parameter setting. If this table determines that a textual unit
from the minority class needs to added to the summary (being generated), the algorithm adds the
best element from P1 to the summary S ; otherwise it adds the overall best textual unit (from P0∪P1)
to S . Thus a fair summary (S) of desired length k is generated, adhering to a particular notion of
fairness (decided by the parameter setting).
Note that since the FA*IR algorithm provides fair ranking for two classes only [68], we look to
apply this algorithm for summarization of data containing tweets from exactly two social groups
(i.e., the Claritin and MeToo datasets only). It is an interesting future work to design a fair ranking
algorithm for more than two classes, and then to use the algorithm for summarizing data from
more than two social groups.

10 EXPERIMENTS AND EVALUATION
We now experiment with different methodologies of generating fair summaries, over the three
datasets described in Section 3.

Pre-processing the datasets:We performed standard pre-processing on the datasets including
stopword removal, and stemming using Porter Stemmer. All summarization algorithms were
executed on these pre-processed datasets.
10.1 Parameter settings of algorithms
The following parameter settings are used.
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• For all datasets, we generate all summaries of k = 50 tweets.
• The proposed algorithm (FairSumm) uses a similarity function sim(i, j) to measure the similarity
between two tweets i and j. We experimented with the following two similarity functions:
TFIDFsim – we compute TF-IDF scores for each word (unigram) in a dataset, and hence obtain a
TF-IDF vector for each textual unit. The similarity sim(i, j) is computed as the cosine similarity
between the TF-IDF vectors of i and j.
Embedsim – we obtain an embedding (a vector of dimension 300) for each distinct word in a
dataset, either by training Word2vec [48] on the dataset, or by considering pre-trained GloVe
embeddings [56]. We obtain an embedding for a tweet by taking the mean embedding of all words
contained in the tweet. sim(i, j) is computed as the cosine similarity between the embeddings of
tweets i and j.
We found that the performance of the FairSumm algorithm is very similar for both the similarity
measures. Hence, we report results for the TFIDFsim similarity measure.
• For our post-processing algorithm (the one based on fair ranking), the value of the parameter αc
needs to be decided (see Section 9.2). We try different values of αc in the interval ]0, 1[ using grid
search, and finally use αc = 0.5 since this value obtained the best ROUGE scores on the Claritin
and MeToo datasets.

10.2 Baselines
To our knowledge, there is no existing fair text summarization algorithm. Hence we consider
the standard text summmarization algorithms stated in Section 6 as baselines. Additionally, we
have used our proposed FairSumm algorithm (described in Section 8) without considering any
fairness constraints as a separate baseline. We call this summarization algorithm DiCoSumm, a
summarization algorithm that is optimized for both diversity and coverage, but not considering
any fairness constraints. Next, we compare the performance of the different fair summarization
algorithms with all the baselines.

10.3 Results and Insights
We now describe the results of applying various fair summarization algorithms over the three
datasets. Some sample summaries obtained by using various algorithms are given in the Supple-
mentary Information.

To evaluate the quality of summaries, we compute ROUGE-1 and ROUGE-2 Recall and F1 scores
by matching the algorithmically generated summaries with the gold standard summaries (described
in Section 3). Table 5 reports the results of summarizing the Claritin dataset. We compute summaries
without any fairness constraint, and considering the two fairness notions of equal representation
and proportional representation (explained in Section 5). In each case, we state the number of tweets
in the summary from the two user groups, and the ROUGE scores of the summary. Similarly, Table 6
and Table 7 report the results for the MeToo dataset and the US-Election dataset respectively.
The FairSumm algorithm (in-processing algorithm) and the ClasswiseSumm algorithm (pre-

processing algorithm) are executed over all three datasets. For the two-class Claritin and MeToo
datasets, we also apply our post-processing methodology (stated in Section 9.2) where a fair ranking
scheme is used for fair summarization (results in Table 5 and Table 6). Specifically, we use our post-
processing methodology over the existing summarization algorithms described in Section 6 such as
ClusterRank, LexRank, SummaRNN, SummaCNN, etc. The resulting fair summarization algorithms
are denoted as Fair-ClusRank, Fair-LexRank, Fair-SummaRNN, Fair-SummaCNN, and so on. Note
that, for generating a fixed length summary, the neural models use only the textual units labeled
with 1, ranked as per their confidence scores. Hence, in Fair-SummaRNN and Fair-SummaCNN
methods, we have considered the ranked list of only those textual units that are labeled with 1.
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Approach Algorithm Nos. of tweets ROUGE-1 ROUGE-2
Female Male Recall F1 Recall F1

Whole data 2,505 1,532
(62%) (38%)

Baselines (which do not consider fairness)
ClusterRank 33 17 0.437 0.495 0.161 0.183

DSDR 31 19 0.302 0.425 0.144 0.203
LexRank 34 16 0.296 0.393 0.114 0.160
LSA 35 15 0.515 0.504 0.151 0.147
LUHN 34 16 0.380 0.405 0.128 0.136

SumBasic 27 23 0.314 0.434 0.108 0.149
SummaRNN 33 17 0.342 0.375 0.126 0.147
SummaCNN 30 20 0.377 0.409 0.126 0.146
DiCoSumm 37 13 0.548 0.545 0.172 0.171

Fairness: Equal representation
In-processing FairSumm 25 25 0.560 0.552 0.188 0.185
Pre-processing ClasswiseSumm 25 25 0.545 0.538 0.172 0.170

Fair-ClusRank 25 25 0.433 0.481 0.135 0.162
Fair-DSDR 25 25 0.285 0.400 0.139 0.206

Post-processing Fair-LexRank 25 25 0.290 0.370 0.110 0.153
(ReFaSumm used Fair-LSA 25 25 0.513 0.493 0.114 0.109
with existing Fair-LUHN 25 25 0.415 0.429 0.114 0.118
summarization Fair-SumBasic 25 25 0.314 0.436 0.111 0.154
algorithms) Fair-SummaRNN 25 25 0.356 0.410 0.126 0.154

Fair-SummaCNN 25 25 0.356 0.410 0.126 0.154
Fairness: Proportional representation

In-processing FairSumm 31 19 0.572 0.568 0.206 0.202
Pre-processing ClasswiseSumm 31 19 0.550 0.541 0.180 0.173

Fair-ClusRank 31 19 0.439 0.483 0.133 0.159
Fair-DSDR 31 19 0.302 0.425 0.145 0.204

Fair-LexRank 31 19 0.312 0.406 0.115 0.160
Post-processing Fair-LSA 31 19 0.502 0.487 0.118 0.115
(ReFaSumm) Fair-LUHN 31 19 0.426 0.435 0.119 0.121

Fair-SumBasic 31 19 0.318 0.435 0.116 0.159
Fair-SummaRNN 31 19 0.340 0.394 0.120 0.147
Fair-SummaCNN 31 19 0.340 0.394 0.120 0.147

Table 5. Summarizing the Claritin dataset: Number of tweets written by the two user groups, in
the whole dataset and the summaries of length 50 tweets generated by different algorithms. Also
given are the ROUGE-1 and ROUGE-2 Recall and F1 scores of each summary.

Insights from the results:Wemake the following observations from the results shown in Table 5,
Table 6 and Table 7.

• In-processing and post-processing methods perform better than pre-processing: Across
all datasets, the in-processing FairSumm algorithm achieves higher ROUGE scores than Classwis-
eSumm, considering the same fairness notion. Note that in the ClasswiseSumm approach, the same
FairSumm algorithm is used on each class separately. Hence, the pre-processing approach of sepa-
rately summarizing each class leads to relatively poor summaries, as compared to the in-processing
FairSumm methodology. This difference in performance is probably because, if similar tweets /
opinions are posted by different social groups, ClasswiseSumm can include multiple similar posts
in the summary, thereby leading to redundancy in the summary. On the other hand, FairSumm op-
timizes coverage and diversity across all textual units taken together, thereby avoiding redundancy
in the summary.
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Approach Algorithm Nos. of tweets ROUGE-1 ROUGE-2
Female Male Recall F1 Recall F1

Whole data 275 213
(56.3%) (43.7%)

Baselines (which do not consider fairness)
ClusterRank 24 26 0.550 0.560 0.216 0.223

DSDR 32 18 0.233 0.358 0.092 0.141
LexRank 34 16 0.285 0.414 0.105 0.153
LSA 20 30 0.511 0.534 0.175 0.183
LUHN 22 28 0.520 0.522 0.219 0.184

SumBasic 27 23 0.464 0.499 0.216 0.229
SummaRNN 23 27 0.622 0.636 0.385 0.394
SummaCNN 23 27 0.622 0.636 0.385 0.394
DiCoSumm 30 20 0.563 0.569 0.229 0.249

Fairness: Equal representation
In-processing FairSumm 25 25 0.616 0.613 0.285 0.296
Pre-processing ClasswiseSumm 25 25 0.587 0.569 0.189 0.196

Fair-ClusRank 25 25 0.499 0.532 0.186 0.198
Fair-DSDR 25 25 0.558 0.574 0.157 0.162

Fair-LexRank 25 25 0.511 0.564 0.209 0.230
Post-processing Fair-LSA 25 25 0.556 0.541 0.196 0.191
(ReFaSumm) Fair-LUHN 25 25 0.527 0.537 0.207 0.211

Fair-SumBasic 25 25 0.541 0.567 0.180 0.189
Fair-SummaRNN 25 25 0.623 0.629 0.371 0.375
Fair-SummaCNN 25 25 0.623 0.629 0.371 0.375

Fairness: Proportional representation
In-processing FairSumm 28 22 0.631 0.648 0.311 0.338
Pre-processing ClasswiseSumm 28 22 0.605 0.622 0.279 0.298

Fair-ClusRank 28 22 0.499 0.528 0.174 0.184
Fair-DSDR 28 22 0.565 0.577 0.168 0.172

Fair-LexRank 28 22 0.518 0.564 0.210 0.228
Post-processing Fair-LSA 28 22 0.560 0.544 0.197 0.191
(ReFaSumm) Fair-LUHN 28 22 0.533 0.541 0.213 0.216

Fair-SumBasic 28 22 0.546 0.569 0.190 0.198
Fair-SummaRNN 28 22 0.622 0.636 0.385 0.394
Fair-SummaCNN 28 22 0.621 0.636 0.385 0.394

Table 6. Summarizing the MeToo dataset: Number of tweets written by the two user groups, in the
whole dataset and the summaries of length 50 tweets generated by different algorithms. Also given
are the ROUGE-1 and ROUGE-2 Recall and F1 scores of each summary.

The in-processing FairSumm algorithm and some of the post-processing approaches achieve
comparable performances. For instance, while FairSumm performs decidedly better than all other
algorithms for the Claritin dataset, the post-processing approaches Fair-SummaCNN and Fair-
SummaRNN perform better in most cases over the MeToo dataset.
Note that the performances of the pre-processing and post-processing algorithms depend on

that of the original summarization algorithm that is used. As such, the pre-processing and post-
processing algorithms can be useful in situations where an existing summarization algorithm is
preferred, e.g., when a firm has a proprietary summarization algorithm.

• Proposed algorithms are generalizable to different fairness notions: Table 5, Table 6 and
Table 7 demonstrate that the proposed algorithms are generalizable to various fairness notions.
We demonstrate summaries conforming to equal representation and proportional representation
for all three datasets. Additionally, Table 7 shows different summaries that can be generated using
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Approach Algorithm Nos. of tweets ROUGE-1 ROUGE-2
Pro-Rep Pro-Dem Neutral Recall F1 Recall F1

Whole data 1,309 658 153
(62%) (31%) (7%)

Baselines (which do not consider fairness)
ClusterRank 32 15 3 0.247 0.349 0.061 0.086

DSDR 28 19 3 0.215 0.331 0.067 0.104
LexRank 27 20 3 0.252 0.367 0.078 0.114
LSA 24 20 6 0.311 0.404 0.083 0.108
LUHN 34 13 3 0.281 0.375 0.085 0.113

SumBasic 27 23 0 0.200 0.311 0.051 0.080
SummaRNN 34 15 1 0.347 0.436 0.120 0.160
SummaCNN 32 17 1 0.337 0.423 0.108 0.145
DiCoSumm 34 12 4 0.359 0.460 0.074 0.091

Fairness: Equal representation
In-processing FairSumm 17 17 16 0.368 0.467 0.078 0.096
Pre-processing ClasswiseSumm 16 16 18 0.363 0.467 0.071 0.088

Fairness: Proportional representation
In-processing FairSumm 31 15 4 0.376 0.490 0.094 0.116
Pre-processing ClasswiseSumm 30 15 5 0.367 0.454 0.081 0.100

Fairness: No Adverse Impact
FairSumm 29 17 4 0.371 0.484 0.086 0.102
FairSumm 30 16 4 0.372 0.489 0.087 0.109

In-processing FairSumm 31 15 4 0.376 0.490 0.094 0.116
FairSumm 31 16 3 0.371 0.477 0.085 0.096
FairSumm 32 15 3 0.371 0.473 0.085 0.093

Table 7. Summarizing the US-Election dataset: Number of tweets of the three classes, in the whole
dataset and the summaries of length 50 tweets generated by different algorithms. Also given are
the ROUGE-1 and ROUGE-2 Recall and F1 scores of each summary.

FairSumm considering the ‘no adverse impact’ fairness notion (such rows are omitted from other
tables for brevity).

In general, summaries conforming to proportional representation achieve higher ROUGE scores
than summaries conforming to other fairness notions, probably because the human assessors
intuitively attempt to represent different opinions (coming from different social groups) in a similar
proportion in the gold standard summaries as what occurs in the input data (even though they
were not told anything about ensuring fairness while writing the gold standard summaries).

• Ensuring fairness does not lead to much degradation in summary quality: For all three
datasets, we observe that FairSumm with fairness constraints always achieves higher ROUGE
scores than DiCoSumm (without fairness constraints). Also, we can compare the performances of
the existing summarization algorithms (e.g., DSDR, LexRank, SummaRNN) without any fairness
constraint, and after their outputs are made fair using the methodology in Section 9.2. We find that
the performances in the two scenarios are comparable to each other. In fact, for a few cases, the
ROUGE scores marginally improve after the summaries generated by an algorithm are made fair,
over those of the original summary generated by the same algorithm. Thus, making summaries fair
does not lead to much degradation in summary quality (as measured by ROUGE scores).
Overall, the results signify that, the proposed fair summarization algorithms can not only ensure
various fairness notions in the summaries, but also can generate summaries that achieve comparable
(or better) ROUGE scores than many well-known summarization algorithms (which often do not
generate fair summaries, as demonstrated in Section 6).
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Error Rate Nos. of tweets ROUGE-1 ROUGE-2
Female Male Recall F1 Recall F1

Whole data 275 213
(56.3%) (43.7%)

Fairness: Equal representation
0 % 25 25 0.616 0.613 0.285 0.296
10 % 27 23 0.612 0.604 0.285 0.286
20 % 29 21 0.596 0.582 0.282 0.287
30 % 29 21 0.591 0.590 0.282 0.287

Fairness: Proportional representation
0 % 28 22 0.631 0.648 0.311 0.338
10 % 29 21 0.624 0.633 0.304 0.317
20 % 30 20 0.615 0.610 0.297 0.302
30 % 31 19 0.614 0.610 0.293 0.300

Table 8. Effect of degraded information of gender in MeToo dataset: Number of tweets written
by the two user groups, in the whole dataset and the summaries of length 50 tweets generated
by FairSumm algorithm. Also given are the ROUGE-1 and ROUGE-2 Recall and F1 scores of each
summary. Each result is averaged over 100 random experiments for each of the error rates.

10.4 Effects of degraded information of demographic details
Our proposed algorithms assume the availability of class information of the textual units under
consideration e.g., gender information for the tweets in Claritin and MeToo datasets, and ideological
leaning for tweets in the US-Election dataset. In cases where such class information is not available,
we need to resort to inference mechanisms. For instance, there are multiple methodologies to infer
demographic details of people from their writing styles with a high level of accuracy [54, 63, 64].
Moreover, in social media, additional information can be utilized to infer demographic details of their
users, such as user names and profile pictures [15]. Similarly, sentiment analysis can be deployed
to infer the opinions. However, such inferences may not be absolutely perfect, and the accuracy of
these inference methodologies will eventually decide how well the predicted labels replicate the
true class labels. In this section, we check how the inaccuracy in the inference mechanism may
impact the performance of the proposed FairSumm algorithm.
Experimental Setup: We performed these experiments for all the three datasets, and obtained
qualitatively similar results. Hence, for brevity, we are reporting the experimental results only on
the MeToo dataset. We assume the existence of a classifier which can infer the gender information
of the authors of textual posts (required for our FairSumm algorithm), with certain level of error,
for the MeToo dataset. To simulate the effect of a classifier with x% error rate, we change the class
labels (i.e., consider the inferred label to be ‘male’ if the true label was ‘female’, and vice versa) of
randomly selected x% of the tweets in the dataset. Now this degraded information of gender labels
is given as input to the FairSumm algorithm to create the fair summaries. We experiment with
error rates x = 10%, 20%, 30%. For every error rate, we repeat the experiment 100 times, and then
report the average results over all experiments. Note that, for checking the fairness property (i.e.,
the proportion of tweets from various groups in the summaries), we use the true labels (and not
the inferred labels).
Observations: Table 8 reports the results obtained over the MeToo dataset, with increasing amount
of noise/error in the demographic labels. As expected, the error/noise in the demographic inference
has some effects on the fairness property that the summaries are meant to satisfy. With increasing
error rate in the prediction of the class labels, the summaries deviate further from the desired fairness
criterion. However, it is interesting to note that even with degraded demographic information, the
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summaries generated by FairSumm have better fairness property than the summaries generated
by many of the baseline algorithms. Also it is evident from Table 8 that the degradation in the
availability of demographic details does not affect the quality of the summaries much (as measured
by ROUGE scores). In fact, even with the degraded gender information, the FairSumm algorithm
outperforms many of the existing summarization algorithms in terms of ROUGE scores.

Hence, we can conclude that, though the accuracy of the inference methodology is an important
factor when the actual class information is not present (especially in order to achieve the fairness
goals), the quality of summaries produced by FairSumm is generally robust to such noise in the
inferred labels.

11 CONCLUDING DISCUSSION
To our knowledge, this work is the first attempt to consider fairness in textual summarization.
Through experiments on several user-generated microblog datasets, we show that existing al-
gorithms often produce summaries that are not fair, even though the text written by different
social groups are of comparable quality. Note that, we do not claim the existing algorithms to be
intentionally biased towards/against any social group. Since these algorithms attempt to optimize
only one metric (e.g., textual quality of the summary), the unfairness comes as a side-effect. We
further propose algorithms to generate high-quality summaries that conform to various standard
notions of fairness (implementations available at https://github.com/ad93/FairSumm.git). These
algorithms will help in addressing the concern that using a (inadvertently) ‘biased’ summarization
algorithm can reduce the visibility of the voice/opinion of certain social groups in the summary.
Moreover, downstream applications that use the summaries (e.g., for opinion classification and
rating inference [44]) would benefit from a fair summary.
Limitations and future directions: There are potential limitations of the fair summarization
algorithms presented in this paper. All three algorithms need as input the class (e.g., socially
salient group) information to which each textual unit belongs. Where such class information is not
readily available, we need to infer these information, which may impact the fairness objectives to
some extent, as discussed in Section 10.4. A major limitation of ReFaSumm comes from the fair
ranking algorithm being applied in the post-processing phase. The FA*IR framework is designed
for scenarios where only two socially salient groups are defined (e.g., male and female). Hence our
post-processing algorithm is presently applicable only in such cases. We plan to extend ReFaSumm
to more than two classes in future work.
We also note that, in certain special cases, the fair summarization algorithms developed in this

work may lead to degradation in the summary quality. For example, let us assume a scenario where
we are summarizing tweets posted by two equally-sized groups of users, e.g., group A and group B,
and the fairness objective is to achieve Equal Representation, i.e., both groups should have the same
number of tweets in the summary. Now, if the variability of opinions within the groups are different
– e.g., everyone from groupA has the same opinion on an issue, while people in group B have many
varied opinions on the same issue – then the proposed method will not generate a good summary
because there will be redundant tweets posted by users of group A, while some of the diverse
opinions posted by users of group B may not be included in the summary. Hence, if the distribution
of opinions is very different from the distribution of people belonging to different social groups,
then the summaries may not be of good quality. This situation leads us to an interesting question
of whether to look for fair representation across demographic groups, or for fair representation across
the different opinions – a question that we would like to investigate in future work.

Going beyond summarization, deciding the social grouping is often a normative question in many
socio-technical applications, which requires decisions at the policy level. In some applications,
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legal doctrines may suggest what should be the social grouping (which often emerges from long
deliberations and historical contexts); whereas, in other cases, the corresponding online platforms
(such as social media sites like Facebook or Twitter) may have their own guidelines to decide groups
they want to be considerate about. Similar to most of the recent algorithms trying to incorporate
group fairness (including fair classification algorithms [24, 67, 69]), the algorithms proposed in this
paper also consider the grouping to be given apriori. However, questions on what constitute the
right grouping are important, and should be more widely discussed in the research community.
Finally, looking at a higher level, fairness-preserving information filtering algorithms like the

ones proposed in this paper are of significant societal importance. Today social media sites are
the gateway of information for a large number of people worldwide; and the algorithms (search,
recommendation, sampling, summarization etc.) deployed in these sites act as the gatekeepers.
If these algorithms lack the sense of embedded ethics or civic responsibilities, they may not be
fully suitable to curate information for the heterogeneous society. Thus, incorporating fairness
in algorithms is the need of the hour. As discussed in Section 2, recent research works are taking
correct steps in that direction. Likewise, we believe that our work will open up multiple interesting
research problems on fair summarization, such as extending the concept of fairness to abstractive
summaries, or estimating user preferences for fair summaries in various applications, and will be
an important addition to the emerging literature on fairness in algorithmic decision making.
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