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For (h, k) ∈ K2, the field elementsh, k are calledaffine coordinates.

Affine curve: Defined by a polynomial equation:

C : f (X,Y) = 0.

It is customary to consider only irreducible polynomialsf (X,Y). If f (X,Y)
admits non-trivial factors, the curveC is the set-theoretic union of two (or
more) curves of smaller degrees.

Rational points onC: All points (h, k) ∈ K2 such thatf (h, k) = 0.

Rational points onC are calledfinite points.
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The equivalence class of(h, k, l) is denoted by[h, k, l].

[h, k, l] can be identified with the line inK3 passing through the origin and
the point(h, k, l).

The set of all these equivalence classes is theprojective planeoverK.

The projective plane is denoted asP2(K).

h, k, l in [h, k, l] are calledprojective coordinates.

Projective coordinates are unique up to multiplication by non-zero elements
of K.

The three projective coordinates cannot be simultaneously 0.
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infinity.

A line passes through all the points at infinity. It is theline at infinity .

Two distinct lines (parallel or not) inP2(K) always meet at a unique point
(consistent with B́ezout’s theorem).

Through any two distinct points inP2(K) passes a unique line.
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A (multivariate) polynomial is calledhomogeneousif every non-zero term
in the polynomial has the same degree.

Example:X3 + 2XYZ− 3Z3 is homogeneous of degree 3.X3 + 2XY− 3Z
is not homogeneous. The zero polynomial is homogeneous of any degree.

Let C : f (X,Y) = 0 be an affine curve of degreed.

f (h)(X,Y,Z) = Zdf (X/Z,Y/Z) is thehomogenizationof f .
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Finite points on C(h): PutZ = 1 to getf (h)(X,Y,1) = f (X,Y). These are
the points onC.

Points at infinity on C(h): PutZ = 0 and solve forf (h)(X,Y,0) = 0. These
points do not belong toC.
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Straight Line Circle

aX+bY+c=0

aX+bY=0

Straight line: aX + bY+ cZ = 0.
Finite points: Solutions ofaX + bY+ c = 0.
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aX+bY+c=0

aX+bY=0

Straight line: aX + bY+ cZ = 0.
Finite points: Solutions ofaX + bY+ c = 0.

Points at infinity: Solve foraX + bY = 0.
If b 6= 0, we haveY = −(a/b)X. So[1,−(a/b),0] is the only point at infinity.
If b = 0, we haveaX = 0, that is,X = 0. So[0,1,0] is the only point at infinity.

Circle: (X − aZ)2 + (Y− bZ)2 = r2Z2.
Finite points: Solutions of(X − a)2 + (Y− b)2 = r2.

Points at infinity: Solve forX2 + Y2 = 0.
For K = R, the only solution isX = Y = 0, so there is no point at infinity.
For K = C, the solutions areY = ± iX, so there are two points at infinity:
[1, i ,0] and[1,− i ,0].
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Parabola: Y2 = XZ.

Finite points: Solutions ofY2 = X.

Points at infinity: Solve forY2 = 0.
Y = 0, so[1,0,0] is the only point at infinity.

Hyperbola: X2 − Y2 = Z2.

Finite points: Solutions ofX2 − Y2 = 1.

Points at infinity: Solve forX2 − Y2 = 0.
Y = ±X, so there are two points at infinity:[1,1,0] and[1,−1,0].
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X = 0

A hyperelliptic curve of genus 2:Y2 = X(X2 − 1)(X2 − 2)

Hyperelliptic curve: Y2Z2g−1 + Zgu(X/Z)YZg = Z2g+1v(X/Z).

Finite points: Solutions ofY2 + u(X)Y = v(X).

Points at infinity: The onlyZ-free term isX2g+1 (in Z2g+1v(X/Z)). So[0,1,0] is
the only point at infinity.
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Bézout’s Theorem
A curve of degreemand a curve of degreen intersect at exactlymnpoints.

The intersection points must be counted with proper multiplicity.

It is necessary to work in algebraically closed fields.

Still, the theorem is not true. For example, two parallel lines or two
concentric circles never intersect.

Passage to the projective plane makes Bézout’s theorem true.

(a) (c) (d)(b)

(a) and (b): Two simple intersections at the points at infinity
(c): Two tangents at the points at infinity
(d): No intersections at the points at infinity
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Let C : f (X,Y,Z) = 0 be a projective curve, andP = [h, k, l] a rational
point onC.

P is called asmooth pointonC if the tangent toC atP is uniquely defined.

Case 1:P is a finite point.

Now, l 6= 0. Consider the affine equationf (X,Y) = 0.

Both ∂f
∂X and ∂f

∂Y do not vanish simultaneously at(h/l, k/l).

Case 2:P is a point at infinity.

Now, l = 0, so at least one ofh, k must be non-zero.

If h 6= 0, viewC as the homogenization offX(Y,Z) = f (1,Y,Z).
(k/h, l/h) is a finite point onfX. Apply Case 1.

If k 6= 0, viewC as the homogenization offY(X,Z) = f (X,1,Z).
(h/k, l/k) is a finite point onfY. Apply Case 1.

C is asmooth curveif it is smooth at every rational point on it.
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(a) A cuspor aspinode: Y2 = X3.

(b) A loop or adouble-point or acrunode: Y2 = X3 + X2.

(c) An isolated pointor anacnode: Y2 = X3 − X2

For areal curvef (X,Y) = 0, the type of singularity is determined by the

matrix Hessian(f ) =

(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

.
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(a) Y2 = X3 − X (b) Y2 = X3 − X + 1 (c) Y2 = X3 + X

An elliptic or hyperelliptic curve is needed to be smooth by definition.

A curve of the formY2 = v(X) is smooth if and only ifv(X) does not
contain repeated roots.

The point at infinity on an elliptic or hyperelliptic curve is never a point of
singularity.
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Let C : f (X,Y) = 0 be a curve defined by anirreducible polynomial
f (X,Y) ∈ K[X,Y].

Let G(X,Y),H(X,Y) ∈ K[X,Y] with f |(G− H). Then,G(P) = H(P) for
every rational pointP onC (sincef (P) = 0). Thus,G andH represent the
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N(G) = a(x)2 − a(x)b(x)u(x) − v(x)b(x)2 ∈ K[x].

Every rational function onC can be represented ass(x) + yt(x) with
s(x), t(x) ∈ K(x).

K(C) is the quadratic extension ofK(X) obtained by adjoining a root of the
irreducible polynomialY2 + u(X)Y− v(X) ∈ K(X)[Y]. The current notion
of conjugacy coincides with the standard notion for field extensions.

These results hold equally well for hyperelliptic curves too.
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The leading coefficientof G is that ofa or b depending upon whether
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The ratio of the leading coefficients ofG andH, if degG = degH.

For hyperelliptic curves, analogous results hold. Now,X andY are given
weights 2 and 2g + 1 respectively.
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P is apoleof R if and only if ordP(R) < 0. Multiplicity is −ordP(R).

P is neither a pole nor a zero ofR if and only if ordP(R) = 0.

Any (non-zero) rational function has only finitely many poles and zeros.

For aprojectivecurve over analgebraically closedfield, the sum of the
orders of the poles and zeros of a (non-zero) rational function is 0.
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Let C : Y2 + u(X)Y = v(X) be an elliptic curve withO the point at infinity,
andP = (h, k) a finite point onC.

Theoppositeof P is defined as̃P = (h,−k− u(h)). P andP̃ are the only
points onC with X-coordinate equal toh.

The opposite ofO is O itself.

P is called anordinary point if P̃ 6= P.

P is called aspecial point if P̃ = P.

Any line passing throughP but not a tangent toC atP can be taken as a
uniformizer UP atP.

For example, we may takeUP =

{

x− h if P is an ordinary point,

y− k if P is a special point.

A uniformizer atO is x/y.

For hyperelliptic curves, identical results hold. A uniformizer atO is xg/y.
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Let G(x, y) = a(x) + yb(x) ∈ K[C].

Let ebe the largest exponent for which(x− h)e divides botha(x) andb(x).

Write G(x, y) = (x− h)eG1(x, y).

Takel = 0 if G1(h, k) 6= 0.

If G1(h, k) = 0, takel to be the largest exponent for which(x− h)l |N(G1).

ordP(G) =

{

e+ l if P is an ordinary point,

2e+ l if P is a special point.

ordO(G) = −max(2 degx a,3 + 2 degx b).

For a rational functionR(x, y) = G(x, y)/H(x, y) ∈ K(C), we have
ordP(R) = ordP(G) − ordP(H).

For hyperelliptic curves, identical results hold.
The order ofG atO is ordO(G) = −max(2 degx a,2g + 1 + 2 degx b).
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Rational functions involving onlyx are simpler.R1 = (x−1)(x+1)
x3(x−2) has simple

zeros atx = ±1, a simple pole atx = 2, and a pole of multiplicity three at
x = 0. The points onC with thesex-coordinates areP1 = (0,0),
P2 = (1,0), P3 = (−1,0), P4 = (2,
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6) andP5 = (2,−
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6). P1,P2,P3

are special points, so ordP1(R1) = −6, ordP2(R1) = ordP3(R1) = 2. P4 and
P5 are ordinary points, so ordP4(R1) = ordP5(R1) = −1. Finally, note that
R1 → 1

x2 asx → ∞. But x has a weight of 2, soR1 has a zero of order 4 at
O. The sum of these orders is−6 + 2 + 2− 1− 1 + 4 = 0.

Now, consider the rational functionR2 = x
y involving y. At the point

P1 = (0,0), R2 appears to be undefined. Buty2 = x3 − x, soR2 = y
x2−1 too,

andR2(P1) = 0, that is,R2 has a zero atP1. Using the explicit formula on
y, show thate = 0 andl = 1. So ordP1(R2) = 1. On the other hand, the
denominatorx2 − 1 has neither a pole nor a zero atP1. So ordP1(R2) = 1.

ordP1(x) = 2 (sincee = 1, l = 0, andP1 is a special point), so the
representationR2 = x

y also gives ordP1(R2) = 2− 1 = 1.
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(a) ordP(l) = ordQ(l) = ordR(l) = 1 and ordO(l) = −3.

(b) ordP(t) = 2, ordQ(t) = 1 and ordO(t) = −3.

(c) ordP(v) = ordQ(v) = 1 and ordO(v) = −2.
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Let ai , i ∈ I , besymbolsindexed byI .

A finite formal sum of ai , i ∈ I , is an expression of the form
∑

i∈I

miai with

mi ∈ Z such thatmi = 0 except for only finitely manyi ∈ I .

The sum
∑

i∈I

miai is formal in the sense that the symbolsai are not meant to

be evaluated. They act asplaceholders.

Define
∑

i∈I

miai +
∑

i∈I

niai =
∑

i∈I

(mi + ni)ai

Also define−
∑

i∈I

miai =
∑

i∈I

(−mi)ai

The set of all finite formal sums is an Abelian group called thefree
Abelian group generated byai , i ∈ I .
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Divisors on Curves
Let C be a projective curve defined overK.
K is assumed to bealgebraically closed.

A divisor is a formal sum of theK-rational points onC.

Notation:D =
∑

P mP[P].

Thesupport of D is the set of pointsP for whichmP 6= 0.

Thedegreeof D is the sum
∑

P mP.

All divisors onC form a group denoted by DivK(C) or Div(C).

All divisors onC of degree 0 form a subgroup denoted by Div0
K(C) or

Div0(C).

Divisor of a rational function R(x, y) is Div(R) =
∑

P ordP(R)[P].

A principal divisor is the divisor of a rational function.

Principal divisors satisfy: Div(R) + Div(S) = Div(RS) and
Div(R) − Div(S) = Div(R/S).
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(a) Div(l) = [P] + [Q] + [R] − 3[O].

(b) Div(t) = 2[P] + [Q] − 3[O].

(c) Div(v) = [P] + [Q] − 2[O].
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Picard Groups and Jacobians
Suppose thatK is algebraically closed.

Every principal divisor belongs to Div0
K(C).

The set of all principal divisors is a subgroup of Div0
K(C), denoted by

PrinK(C) or Prin(C).

Two divisors in DivK(C) are calledequivalent if they differ by the divisor
of a rational function.

The quotient group DivK(C)/PrinK(C) is called thedivisor class groupor
thePicard group, denoted PicK(C) or Pic(C).

The quotient group Div0K(C)/PrinK(C) is called theJacobianof C,
denoted Pic0K(C) or Pic0(C) or JK(C) or J(C).

If K is not algebraically closed,JK(C) is a particular subgroup ofJK̄(C).

Elliptic- and hyperelliptic-curve cryptography deals with the Jacobian of
elliptic and hyperelliptic curves.

For elliptic curves, the Jacobian can be expressed by a more explicit
chord-and-tangentrule.
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Let C be an elliptic curve over an algebraically closed fieldK.

For everyD ∈ Div0
K(C), there exist a unique rational pointP and a rational

functionR such thatD = [P] − [O] + Div(R).

D is equivalent to[P] − [O] in JK(C).

Identify P with the equivalence class of[P] − [O] in JK(C).

This identification yields a bijection between the set of rational points onC
and its JacobianJK(C).

This bijection also leads to the chord-and-tangent rule in the following
sense:

Let D =
∑

P mP[P] ∈ DivK(C). Then,D is a principal divisor if and only if
∑

P mP = 0 (integer sum), and
∑

p mPP = O (sum under the chord-and-tangent rule).
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Identity: O is identified with[O] − [O] = 0 = Div(1).

Opposite: By Part (c), Div(v) = ([P]− [O]) + ([Q]− [O]) is 0 inJ(C). By
the correspondence,P + Q = O, that is,Q = −P.

Sum: By Part (a), Div(l) = ([P] − [O]) + ([Q] − [O]) + ([R] − [O]) is 0 in
J(C), that is,P + Q + R = O, that is,P + Q = −R.

Double: By Part (b), Div(t) = ([P] − [O]) + ([P] − [O]) + ([Q] − [O]) is 0
in J(C), that is,P + P + Q = O, that is, 2P = −Q.
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K is a field.

K̄ is the algebraic closure ofK.

Quite often, we will haveK = Fq with p = charK.

E : Y2 + (a1X + a3)Y = X3 + a2X2 + a4X + a6 is an elliptic curve defined
overK (that is,ai ∈ K).

If L is any field withK ⊆ L ⊆ K̄, thenE is defined overL as well.

EL denotes the set ofL-rational points onE.

EL always contains the pointO at infinity.

If L = Fqk, we writeEqk as a shorthand forEL.

E (without any subscript) meansEK̄ .

A rational functionR onE is an element of̄K(E).

R is defined overL if R has a representationR = G(x, y)/H(x, y) with
G,H ∈ L[x, y].
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Let K be not algebraically closed (likeK = Fq).

The groupEK̄ is isomorphic toJK̄(E).

The one-to-one correspondence ofJK̄(E) with EK̄ allows us to use the
chord-and-tangent rule.

If P andQ areK-rational, then the chord-and-tangent rule guarantees that
P + Q is K-rational too.

All K-rational points inEK̄ together withO constitute a subgroup ofEK̄ .

Denote this subgroup byEK .

EK can be identified with a subgroupJK(E) of JK̄(E).

SinceK is not algebraically closed,JK(E) cannot be defined likeJK̄(E).

Thanks to the chord-and-tangent rule, we do not need to worry too much
aboutJK(E) (at least so long as computational issues are of only concern).
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∆(E) is called thediscriminant of E.

j(E) is called thej-invariant of E.

E is smooth (that is, an elliptic curve) if and only if∆(E) 6= 0.

j(E) is defined for every elliptic curve.

For two elliptic curvesE,E′, we havej(E) = j(E′) if and only if E andE′

are isomorphic.
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Addition Formula for the General Weierstrass
Equation
Let P = (h1, k1) andQ = (h2, k2) be points onE. Assume thatP,Q,P + Q
are notO. Let R = (h3, k3) = P + Q.

h3 = λ2 + a1λ− a2 − h1 − h2, and

k3 = −(λ+ a1)h3 − µ− a3, where

λ =



















k2 − k1
h2 − h1

if P 6= Q,

3h2
1 + 2a2h1 + a4 − a1k1

2k1 + a1h1 + a3
if P = Q, and

µ = k1 − λh1 .

The opposite of(h, k) is (h,−k− a1h− a3).
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Let E : Y2 + (a1X + a3)Y = X3 + a2X2 + a4X + a6 be defined overK.
To obtain a random pointP = (h, k) ∈ EK .

Choose theX-coordinateh randomly fromK.

The correspondingY-coordinates are roots of

Y2 + (a1h + a3)Y− (h3 + a2h2 + a4h + a6).

This polynomial is either irreducible overK or has two roots inK.

If K is algebraically closed, then this polynomial has roots inK.

If K is a finite field, then, with probability about 1/2, this polynomial has
roots inK.

Use a root-finding algorithm to compute a rootk.

Output(h, k).
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A rational mapα is specified by two rational functionsα1, α2 ∈ K̄(E) such
that, for any pointP ∈ E, α(P) = α(h, k) = (α1(h, k), α2(h, k)) is again a
point onE.

Sinceα(P) is a point onE, α1, α2 satisfy the equation forE and constitute
the elliptic curveEK̄(E).

Denote the point at infinity on this curve byO′. DefineO′(P) = O for all
P ∈ E.

For a non-zeroα ∈ EK̄(E) and a pointP ∈ E, either bothα1(P), α2(P) are
defined atP, or both are undefined atP. In the first case, we take
α(P) = (α1(P), α2(P)), and in the second case,α(P) = O.

The addition ofEK̄(E) is compatible with the addition ofE, that is,
(α+ β)(P) = α(P) + β(P) for all α, β ∈ EK̄(E) andP ∈ E.

A rational map is either constant or surjective.
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Rational Maps: Examples

Thezero mapO′ : E → E, P 7→ O.

The identity map id : E → E, P 7→ P.

Thetranslation map τQ : E → E, P 7→ P + Q, for a fixedQ ∈ E.

Themultiplication-by- mmap [m] : E → E, P 7→ mP, wherem∈ Z.

TheFrobenius mapϕ:

E is defined overK = Fq.

For a ∈ K̄, aq = a if and only if a ∈ Fq.

For P = (h, k) ∈ E, the point(hq, kq) ∈ E.

Defineϕ(h, k) = (hq, kq).
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Endomorphisms

A rational map onE, which is also a group homomorphism ofE, is called
anendomorphismor anisogeny.

The set of all endomorphisms ofE is denoted by End(E).

Define addition in End(E) as(α+ β)(P) = α(P) + β(P).

Define multiplication in End(E) as(α ◦ β)(P) = α(β(P)).

End(E) is a ring under these operations. The additive identity isO′. The
multiplicative identity is id.

All multiplication-by-mmaps[m] are endomorphisms. We have[m] 6= [n]
for m 6= n.

The translation mapτQ is not an endomorphism unlessQ = O.

The Frobenius mapϕ is an endomorphism withϕ 6= [m] for anym.

If End(E) contains a map other than the maps[m], E is called a curve with
complex multiplication.
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The Multiplication-by- m Maps

Identify [m] as a pair(gm,hm) of rational functions.

g1 = x, h1 = y.

g2 = −2x + λ2 + a1λ− a2 and

h2 = −λ(g2 − x) − a1g2 − a3 − y,

whereλ =
3x2 + 2a2x + a4 − a1y

2y + a1x + a3
.

Form > 3, we have the recursive definition:

gm = −gm−1 − x + λ2 + a1λ− a2 and

hm = −λ(gm − x) − a1gm − a3 − y,

whereλ =
hm−1 − y
gm−1 − x

.
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Form∈ N, defineE[m] = {P ∈ E | mP= O}.

Recall thatp = charK.

If p = 0 or gcd(p,m) = 1, thenE[m] ∼= Zm × Zm, and so|E[m]| = m2.

Suppose thatp> 0. Letm = pνm′ with gcd(m′,p) = 1. Then,

E[m] ∼=
{

Zm′ × Zm′ if E[p] = {O},
Zm′ × Zm otherwise.

If gcd(m,n) = 1, we haveE[mn] ∼= E[m] × E[n].

For a subsetS⊆ E, define the divisor[S] =
∑

P∈S[P].

If p 6= 2,3 andm,n,m+ n,m− n are all coprime top, we have
Div(gm − gn) = [E[m+ n]] + [E[m− n]] − 2[E[m]] − 2[E[n]].

If p ∈ {2,3}, gcd(m,p) = 1, andn = pνn′ with ν > 1 and gcd(n′,p) = 1,
we have Div(gm − gn) = [E[m+ n]] + [E[m− n]] − 2[E[m]] − 2αν [E[n]].
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Division Polynomials

The rational functionsgm,hm have poles precisely at the points inE[m]. But
they have some zeros also.

We investigate polynomials having zeros precisely at the points ofE[m].

Assume that eitherp = 0 or gcd(p,m) = 1.

E[m] contains exactlym2 points with
∑

P∈E[m] P = O.

Consider the degree-zero divisor[E[m]] − m2[O] =
∑

P∈E[m][P] − m2[O].

There exists a rational functionψm with Div(ψm) = [E[m]] − m2[O].

Since the only pole ofψm is atO, ψm is a polynomial function.

ψm is unique up to multiplication of elements ofK̄∗.

If we arrange the leading coefficient ofψm to bem, thenψm becomes
unique and is called them-th division polynomial.
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Hasse’s Theorem:|Eq| = q + 1− t with −2
√

q 6 t 6 2
√

q.

t is called thetrace of Frobeniusatq.

The Frobenius endomorphism satisfiesϕ ◦ ϕ− [t] ◦ ϕ+ [q] = O′.

Let L = Fqk be an extension ofK = Fq.

Let W2 − tW + q = (W− α)(W− β) with α, β ∈ C.

Weil’s Theorem: |Eqk| = qk + 1− (αk + βk).

Example: ConsiderE : Y2 = X3 + X + 1 defined overF5. E5 contains the
nine pointsO, (0,±1), (2,±1), (3,±1) and(4,±2), so that
|E5| = 9 = (5 + 1) − t, that is,t = −3.

Consider(W− α)(W− β) = W2 − tW + q = W2 + 3W + 5, that is,
α+ β = −3 andαβ = 5. But thenα2 + β2 = (α+ β)2 − 2αβ =
9− 10 = −1. Therefore,|E25| = 25+ 1− (−1) = 27.

Structure Theorem for Eq:
Eq is either cyclic or isomorphic toZn1 × Zn2 with n1,n2 > 2, n1|n2,
andn1|(q− 1).
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Div(LP,Q) = [P] + [Q] + [R] − 3[O].

Div(LR,−R) = [R] + [−R] − 2[O].

Div(LP,Q/LR,−R) = [P] + [Q] − [−R] − [O] = [P] + [Q] − [P + Q] − [O].

[P] − [O] is equivalent to[P + Q] − [Q].

([P] − [O]) + ([Q] − [O]) is equivalent to[P + Q] − [O].

For both these cases of equivalence, the pertinent rational function is
LP,Q/LP+Q,−(P+Q) which can be easily computed. We can force this
rational function to have leading coefficient 1.
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Let D =
∑

P nP[P] be divisor onE andf ∈ K̄(E) a rational function such
that the supports ofD and Div(f ) are disjoint. Define

f (D) =
∏

P∈E

f (P)nP =
∏

P∈Supp(D)

f (P)nP.

Div(f ) = Div(g) if and only if f = cg for some non-zero constantc ∈ K̄∗.

If D has degree 0, then
f (D) = g(D)

∏

P cnP = g(D)c
P

P nP = g(D)c0 = g(D).

Weil reciprocity theorem: If f andg are two non-zero rational functions
onE such that Div(f ) and Div(g) have disjoint supports, then

f (Div(g)) = g(Div(f )).
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Take a positive integermcoprime top = charK.
Let µm denote them-th roots of unity inK̄.
We haveµm ⊆ Fqk, wherek = ordm(q) is called theembedding degree.
Let E[m] be those points inE = EK̄ , whose orders dividem.

Weil pairing is a function

em : E[m] × E[m] → µm

defined as follows.

TakeP1,P2 ∈ E[m].

Let D1 be a divisor equivalent to[P1] − [O]. SincemP1 = O, there exists a
rational functionf1 such that Div(f1) = mD1 = m[P1] − m[O].

Similarly, letD2 be a divisor equivalent to[P2] − [O]. There exists a
rational functionf2 such that Div(f2) = mD2 = m[P2] − m[O].

D1 andD2 are chosen to have disjoint supports.

Defineem(P1,P2) = f1(D2)/f2(D1).
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It is customary to chooseD2 = [P2] − [O] andD1 = [P1 + T] − [T] for a
pointT different from−P1, P2, P2 − P1, andO. T need not be inE[m].
One can takeT randomly fromE.

em(P1,P2)
m = f1(mD2)/f2(mD1) = f1(Div(f2))/f2(Div(f1)) = 1 (by Weil

reciprocity), that is,em(P1,P2) is indeed anm-th root of unity.
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Properties of Weil Pairing

Let P,Q,Rbe arbitrary points inE[m].

Bilinearity:

em(P + Q,R) = em(P,R)em(Q,R),

em(P,Q + R) = em(P,Q)em(P,R).

Alternating: em(P,P) = 1.

Skew symmetry: em(Q,P) = em(P,Q)−1.

Non-degeneracy:If P 6= O, thenem(P,Q) 6= 1 for someQ ∈ E[m].

Compatibility: If S∈ E[mn] andQ ∈ E[n], thenemn(S,Q) = en(mS,Q).

If m is a prime andP 6= O, thenem(P,Q) = 1 if and only ifQ lies in the
subgroup generated byP (that is,Q = aP for some integera).
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If P ∈ E[m], then Div(fm,P) = m[P] − [mP] − (m− 1)[O] = m[P] − m[O].

Computingfm,P using the above recursive formula is too inefficient.
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The rational functionsfn,P also satisfy

fn+n′,P = fn,P fn′,P ×
(

LnP,n′P
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)

.

In particular, forn = n′, we have

f2n,P = f 2
n,P ×

(

LnP,nP

L2nP,−2nP

)

.

Here,LnP,nP is the line tangent toE at the pointnP.

This and the recursive expression offn+1,P in terms offn,P yield a repeated
double-and-add algorithm.

The functionfn,P is usually kept in the factored form.

It is often not necessary to computefn,P explicitly. The value offn,P at
some pointQ is only needed.
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Miller’s Algorithm for Computing fn,P
Input: A point P ∈ E and a positive integern.

Output: The rational functionfn,P.

Steps

Let n = (nsns−1 . . .n1n0)2 be the binary representation ofn with ns = 1.

Initialize f = 1 andU = P.
For i = s− 1, s− 2, . . . ,1,0, do the following:

/* Doubling */

Updatef = f 2 ×
(

LU,U

L2U,−2U

)

andU = 2U.

/* Conditional adding */

If (ni = 1), updatef = f ×
(

LU,P

LU+P,−(U+P)

)

andU = U + P.

Returnf .

Note: One may supply a pointQ ∈ E and wish to compute the value
fn,P(Q) (instead of the functionfn,P). In that case, the functions
LU,U/L2U,−2U andLU,P/LU+P,−(U+P) should be evaluated atQ before
multiplication withf .
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Let P1,P2 ∈ E[m], and we want to computeem(P1,P2).

Choose a pointT not equal to±P1,−P2,P2 − P1,O.

We haveem(P1,P2) =
fm,P2(T) fm,P1(P2 − T)

fm,P1(−T) fm,P2(P1 + T)
.

If P1 6= P2, then we also haveem(P1,P2) = (−1)m fm,P1(P2)

fm,P2(P1)
.

Miller’s algorithm for computingfn,P(Q) can be used.

All these invocations of Miller’s algorithm haven = m.

So a single double-and-add loop suffices.

For efficiency, one may avoid the division operations in Miller’s loop by
separately maintaining polynomial expressions for the numerator and the
denominator off . After the loop terminates, a single division is made.
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Let (L∗)m = {am | a ∈ L∗} be the set ofm-th powers inL∗.

Let P be a point inEL[m], andQ a point inEL.

SincemP= O, there is a rational functionf with Div(f ) = m[P] − m[O].

Let D be any divisor equivalent to[Q] − [O] with disjoint support from
Div(f ). It is customary to choose a pointT different from−P,Q,Q− P,O
and takeD = [Q + T] − [T].

TheTate pairing 〈 , 〉m : EL[m] × EL/mEL → L∗/(L∗)m of P andQ is

〈P,Q〉m = f (D).

Q should be regarded as a point inEL/mEL.

The value of〈P,Q〉m is unique up to multiplication by anm-th power of a
non-zero element ofL, that is,〈P,Q〉m is unique inL∗/(L∗)m.
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Non-degeneracy:For everyP ∈ EL[m], P 6= O, there existsQ with
〈P,Q〉m 6= 1. For everyQ /∈ mEL, there existsP ∈ EL[m] with 〈P,Q〉m 6= 1.

The Weil pairing is related to the Tate pairing as

em(P,Q) =
〈P,Q〉m

〈Q,P〉m

up tom-th powers.

Let k = ordm(q) be the embedding degree. The Tate pairing can be made
unique by exponentiation to the power(qk − 1)/m:

êm(P,Q) = (〈P,Q〉m)
qk

−1
m

êm(P,Q) is called thereduced Tate pairing. The reduced pairing
continues to exhibit bilinearity and non-degeneracy.
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Computing the Tate Pairing

TakeD = [Q + T] − [T], whereT 6= P,−Q,P− Q,O.

We have〈P,Q〉m =
fm,P(Q + T)

fm,P(T)
.

Miller’s algorithm is used to compute〈P,Q〉m.

A single double-and-add loop suffices.

For efficiency, the numerator and the denominator inf may be updated
separately. After the loop, a single division is made.

If the reduced pairing is desired, then a final exponentiation to the power
(qk − 1)/m is made on the value returned by Miller’s algorithm.
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Tate pairing requires working in the fieldL.

Let L′ be the field obtained by adjoining toL all the coordinates of
E[m] = EK̄ [m].

Weil pairing requires working in the fieldL′.

L′ is potentially much larger thanL.

Special case:m is a prime divisor of|EK | with m6 |q andm6 |(q− 1). Then,
L′ = L. So it suffices to work in the fieldL only.

For cryptographic applications, Tate pairing is used more often that Weil
pairing.

One takesFq with |q| about 160–300 bits andk 6 12. Larger embedding
degrees are impractical for implementation.
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Let P be a generator of a subgroupG of EK of orderm.
Goal: To define a pairing of the points inG.

If k = 1 (that is,L = K), then〈P,P〉m 6= 1.

Bad news: If k > 1, then〈P,P〉m = 1.
But then, by bilinearity,〈Q,Q′〉m = 1 for all Q,Q′ ∈ G.

A way out: If k > 1 andQ ∈ L is linearly independent ofP (that is,
Q /∈ G), then〈P,Q〉m 6= 1.

Let φ : EL → EL be an endomorphism ofEL with φ(P) /∈ G.
φ is called adistortion map.

Define thedistorted Tate pairing of P,Q ∈ G as〈P, φ(Q)〉m.

Sinceφ(P) is linearly independent ofP, we have〈P, φ(P)〉m 6= 1.

Sinceφ is an endomorphism, bilinearity is preserved.

Symmetry: We have〈Q, φ(Q′)〉m = 〈Q′, φ(Q)〉m for all Q,Q′ ∈ G.

Distortion maps exist only for supersingular curves.
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Let d > 2, andv ∈ F∗

q ad-th power non-residue.

Consider the curveE′ : Y2 = X3 + v4/daX + v6/db (defined overFqd).

If d = 2, thenE′ is defined overFq itself.

E′ is called atwist of E of degreed.

E andE′ are isomorphic overFqd. An explicit isomorphism is given by the
mapφd : E′ → E taking(h, k) 7→ (v−2/dh, v−3/dk).

Let mbe a prime divisor of|Eq|, G a subgroup of orderm in Eqk, andG′ a
subgroup of orderm in E′

qk. Let P,P′ be generators ofG andG′. Suppose
thatφd(P′) is linearly independent ofP.

Ford = 2 (quadratic twist ), a natural choice isG ⊆ Eq andG′ ⊆ E′
q.

Define a pairing of pointsQ ∈ G andQ′ ∈ G′ as〈Q, φd(Q′)〉m.

This is called thetwisted Tate pairing.
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For general curves,k is quite high (|k| ≈ |m|).
Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

By Hasse’s Theorem,|Eq| = q + 1− t with |t| 6 2
√

q.

If p|t, we callE asupersingular curve.

Curves of the formY2 + aY = X3 + bX + c are supersingular over fields of
characteristic 2.

All supersingular curves over a finite fieldK of characteristic 2 havej-invariant
equal to 0, and so are isomorphic overK̄. The same result holds forp = 3.

Supersingular curves have small embedding degrees. The only possibilities are
1,2,3,4,6.

If Fq is a prime field withq > 5, the only possibility isk = 2.

Non-supersingular curves are calledordinary curves.

It is difficult to locate ordinary curves with small embedding degrees.
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Let k be a positive integer, and∆ a small positive square-free integer.

Search for integer-valued polynomialst(x),m(x),q(x) ∈ Q[x] to represent a
family of elliptic curves of embedding degreek and discriminant∆. The
triple (t,m,q) should satisfy the following:

1 q(x) = p(x)n for somen ∈ N andp(x) ∈ Q[x] representing primes.

2 m(x) is irreducible with a positive leading coefficient.

3 m(x)|q(x) + 1− t(x).

4 m(x)|Φk(t(x) − 1), whereΦk is thek-th cyclotomic polynomial.

5 There are infinitely many integers(x, y) satisfying∆y2 = 4q(x) − t(x)2.

If y in Condition 5 can be parameterized by a polynomialy(x) ∈ Q[x], the
family is calledcomplete, otherwise it is calledsparse.

For obtaining ordinary curves, we require gcd(q(x),m(x)) = 1.

Thecomplex multiplication method is used to obtain specific examples of
elliptic curvesE overFq with Eq having a subgroup of orderm.
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Some sparse families of ordinary pairing-friendly curves are:

MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders
with embedding degrees 3, 4 or 6.

Freeman curves:These curves have embedding degree 10.

Some complete families of ordinary pairing-friendly curves are:

BN (Barreto-Naehrig) curves: These curves have embedding degree 12 and
discriminant 3.

SB (Scott-Barreto) curves

BLS (Barreto-Lynn-Scott) curves

BW (Brezing-Weng) curves
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Denominator elimination: Let k be even. Taked = k/2.

fn,P(Q) is computed by Miller’s algorithm, whereQ = (h, k) with h ∈ Fqd.

The denominatorsL2U,−2U(Q) andLU+P,−(U+P)(Q) correspond to vertical
lines, evaluate to elements ofFqd, and can be discarded.

The final exponentiation guarantees correct computation ofêm(P,Q).

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller’s loop.

Loop reduction: With clever modifications to Tate pairing, the number of
iterations in the Miller loop can be substantially reduced.

A typical reduction is by a factor of 2.

Examples
η and ηT pairings

Ate pairing

R-ate pairing



References for Part II

BLAKE , I. F., K. MURTY AND G. XU, Refinements of Miller’s Algorithm for
Computing Weil/Tate Pairing, http://eprint.iacr.org/2004/065, 2004.

BLAKE , I. F., G. SEROUSSI ANDN. P. SMART, Advances in Elliptic Curve
Cryptography, Cambridge University Press, 2005.

DAS, A., Computational Number Theory, Manuscript under preparation.

DAS, A. AND C. E. VENI MADHAVAN , Public-key Cryptography: Theory and
Practice, Pearson Education, 2009.

ENGE, A., Elliptic Curves and Their Applications to Cryptography: An
Introduction, Kluwer Academic Publishers, 1999.

FREEMAN, D., M. SCOTT, AND E. TESKE, A Taxonomy of Pairing-friendly
Elliptic Curves, Jl of Cryptology, 2010. (Also in Cryptology eprint archive:
2006/372.)

MARTIN , L., Introduction to Identity-Based Encryption, Artech House, 2008.

M ILLER , V. S.,The Weil Pairing, and Its Efficient Calculation, Jl of Cryptology,
17, 235–261, 2004.



Part III

Hyperelliptic Curves



Part III

Hyperelliptic Curves

Representation of the Jacobian



References for Part III

DAS, A. AND C. E. VENI MADHAVAN , Public-key Cryptography: Theory
and Practice, Pearson Education, 2009.

MENEZES, A. J., Y. WU AND R. ZUCCHERATO, An Elementary
Introduction to Hyperelliptic Curves, CACR technical report CORR 96-19,
University of Waterloo, Canada, 1996.


	Affine and Projective Curves
	Rational points on curves
	Polynomial and rational functions on curves
	Divisors and Jacobians on curves

	Elliptic Curves
	Rational maps and endomorphisms on elliptic curves
	Multiplication-by-m maps and division polynomials
	Weil pairing
	Tate pairing

	Hyperelliptic Curves

