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Section 1

THE FINITE-FIELD
DISCRETE LOGARITHM PROBLEM
(DLP)




What is DLP?

LetK = Fq = GF(q) be a finite field of size.

g can be a primeg) or a power of a primeg(").

The multiplicative group oK is K* = K\ {0}.

K* is cyclic. Letg be a generator (or an element of large ordeRin
DLP inK: Givena e K*, find an integei such thaa = g'.

i is called thediscrete logarithnor indexof a to the basey. It is unique modulo
g—1 (or the order of)). We denoté = indga.

DLP is apparently a difficult computational problem.

Many cryptosystems derive their security from this appeirgnactability of DLP.



Representation of Finite Fields

Prime fieldFp, = {0,1,2,...,p—1}.

Arithmetic inFy, is the integer arithmetic modulo the primpe

Extension field&p» = Fy[X]/(f (X)), wheref (x) is a (monic)irreducible polynomial
of degreenin [Fp[x].

Fon = {ag+aiX+apx® + - +an_1X"1 | & € Fp}.

The arithmetic ofFy is the polynomial arithmetic oF[x] modulo thedefining
polynomial f(x).

Extensions of extension fieldSyp = Fqg[x]/(f(x)), wheref(x) € Fq[x] is monic,
irreducible and of degree Here,q = p™ for some primep andm € N.

Fon = {@0+aix+ a4+ +an X" | g € Fg}.

The arithmetic ofF ¢ is the polynomial arithmetic oFq[x] modulo thedefining
polynomial f(x).




Algorithms for Solving DLP
Fully Exponential Algorithms

Shanks’ Baby-Step-Giant-Step (BSGS) method
Pollard rho and lambda methods
Pohlig-Hellman method

Subexponential Algorithms

Based on the index calculus method

Running times foif"y are of the form

Lg(w,cC) = exp[(c+ 0(1)) (Iogq)“’(loglogq)lf“’ ,
wherec > 0and O0< w < 1.

Smaller values ofv andc are desired.
Quasi-Polynomial Algorithms

Running time(logq)©(109/099) — 20((10g1099°) for certain fields.



Variants of the Index Calculus Method
Slower variants (w = 1/2)
Basic method

Linear sieve method (LSM)
Cubic sieve method (CSM)

Faster variants (w = 1/3)

Coppersmith’s method
Number field sieve method (NFSM)
Function field sieve method (FFSM)

Recent variants

Joux—Lercier medium-prime case
Joux’s pinpointing method

Barbulescu et al.’s quasi-polynomial method



Three Stages of the Index Calculus Method

Relation collection: A set ofsmallelements are chosen as flaetor base Linear
congruences modulg— 1 are generated involving the indices of the factor-b;
elements. This stage uses trial division, sieving or pintiog.

Linear algebra: The linear congruences obtained from the first stage aredc
modulog— 1. Sparse system solvers are used (like Lanczos method oieYiienn
method). The number of congruences should be sufficientheri@an (like twice)
the number of unknown indices of factor-base elements. €hmures that the
system is of full or close-to-full rank.

Individual logarithms: The desired index is expressed as a linear combina
of the indices of the factor-base elements. Substitutiegktiown indices (of the
factor-base elements), we get the desired index.

The first stage is usually the most time-consuming stage.



The Basic Method for Extension Fields

Assumption: Fq = Fpn = Fp[x]/(f (x)) with p small (like 2 3,5)
We choose a smoothness bouid: /.

The factor base consists of all monic irreducible polyndsnia Fy[x of degrees
<B.

Computeg' (modf (x)) for randomly chosef If this polynomial factors completely
over the factor base, we get a relation

g = pipy---pit (modf (x)),
e indgpy +eindgpz + - - +&indgpy =j (modq—1).
The linear system of relations is solved to get the indicdgpn

that is,

For individual logarithm calculation, a single relatiorgisnerated:
ag = pipZ - pt (modf (x)),
which gives
indga= —i+f1indgpy +f2indgp2 + - - - +frindgpr (Modqg —1).



Passage fromw=1/2tow=1/3

The running time of the basic methodlig(1/2,c).

If we take a largeB (smoothness bound), then getting each relation is easyydoL
have to generate many relations to get a full-rank system.

If we take a smalB, then generating each relation needs many trials with nan
values of].

B ~ y/n gives the optimal performance for the basic method.
The smoothness candidates are of degree

Some variants achieve better valuescdfy generating smoothness candidates
degrees about/2 (LSM) orn/3 (CSM). ButB is still abouty/n.

Faster methods (Coppersmith, NFSM, FFSM) manage Brith/n.

Now, relations cannot be generated from factorizationgofiomg . This is where
function fields play a critical role. A relation involves tvemooth polynomials of
degrees about?/3.

Individual logarithm calculations need to be modified toecéuse random value
of ag have little chance of being smooth over the factor base.



Analogy to the Number Field Sieve

Both Z and K[x] are Euclidean domains (and so principal ideal domains an
unique factorization domains and so normal domains). Thayesmany algebraic
properties.

The field of fractions (the (total) quotient field) @ and K[x] are Q@ and K(x),
respectively.

A finite algebraic extensioh of Q is a number field, whereas a finite algebrai
extensiorF of K(x) is afunction field.

The NFS works in the integral closut® of Z in L.

If we work in the integral closure df[x] in F, we get an analog of NFS for DLP.
FFS works inF itself (well, loosely speaking).

The apparent similarity between NFS and FFS may be mislgadin

FFS produces faster algorithms than NFS in many situations.






Section 2

PROPERTIES OF
ALGEBRAIC FUNCTION FIELDS




What is a Function Field?

LetK be an arbitrary field. We call it thiease field Only when necessary, we
restrict the study to the case of finite fields= Fp or K = Fg.

A rational function field overK is a fieldK(x), wherex is transcendental ovét.
It is the field of rational functions in one variabte

_[9)
<09 ={ 2o | a9.m00 €Ki, no9 20}
An (algebraic) function field F overK is a finite (and therefore algebraic) extensi
of K(x).

For simplicity, we assume that the algebraic extensionngpk. But then, there
exists a polynomial

C(xy) = aa(¥)y + da-1(X)y"* + - + a1 (x)y+ ao(x) € K(X)[y]
with a4(x) # 0 such that = K(x)[y]/(C(X,Y)).

Without loss of generality, we can assume that each K[x], soC(x,y) € K[x,Y].
If necessary, we will further assume ttegg = 1 (this is loss of generality though).

We requireC(x,y) to beabsolutely irreduciblethat is, irreducible irIZ[x, y], where
K is the algebraic closure ¢f.



What is a Function Field?

C(x,y) = 0 represents a plane curvE.is called thefunction field of C, denoted
F=K(C).
F=K(C)={Bo(><)+l31 )Y+ Ba(X)y? + -+ Ba-1y" | Bi(x ()}-

The arithmetic inF is the polynomial arithmetic oK(x)[y] modulo the defining
polynomialC(x,y).

Unique factorization of non-zero elements inK(x = arlp. , Where

ae K*=K\{0}, t >0, pi(x) are pairwise distinct monic irreducible polynomia
in K[x, andg € Z.

This notion of unique factorization is not carried to theeca$ general function
fieldsF = K(C). We cannot even clearly identify irreducible element&in

Number rings are Dedekind domains where unique factoaadiolds at the level
of ideals. Function fields are fields, so the notion of faetation at the level of
ideals makes little sense.

Despite that, we need to generate multiplicative relatiaris. We have to take &
new approach.



Field of Constants

Let F = K(C) be a function field ovekK.

K = {a € F | a is algebraic oveK} is a field containing.

K is called the field of constants &foverK.

K is a finite extension oK.

The field of constants of the rational function fiéddx) is K itself.
If C(x,y) is absolutely irreducible, thelt = K.

Example: TakeK =R (or any prime fieldF, with p= 3 (mod 4). Since—1 does
not have a square root K, the polynomialC(x,y) = x> +y? is irreducible inK [x].
Take F = K(C) for this C. Sincex,y € K(C), andK(C) is a field, the elemen
x/y € K(C), that is, +i € K(C). Here,K = K(i) and[K : K] = 2. This happenec
becauseC(x,y) is not absolutely irreducible. 1K[x,y], we have the factorizatior
C(xy) = (x+iy)(x—iy).

We assumed thak(x,y) is absolutely irreducible. So we will henceforth assul
thatKk =K.



Valuations in Rational Function Fields

Let p(x) be a monic irreducible polynomial &§[x].
Every non-zerax (x) € K(x) can be written as

a(x) = px° ﬁ&;

with g(x), h(x) € K[x], p(x) fg(x)h(x), ande € Z. We writee = Vy) (a(X)).

The functionvyy, : K(x)* — Z is called thep-adic valuation of K(x). Itis a
surjective group homomorphism.

It is often convenient to take,(0) = c with the convention thah < e, andeo 40 =
M+ 00 = 00 +mM= oo for anyme Z.

For anya (x), B(X) € K(x), we then have
Vp(x) (a(X)B (X)) = Vp(x) (C{ (X)> + Vo(x) (B (X>)

(0/(@(X) + B(x)) = min (Vo (a(X)), Vo (B(X))) -
Moreover, |fvp ( (X)) # Vo (B(X)), then

V) (@ (X) + B (X)) = min (Vi (a0 (X)), Vi (B(X))) -

and



Valuation Rings of Rational Function Fields
The valuation ring oK (x) (with respect tg(x)) is defined as
mm::{“”\wmmmemmmmmw}

{CI |Vp(x( ))20}-
For everya (x) € K(x)*, eithera (X ) € ﬁp(x) ora(x)~t € Oy (or both).

Op(x is alocal ring with the unique maximal ideal

pw){W”\mmmmeKMmanmmmuwmm}

= {a(x X) | Vp (a(x)) > 0} .
The group of units M0y, is
O = Opix) \ Ppr = {1 (%) X) | V() =0}.

Op(x is a principal ic_ieal dqmam. Its non-zero |deals are geeelrdmy p(x)™ for
me N. The polynomial(x) itself generatesy

The mapdy ) /pprx — KX/ (p(X)) taking a(X) + ppx) — a(X) remp(x) is a field
isomorphism. These fields have extension degrepdegverK.



The Infinite Valuation of Rational Function Fields

Let a(x) = g(x)/h(x) # 0. We define the infinite valuation of(x) as
Voo (0 (X)) = degh(x) — degg(x).

We also take/, (0) = oo.

The corresponding valuation ring is

%o = {%‘ g(x),h<x>el<[x],degg(x)gdegmx)}

= {a(X¥) eK(X) | vo(a(x)) = 0}.
O is a local ring with the uniqgue maximal ideal

e = { B0 | 9090 € K. degai) < deghix |
= {a() €KX |vo(a(x)) > 0}.

The group of units 0., are
O = Un\po = {a(X) € K(X) | Vo (a(x)) = O} .

O is a principal ideal domain with,, generated by Ax.




Zeros and Poles of Rational Functions

Let p(x) be a monic irreducible polynomial i§[x], anda (x) € K(x).
If Vo (0 (X)) = m> 0, thenp(x) is a zero ofa (x) of orderm.
If Vo (@ (X)) = —m < 0, thenp(x) is a pole ofa (x) of orderm.
Zeros and poles at infinity are likewise defined in terms ofitifiaite valuationve,.
A non-zero rational functiom (x) has only finitely many zeros and poles.
Let P denote the set of all monic irreducible polynomialsifx].
For any non-zero rational functiam(x), we have
[vp(a(x)) degp| =0.
pePU{eo}

The above sum is actually a sum of only finitely many non-zewrons. Here,
degeo = 1 (for the infinite valuation).




Places in a Function Field

Much of the study made for rational function fields holds fdnittary function fields
F=K(C) =KX/ (C(xy)).
A valuation ring of F overK is a ring & satisfying the properties:
1 KSOGF.
2 Foreverya(x,y) € F, eithera(x,y) € 0 ora(x,y)~ € & (or both).
A function field contains infinitely many such valuation ring

0 is a local ring with its unique maximal idepl= ¢\ ¢*, whered™ is the group
of unitsin&.

p is called gplacein F. Let P denote the set of all placesn

The finite places in the rational function figdx) correspond to monic irreducibl
polynomials inK[x], and the infinite place to/k.

For a general function field, we have to play with places.




Places in a Function Field

Let &' be a valuation ring oF = K(C) with maximal ideab.

0 is a principal ideal domain.

A generatop(x,y) of p is called gorime or auniformizer for p.
The non-zero proper ideals 6f are generated by(x,y)™ for me N.

Every non-zeroa(x,y) € F has a (unique) representation of the foox,y) =
p(x,y)€u(x,y) with e € Z andu(x,y) € &*. The value ofe does not depend on th
generatop(x,y) of p.

Thep-adic valuation of F is the functiorvp (a(x,y)) = e (whereeis as above). We
also takevp (0) = 0. For alla(x,y), B(x,y) € F, we have:

Vp(@(%,Y)B(%,Y)) = Vp(a(x,y)) +Vp(B(xY)).

[N

2 Vp Egé ;;—B(x ,Y)) = min(vp(a(x,y)),vp(B(x,y))) with equality holding ifvy (ar (x,y)) #
( )).>Oifand only ifa(x,y) €
( )) =0ifand only ifa(x,y) € 0*.
( )) > 0if and only if ar(x,y) €
( )= (xy)isa generator ab, that is,a (x,y) = u(x,y)p(x,y) for

=1lifandonly ifa




Places in a Function Field

Sincep is a maximal ideal irZ, the quotient ringZ/p is a field.

0 /p is afinite extension oK.

The extension degrdés’/p) : K] is called thedegreeof p, denoted dep.
Leta(x,y) € F be non-zero.

If vy (a(x,y)) =m> 0, thenp is called azero of a(x,y) of orderm.
If vp(a(x, y)) = —m< 0, thenp is called apole of a(x,y) of orderm.

Every non-zerax(x,y) € F has only finitely many poles and zeros.

For every non-zeraor (x,y) € F, we have

>3 [vp(a(x,y))degp] -0.

pep

Here,P consists of all the finite and all the infinite placesHn






1
2
3
4

Relation between Places il (x) and Places inK (C)

The finite places ifK(x) are in one-to-one correspondence with monic irreduc
polynomialsp(x) of K[x]. They are the ideal§(x)) = p(x)K[X]. Let &y denote
the valuation ring with respect fa(x), Pp(x) its maximal ideal andtyy) thep(x)-adic
valuation ofK(x).

A placep in F is said tolie over the irreducible polynomigb(x) (or its ideal(p(x))
in K[x]) if (p(x)) € p. Let Op be the valuation ring with respect to andvy the
corresponding-adic valuation of = K(C).

If p lies overp(x), we have the following:
o) & Op-
Ppx) = PNK(X).
ﬁp()o = ﬁp N K(X)
There is a positive integar= e(p|p(x)) such thawy (a(x)) = ey (a(x)) for all a(x) €

K(x). We calle theramification index of p overp(x). If e> 1, we say thap ramifies over
p(x). If e=1, we say thap does not ramify ovep(x).

The field 0 /p is a finite extension o) /Ppx). The extension degree is denoted |
d(p|p(x)). Itis sometimes called thieertial degree of p overp(x).



Places inK(C) that Lie Over p(x)

Let p(x) be a monic irreducible polynomial i§[x]. How can we find all the place:
p of F that lie overp(x)?

Mathematical notes

Every placep of F lies on exactly one plagg, ) of K(x). Indeed ) =pNK(x

).
Given a placepyy, of K(x) (that is, given a monic irreducible polynomig{x) in
K[x]), there exist only finitely many (but at least one) placeB,ithat lie overp(x).

Computational notes

For simplicity, assume th&(x,y) € K[x,y] is monic iny.

Consider the algebraic extensibr= K[x]/(p(x)) of K. For example, iK = Fq and
degp(x) = J, thenL = F s

TreatC(x,y) € L[y], sincex is now algebraic oveK.

FactorC(x,y) = 15t (y)m2(y) - - p& (y) in L[y], where(y) are monic (mutually
distinct) irreducible polynomials ih]y]. Letd; = degrg(y).

Eachri(y) gives a place; in F, that lies ovep(x). We havee(p;|p(x)) = & and
d(p;|p(x)) = di. These are the only placesr that lie orp(ex).

If dis they-degree ofC(x,y), we haved = Z\a di = _;e(mp(x))d(pi Ip(x)).



Places are ActuallyPlaces

LetK be analgebraically closedield.

Let C(x,y) € K[x,y] be an irreducible polynomial witi+degreed.
The only irreducible polynomials d€[x] arepa(X) = x—awith a € K.
Putx = ain the equation fo€ to getC(a,y) = 0.

C(a,y) splits into linear factors.

There are at most solutions fory in C(a,y) = 0.

For any solutiorb, we have a pointa,b) on C that lies oveipa(X).
Letv be the corresponding valuation ief

We havev(x—a) > 0 andv(y—b) > 0.

We say the valuatiow is centeredat the point(a,b) onC.



Infinite Places

Let K andC continue to be as in the last slide.

K(x) has a unique infinite place with uniformizefx.

What are the places i = K(C) that lie over this infinite place?
Let mbe thex-degree ofC(x,y).

Consider the curv€u(x,y) = X"C(1/x,y).

Points onC, of the form(0,b) stand for points at infinity ocC.
We determine all such points by solvi@f0,y) = 0.

For an infinite valuatiorv of F = K(C) corresponding to the poiri, b), we have
v(x) < 0 (xhas a zero &f0,b) on C, and so a pole of® at (w0, b)) andv(y—b) > 0.

We say that the infinite valuationis centeredat (0, b).



Divisors

Let P be the set of all places in a function fididoverK. We treat the elements ¢
P as symbols. To highlight this fact, we wrijg for p € P.

A divisor is an integer-linear combination of the symboldPof

> Mplpl,

pep
where allny € Z, andny = 0 except for only finitely many € P.

Two divisors are added as

> Mplpl+ > nplp] Zmp+”p)[]

pep pep
Under this operation, the set Bv) of all divisors is an additive Abelian group.

The identity of this group is theero divisor

0= % Ofp].
&

The additive inverse of a divisor is

=S mplel= 3 (~np)lol

pep pep

Div(F) is the free Abelian group generated By



Degrees of Divisors

The degree of the divisdd = J pp Np[p] is the integer

degD = Z np degp.
pep

By definition, this is a sum of only finitely many non-zero term
The function deg : DiyF) — Z is a homomorphism of additive groups.
The set of divisors of degree zero
Div(F) = {D € Div(F) | degD = 0}
is the kernel of the degree map, and is a subgroup off)iv
Let 0+ a(x,y) € F. The divisor ofa (x,y) is
Div(a(x.y)) = 3 vp(a(xy))p].

peP
Such a divisor is called principal divisor .

The set of all principal divisors is denoted as PFin
Prin(F) is a subgroup of D¥(F).
As groups, we have Prif) C Div?(F) C Div(F).



Class Groups and Class Numbers

Two divisorsD;, D, € Div(F) are said to bequivalent, denoted; ~ Do, if D1 =
D, +Div(a(x,y)) for some non-zeroi(x,y) € F.

~ is an equivalence relation on DF).

The set of all equivalence classes of (Y under~ is called thedivisor class
group CI(F) of F overK.

CI(F) is actually the quotient group D(#)/ Prin(F).

The degree-zero part of () is likewise defined as &{F) = DivO(F)/ Prin(F).
The sizeh = he of CI°(F) is called theclass numberof F overK.

If K is a finite field, then the class numberfot= K(C) is finite.



Principal Divisors

Let 0# a(x,y),B(x,y) € F=K(C).

Div(a(x,y)B(xy)) = Div(a(x,y)) + Div(B(xy))-

Div(a(x,y)) =0if and only ifo(x,y) € K*.

Any a(X,y) transcendental ové¢ has at least one zero and at least one pole.
Div(a(x,y)™!) = —Div(a(x,y)).

Div(a(x,y)) = Div(B(x,y)) if and only if a(x,y) = cB(x,y) for somec € K*.
The function Div :F* — Prin(F) is a group homomorphism.

a(x,y) has no finite poles if and only & (x,y) € K[x,Y].

Let the class numbehn of F over K be finite, and letD be a divisor of degree
zero. ThenhD is a principal divisor, that ihD = Div(y(x,y)) for some non-zero
y(x,y) € K(C). The functiony(x,y) is uniquely determined up to multiplication b
non-zero elements .






Norms

LetC(x,y) = Y+ ag-1(X)y* ™ + a2y %+ + a1(x)y + ao(x) € K[x.y].

Letys,Yo,...,Yq be the conjugates ofin IZ(C). Any one of these can be taken «
y € K(C). They are algebraically indistinguishable from one anothe

Cxy) = (Y=y)(y—Y2) - (Y= Ya)-

Let a(x,y) € K(C).

Let the minimal polynomial ofr overK(x) have degreé We havet|d.

Letas,as,...,a; be the conjugates af.

Thenorm of o as an element df overK is defined as
N(a) = Ne () = (ar0z--- o) /",

We haveN(a) € K(x). Moreover, ifa is integral overK[x] (that is, the minimal
polynomial ofa is a monic polynomial irK[x]), thenN(a) € K[x].



Norms of Linear Elements

Let a(x,y) = r(x)y+ s(x) with r(x),s(x) € K[x], r(x) # 0.

All the conjugates ofr in K(C) area; = r(X)y; +s(x) fori =1,2,...,d.

The minimal polynomial ofx is thereforegly — a1)(y—a2)--- (y— aq) € K[X,Y].

The norm ofa (x, y) is
N(@(xy) = Fl"' - rl X)yi+s09) = (=r00)* [ ((=s09/r60) )
= (~r)C(x,—sx)/r(x) € KIx.

Sincea(x,y) € K[x,y], it has no finite poles.
All the zeros ofa (x,y) lie over zeros oN(a(X,Y)).
We factorN(a(x,y)) (or equivalentlyrdC(x, —s/r)) in K[X.

For each irreducible factgy(x) of N(a(x,y)), we look at all the places of F that
lie overp(x).

All suchp need not be zeros af(x,y). Indeed,a(x,y) has a zero at if and only if
Vp(a) > 0. This would give us Dia (x,y)).



Section 3

THE ADLEMAN-HUANG VARIANT OF
THE FUNCTION FIELD SIEVE METHOD
(THE SMALL PRIME CASE)




Setup: Polynomial Selection
To compute discrete logarithms Ity with p small. The base field i€ = Fp,.
Choose a monic irreducible polynomix) = x" + f1(x) € K[x] with degfy(x) <
n?/3. Representp (x| = Fp[x]/(f(X)).
Letd ~ n%2 andd’ = [n/d] ~ n?/3. Choose a monim(x) € K[x] of degreed’.
Choose a plane curvg(x,y) = 0 defined ovelK = I, such that the substitutiol
y=m(x) givesC(x,m(x)) = 0 (modf (x)).
Letdd = n+ o with d < d. We have

XOf (x) = m(X)% + ag_1()M(X) 4" + ag_2(X)M(X)4 2 + - - + a1 (X)m(X) + ao(X)
with ai(x) € K[x] and degni(x) < d foralli =0,1,2,...,d— 1. Take the curve

Cxy) =¥+ aa-100¥" "+ ag_2(X)y* 2+ -+ ar(x)y+ ao(x) € K[x,y].

We haveC(x, m(x)) = x°f (x) = 0 (modf (x)) as required.
Example construction

Takem(x) = x . This impliesC(x,y) = y¥ + x3f;(x).

Try randomfl( ) until one with at least one simple root is found drfel) = x" + f1(x) is
irreducible inK[x]. These choices guarantee tRK, y) is absolutely irreducible.
We need the class numbemf F = K(C) overK to be coprime tqp"—1)/(p—1). No

known easy check ensures this. So we assume that this condition hiolds.algorithm
fails, we retry with a differenty (x).



Setup: Factor Base

We choose a smoothness boukig nl/3,
The factor base consists of two parts.

The first parS={p1(x), p2(X), . .., p:(X)} contains all monic irreducible polynomial
of K[X] of degrees< B.

Letp be a place irK(C) that lies over somg;(x) € S. Choose any fixed plaagof
degree one itk (C). Then, the divisoD = [p] — (degp)[q] is of degree zero, that is
hD is a principal divisor, that ifhD = Div(u(x,y)) for somep(x,y) € K(C). This
function u(x,y) is uniquely determined up to multiplication by element&oéf

The second pa® = {p1(x,y), U2(X,Y), ..., Hr(X,y)} contains all functiong(x,y)
constructed as above from all the places lying over all treglircible polynomials
of S. Additionally, S contains functions constructed from all the infinite plaogs
F=K(C).

We do not need these functions explicitly. We will insteadrkvonly with their
indices (not exactly, see later).

Let i be constructed from the plage. Denote bvaj the corresponding;-adic

valuation. We require the capability to compute these vadna for functions of a
particular form.



Relation Generation

Choose random polynomial$x),s(x) € K [x] of degree about®/3.
Bothr(x)m(x) 4+ s(x) andr(x)y + s(x) should be smooth.
r(x)ym(x) + s(x) is smooth if and only if it factors completely over the irredhle

polynomials inS: ¢
r(m(x) +s(x) = rlpi (x)°
i=
r(x)y+ s(x) is smooth if and only if its norm factors completely ov@r If so, we
T

computes; = Vp, (r(x)y+s(x)) forj=1,2,...,T. We havezla,- degp; =0, and

Div (r (X)y+S(x Ziq pjl = Zlai Pl — (Ziaj degp,) Z%(P, —degpj[q ])
Therefore,
Div (( (X)y+s(x) ) Div (rluj (%,Y) >

(ry+s())" =c rlu,xy

that is,

for somec € K*.



The Homomorphism ¢

Define@: K[x,y]/C(x,y) = K[x]/{f (X)) by y — m(x).

The integral domairK[x,y]/C(x,y) is not the same ak(C) = K(X)[y]/(C(X,Y)).
Adleman and Huang prove thef ;) is defined for ally; € S.

Apply @ to the multiplicative relation involving(x)y -+ s(x) to get
9 ((re0y+300)") = (r9m0 +50x)" = ¢ _|j<p<uj (6Y))¥ € Fp.
Sincec € Fy;, we havec?™ 1=1 (by Fermat’s little theorem) This gives
( (X)M(X) + s(x ))(P Dh _r!p (p 1ha_|—|(puJ xy))(p 13 € Fpn.
Taking discrete logarithm to a bagéx) glves
(p—1) hZalnd Whi(X)=(p—1) Za,md ( o1 (x y))) (modp" 1),
that is,

t
hi;a indy ) pi(X) =

)
¥ ayindg (9(44(0))) (mod (6"~ 1/ (p~ 1)),

J:




A Relation Finally

Assume that gadh, (p"—1)/(p—1)) = 1. Then, we have
me o Pi(X ;a[lm ) (@(k(x)))] (mod(p"—~1)/(p—1).

Let us denotev; = indy, pi(x) (mod (p"—1)/(p—1)) fori=1,2,....t, andz =
hindy (@(k(xy)) ) (mod(p"~1)/(p—1) forj =1,2.....T
Then, we have the linear congruence #T variables:
t T

i;QWi zj;ajzj (mod(p"—-1)/(p—1)).
Assume thag(x) = pi(x) for somei = 1,2,...,t. We then get the dehomogenizir
relationw; =1 (mod(p"—1)/(p—1)).
All collected relations are solved modulp"—1)/(p—1).

Sincep is small, the correct values @f andz modulop” — 1 can be obtained by
looking at thep — 1 possibilities of each.



More about the Adleman—Huang Algorithm

Two questions remain unanswered from the exposition giegars

How can we computg & vj, (r(x)y+s(x))?

Adleman and Huang propose thiewton polygon methodto solve this problem.
It involves some power series calculations and can be doti@épolynomial inn.

What about individual logarithm calculations?

The factors bas& now contains too few primes to make a randomly chogen
smooth oveiSwith a decent probability. Moreover, it is not clear how thdices
corresponding to the elements®fcan be used in this stage.

A common way to get around this difficulty is to use some kindiegcent Factor
ga into irreducible polynomials of moderate degrees. Expesash polynomial
of moderate degree as a product of two or more polynomialsnaller degrees
(modulof (x), of course). Repeat until the polynomials reduce to tho& in



Section 4

THE JOUX-LERCIER VARIANT OF
THE FUNCTION FIELD SIEVE METHOD
(THE MEDIUM PRIME CASE)




A Renewed Look at the Adleman—Huang Algorithm

Consider the following commutative diagram.

Kxy]

Y N4 \UJR
Kixyl/{ly=m(x))  Klxy]/(C(xy))
@ <

K[x]/{f(x))

On the left, we first sey = m(x) via Y. Then, we puC(x,y) = 0 (this is@ ). But
y =m(x), so puttingC(x,m(x)) = 0 essentially means reduction modéia).

On the right,we first pu€(x,y) = 0 (this isyr) and then we puy = m(x) modulo
f(x) (this isgr or @).
Foru(x,y) € K[x,y], we get the same objegt (Y (U(X,Y))) = R(Yr(U(X,Y))).

For the special cas€x,y) =r(X)y+s(x), the left side near side) givesr (x)m(x) +
s(x) (modf (x)).

The right side élgebraic sidg involves working in the function fiel& (C).

Joux and Lercier propogg(x,y) of a very specific form so that both sides behe
as the linear side, and function field computations are akteid altogether.






Setup: Polynomial Selection and Factor Base

Let K = Fq be the base field. We want to compute indice&#) whereQ = q".
Note thatqg may already be a prime power. The Joux—Lercier method istafée
whenq is medium-sized.
Two polynomial relations irx,y give two different representations Bf:

x=my(y) andy = m(x).
Let d; = degmy(x) andd, = degmp(y) with didy > n.
We now have the commutative diagram:

FQ[X»Y]
x=my(y) Ve N\ Y mp(x)
Fo[x,yl/(X=mu(y))  Fqlx,yl/{y—mp(x))
y=mp) x=myfy)
Fq = Fqn

We havex = my(y) = myp(mp(x)). Let f(x) be a monic irreducible polynomial o
degreen with f (x)|[my(mp(X)) — X]. This givesFq = Fq[X]/(f (X)).

Similarly, y = mp(x) = mp(my(y)). The minimal polynomial of = mp(x) € Fq over
Fq must be of degree and must dividery(my(y)) — .

The factor base consists of thg @ements+a andy+afor all a ¢ Fg.



Relation

Let U(X, y) € IFQ[Xa y]

The left side givesi(x,my(X)), whereas the right side givegmy (y),y). Since the
diagram is commutative, these two elements are equal.

Takeu(x,y) = r(x)y+s(x) with linear polynomials (x),s(x) € Fqy[x].
We have the equality ifig:
r()ma(x) +s(x) = r(my(y))y+s(mu(y)).

The left side is a polynomial of degree + 1 and the right side is a polynomial c
degreed; + 1.
If both sides split into linear factors, we have

(X+ay)(X+az) - (X+ady+1) = A(Y+Db1)(y+Db2) - (y+ by +1)
for someA € Fg.
Taking logarithm gives

indg(X+ay) +indg(X+az) + - - - 4 indg(X+ ag,+1)

= indgA +indg(y+b1) +indg(y+bz) +--- +indg(y+ by, +1) (modQ—1),

or
indg(x+ay) +indg(X+ap) + - - - +indg(X+ ag,+1)

= indg(y+by)+indg(y+bp) +--- +indg(y+ b, +1) (Mod(Q—1)/(q—1)).



Why Medium Prime?
Parasitic solutions: Each relation is satisfied if we set iglot+a) = dy +1 and
indg(y+a) =dz+1forallacFg.

Suppose that there exists are Fq for which y+a = mp(x) + a splits into linear
factors (inx). This removes the obvious parasitic solutions.

The size of the factor base ig.2Me need at least as many relations.

The probability that a polynomial of degréesplits into linear factors is abouy d!.
Therefore,r (X)mp(X) + s(x) andr(my(y))y+ s(m(y)) are simultaneously smoot
with probability about 1((d; +1)!(dz +1)!).

We taker (x) = wx+ 1 ands(x) = ux+ v with w,u,v € Fq. So we must have
0>/ ((d1+1)!(d2+1)!) > 2q,

that is,
0 > 2(di +1)!(dp + 1)1,

If we taker (x) = 1 ands(x) = ux+ v, we require

gq=2(di+ 1) (dx+ 1)1
Removal of parasitic solutions requirgs- (d; +1)!(d> + 1)!.
Good choiced; ~ dp = \/n.



Working with Smaller Medium Primes

So far, the factor base consists of only linear polynomialso, r(x),s(x) are taken
as linear polynomials.

Now, we introduce a smoothness bouBydand taked; ~ \/n/iB andd, =~ v/Bn.
Chooser (x),s(x) as polynomials of degrees B.

r(X)mp(x) + s(x) is of degree< d; + B~ v/Bn+ B.

r(my(y))y+s(m(y)) is of degree< Bdy + 1~ v/Bn+ 1.

If B < n, both these degrees are approximatgBn.

The factor base consists of all monic irreducible polyndsniax andy of degrees
< B. There are at most such polynomials.

Total size of the sieving spaceds®*?.

The smoothness probability (of two sides together) i expn/BIn(n/B)).
In order to get sufficiently many relations, we requiBet- 1) Inq > +/n/Bin(n/B).



Section 5

JOUX’S PINPOINTING ALGORITHM
FOR THE MEDIUM PRIME CASE




One-Sided Pinpointing

For simplicity, let us restrict t& = 1.
Takex =yt andy = m(x), wherem(x) € Fq[X] is of degreet,.
Forr(x) = x+b ands(x) = ax+ ¢, we now have the equality fq:
r(x)y+s(x) =yt + ayt + by+ ¢ = xm(x) + ax-+bm(x) +c.
Look at they side. Find a single polynomial of the fora9:t1 + u% 4 By+ C that

decomposes completely into linear factor&iju]. We need to try abou(d; + 1)!
random values 0B, C € Fq. This can be done by trial division or sieving.

For eacha € g, substituteu = y/a to get the polynomiay®11 + ay®t + by+c,
whereb = Ba™t andc = Ca®1*1. Each of these polynomials decomposes into lin
factors inFqy[y]. For about{q— 1)/(dz + 1)! choices ofa, thex side is smooth too.

Get one relation with some effort. Get many other relatiandriee.

Efficiency increases by a factor of 2 min(q— 1, (dy + 1)!).



Kummer Extensions

Letn=d;dr—1.
Assume thalfq contains all then-th roots of unity.

Choosex € Fq such thaf (x) = X" — K is irreducible inFq[x]. Define the extensior
Fq =Fon =Fqlx/(f(x))-

X" =k in Fg, so (x3)" = k9 =k, that is,xd is again a root of (X) = X" — k.
Therefore, there exists a primitive roptof unity in Fq such thak = ux.

(Note: X" —k = (X — tyX)(X — p2X) - - - (X — UnX), wherepy, t, ..., U € Fq are
the n-th roots of unity. Furthermore, the rogtwith x4 = px must be primitive. If
not, letu™ = 1 for somem < n. But then,(x%)™ = x™, that is,(x™)9~ = 1, that is,
x™ e Fy, a contradiction to théeft(X) = X" — k is the minimal polynomial ok.)

Takex =y /k andy = x%. Then x%% — kx = 0, that is xf (x) = 0, as required.



Reduction in the Size of the Factor Base

Takea € Iy,

We have(x+a)d =x3 +a=pix+a=p(x+a/u) foralli=0,1,2,...,n— 1.
Therefore, ing(x+a/p') = d indg(x+a) (mod(Q—1)/(q—1)).

Sincen = did> — 1, we have gcth,dy) = 1, that is,u’ = u% is again a primitive
root of unity inlFg.

We havey = x%, soyd = x%29 = (x9)% = (ux)% = p%y, that is,y = p'y.

Therefore, ing(y+a/(1')") = d indg(y + @) (mod (Q—1)/(q— 1)) for all i =
0,1,2,...,n—1.

These free relations reduce the number of unknown indidethécelements of the
factor base) by roughly a factor of

Now, takea = 0. Sincex" = k € Fq, we have(x")4"1 = 1, that is,nindgx =
0 (mod(Q—1)/(q—1)). If, in addition, n is coprime to(Q—1)/(q— 1), then
indgx=0(mod(Q—1)/(q—1)). Likewise, ingy=0 (mod(Q—1)/(q—1)).



Two-Sided Pinpointing

An equation of the fornm(x)y -+ s(x) now has the form
xy+ay+ bx+c = x2 1 + ax® 4 bx+c =y +1 /k + by /k +ay+c.

Choose a tripl¢A, B, A ) with A # 0, B # 0, andBA™ ann-th power inFq. Suppose
that both the polynomiala®* + u% + A(u+A) and (V! +v3%) /k +B(V+A)
split into linear factors.

Now, substitutes = x/a andv = y/b to get the polynomialg®*® + ax®2 + Aa2x+
Aa®2t1) and yh*/k + byt /k + BBty + Bt which split completely into
linear factors.

In order that these two polynomials are of the desired forepwist have\a® = b,
Bbh = a, Ag%2t1) = Bptt1) =ab) =c.

Eliminatingb from the first two equations givaf1%-1 = a" = 1/(BA%). Thus, we
take asa anyn-th root of 2/ (BA%), and geb = Aa® andc = abA.

Different choices for (as then-th root) give the same equation because of the ac
of theg-th power Frobenius map.



Other Extensions of Pinpointing

The Kummer extension with = d;d, + 1 can be analogously handled usixg:

K /Y%t andy = x%.
Both one-sided and two-sided pinpointing can be generhtiz¢he cas® > 1.
d-1

For example, the polynomiaf + %ajxi decomposes into factors of degree®
a2
if and only if the polynomial® + u%-* + Zajag:'lu' decomposes into factors ¢
i=
degrees< B.

The substitutionu = x/aq_1 will now do the trick.






Section 6

BEYOND PINPOINTING:
A QUASI-POLYNOMIAL ALGORITHM




The BGJT Algorithm

Proposed by Barbulescu, Gaudry, Joux and Tadeprint 2013/400).
Joux’s algorithm takek(1/4+ ¢) time for small characteristic.

To compute discrete logarithms Iy, embedFq in a fieldF g with g~ k.

IFCZ1 acts as the medium subfield. We use two polynommjéx) and mp(x) for
representingf . over Fo. We takexd congruent tomy(x)/my(x) modulo the
defining polynomial.

In many cases, the running timeri1°9m — 20(08n) \heren is the bit size ofQ.

The basic innovation is an efficient descent algorithm fdcudating individual
discrete logarithms.

The same descent algorithm applies to the relation-geéaanahase too.
To compute the index d?(x) € F2(x) with D = degP satisfying 1< D < k—1.
Express indP as a linear combination of ind, and a few indP;, degP; < [D/2].

During relation generatio) = 1, that is, eacl®; is a linear polynomial.



Homographic Action

Take a matrix with entries frorqu:

a b
m=(¢ )
_aP+b

~ cP+d’
The action is trivial ifa, b, c,d € Fq, so we actually také from

M acts onP as

Pq=PGL(F3)/PGL(Fy),

where PGL stands for the projective general linear groupwatiible 2x 2 matrices.



Systematic Equation
We havexd —X = [acr, (X—a).

Take the projective lin@(Fg) (all the pointg(a: 1) with a € Fq and the point1: 0)
at infinity).
Choose a set of representativesof theq+ 1 points such that
Xy-xfi=" [ (Bx—ay).
(a,B)es
Apply the homographi € &, to get:
(aP+b)%(cP+d) — (aP+b)(cP+d)9 = [B(aP+b) —a(cP+d)]
(a,B)es”
= (8 —ca)P — (da —bp)]

(a,B)es

)\ [P—X(Mfl-(a:g))],

Bles

Q

whereA € IF;Z, andx (M- (a:B))is ‘ig bB it the point is finite or 1 for the point
at infinity.



Relations

The right-hand side is a product g+ 1 translates oP by elements Oqu.

Let P(x) be P(x) with all coefficients raised to thg-th power.
Sincex® = my (x)/mg(x) in F, the left-hand side becomes

(@9P(my/mp) + b%) (cP+-d) — (aP+ b) (cP(my /mp) + d%).
The denominator is a power ob(x).
The numerator is of degree (1+ 0)D, whered = max(degmy, degn).
We get a relation if the numerator i®/2]-smooth.

By varyingM € &4, we hope to generate a full-rank system involving the-1
translates oP as variables.

This gives ind® as a linear combination of imd, andO(g?D) indices of polynomials
P; of degrees< [D/2].

The indices oP; are computed recursively.
The recursion tree has a depth@flogD).

SinceD < k—1, we express inf as a linear combination of indices of line:
polynomials in time magq, k)©(1°9%).



Cases of Applicability

Fo = F With g~ k.

p = charfg = 0(logQ)°M. Let Q = p". If pis small (like 2) anch has no small
prime factors, we embeflg in a larger field. Lek benif nis odd, orn/2 if nis

even. We take = p/'°%K] and work N .

In both the above cases, the running timeG§(99/09Q)%)

This is quasi-polynomial time.







Implications to Public-Key Cryptography
Classical Cryptography (EIGamal Encryption and Signature)

For prime fields, NFS is the champion.

For fields of small characteristics, the Coppersmith metiscgliperseded by th
Adleman—Huang FFS method.

Adaptations of the NFS are also good contenders.

Elliptic-Curve Cryptography (ECDSA)

No apparent direct implications of FFS.

Pairing-Based Cryptography (IBE, IBS)
Bilinear pairing maps on supersingular curves are fredqyesed.

For extension fields of small characteristics, the mediummeicase may occur 0
be forced.

The recent developments make the schemes vulnerable.



Practical Estimates for Supersingular Curves

Curve over DL infield Security Reference
[F 3500 F 36500 81.7 Adj et al. (eprint 2013/446)
F31420 361429 96 Adj et al. (eprint 2013/737)
Foz041 543041 129 Adj et al. (eprint 2013/737)

F 1223 Foa1223 59 Granger et al. (eprint 2014/119)
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