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Section 1

THE FINITE-FIELD
DISCRETE LOGARITHM PROBLEM

(DLP)



What is DLP?

Let K = Fq = GF(q) be a finite field of sizeq.

q can be a prime (p) or a power of a prime (pn).

The multiplicative group ofK is K∗ = K \{0}.

K∗ is cyclic. Letg be a generator (or an element of large order) inK∗.

DLP in K: Givena∈ K∗, find an integeri such thata= gi .

i is called thediscrete logarithmor indexof a to the baseg. It is unique modulo
q−1 (or the order ofg). We denotei = indga.

DLP is apparently a difficult computational problem.

Many cryptosystems derive their security from this apparent intractability of DLP.



Representation of Finite Fields

Prime fieldFp = {0,1,2, . . . ,p−1}.

Arithmetic inFp is the integer arithmetic modulo the primep.

Extension fieldsFpn = Fp[x]/〈f (x)〉, wheref (x) is a (monic)irreducible polynomial
of degreen in Fp[x].

Fpn = {a0+a1x+a2x2+ · · ·+an−1xn−1 | ai ∈ Fp}.

The arithmetic ofFpn is the polynomial arithmetic ofFp[x] modulo thedefining
polynomial f(x).

Extensions of extension fieldsFqn = Fq[x]/〈f (x)〉, where f (x) ∈ Fq[x] is monic,
irreducible and of degreen. Here,q= pm for some primep andm∈ N.

Fqn = {a0+a1x+a2x2+ · · ·+an−1xn−1 | ai ∈ Fq}.

The arithmetic ofFqn is the polynomial arithmetic ofFq[x] modulo thedefining
polynomial f(x).



Algorithms for Solving DLP
Fully Exponential Algorithms

Shanks’ Baby-Step-Giant-Step (BSGS) method

Pollard rho and lambda methods

Pohlig-Hellman method

Subexponential Algorithms

Based on the index calculus method

Running times forFq are of the form

Lq(ω,c) = exp

[

(

c+o(1)
)

(

logq
)ω(

log logq
)1−ω

]

,

wherec> 0 and 0< ω < 1.

Smaller values ofω andc are desired.

Quasi-Polynomial Algorithms

Running time(logq)O(log logq) = 2O((log logq)2) for certain fields.



Variants of the Index Calculus Method
Slower variants (ω = 1/2)

Basic method

Linear sieve method (LSM)

Cubic sieve method (CSM)

Faster variants (ω = 1/3)

Coppersmith’s method

Number field sieve method (NFSM)

Function field sieve method (FFSM)

Recent variants

Joux–Lercier medium-prime case

Joux’s pinpointing method

Barbulescu et al.’s quasi-polynomial method



Three Stages of the Index Calculus Method

Relation collection: A set ofsmallelements are chosen as thefactor base. Linear
congruences moduloq− 1 are generated involving the indices of the factor-base
elements. This stage uses trial division, sieving or pinpointing.

Linear algebra: The linear congruences obtained from the first stage are solved
moduloq−1. Sparse system solvers are used (like Lanczos method or Wiedemann
method). The number of congruences should be sufficiently more than (like twice)
the number of unknown indices of factor-base elements. Thisensures that the
system is of full or close-to-full rank.

Individual logarithms: The desired index is expressed as a linear combination
of the indices of the factor-base elements. Substituting the known indices (of the
factor-base elements), we get the desired index.

The first stage is usually the most time-consuming stage.



The Basic Method for Extension Fields

Assumption: Fq = Fpn = Fp[x]/〈f (x)〉 with p small (like 2,3,5)

We choose a smoothness boundB≈√
n.

The factor base consists of all monic irreducible polynomials in Fp[x] of degrees
6 B.

Computegj (modf (x)) for randomly chosenj. If this polynomial factors completely
over the factor base, we get a relation

gj ≡ pe1
1 pe2

2 · · ·pet
t (modf (x)),

that is,
e1 indgp1+e2 indgp2+ · · ·+et indgpt ≡ j (modq−1).

The linear system of relations is solved to get the indices indgpi .

For individual logarithm calculation, a single relation isgenerated:

agi ≡ pf1
1 pf2

2 · · ·pft
t (modf (x)),

which gives

indga≡−i + f1 indgp1+ f2 indgp2+ · · ·+ ft indgpt (modq−1).



Passage fromω = 1/2 to ω = 1/3

The running time of the basic method isLq(1/2,c).

If we take a largeB (smoothness bound), then getting each relation is easy, butwe
have to generate many relations to get a full-rank system.

If we take a smallB, then generating each relation needs many trials with random
values ofj.

B≈√
n gives the optimal performance for the basic method.

The smoothness candidates are of degree≈ n.

Some variants achieve better values ofc by generating smoothness candidates of
degrees aboutn/2 (LSM) orn/3 (CSM). ButB is still about

√
n.

Faster methods (Coppersmith, NFSM, FFSM) manage withB≈ 3
√

n.

Now, relations cannot be generated from factorizations of randomgj . This is where
function fields play a critical role. A relation involves twosmooth polynomials of
degrees aboutn2/3.

Individual logarithm calculations need to be modified too, because random values
of agi have little chance of being smooth over the factor base.



Analogy to the Number Field Sieve

Both Z and K[x] are Euclidean domains (and so principal ideal domains and so
unique factorization domains and so normal domains). They share many algebraic
properties.

The field of fractions (the (total) quotient field) ofZ and K[x] areQ and K(x),
respectively.

A finite algebraic extensionL of Q is a number field, whereas a finite algebraic
extensionF of K(x) is afunction field.

The NFS works in the integral closureOL of Z in L.

If we work in the integral closure ofK[x] in F, we get an analog of NFS for DLP.

FFS works inF itself (well, loosely speaking).

The apparent similarity between NFS and FFS may be misleading.

FFS produces faster algorithms than NFS in many situations.





Section 2

PROPERTIES OF
ALGEBRAIC FUNCTION FIELDS



What is a Function Field?
Let K be an arbitrary field. We call it thebase field. Only when necessary, we
restrict the study to the case of finite fieldsK = Fp or K = Fq.

A rational function field overK is a fieldK(x), wherex is transcendental overK.
It is the field of rational functions in one variablex.

K(x) =

{

g(x)
h(x)

∣

∣

∣
g(x),h(x) ∈ K[x], h(x) 6= 0

}

.

An (algebraic) function fieldF overK is a finite (and therefore algebraic) extension
of K(x).

For simplicity, we assume that the algebraic extension is simple. But then, there
exists a polynomial

C(x,y) = αd(x)y
d+αd−1(x)y

d−1+ · · ·+α1(x)y+α0(x) ∈ K(x)[y]

with αd(x) 6= 0 such thatF = K(x)[y]/〈C(x,y)〉.
Without loss of generality, we can assume that eachαi ∈ K[x], soC(x,y) ∈ K[x,y].
If necessary, we will further assume thatαd = 1 (this is loss of generality though).

We requireC(x,y) to beabsolutely irreducible, that is, irreducible in̄K[x,y], where
K̄ is the algebraic closure ofK.



What is a Function Field?

C(x,y) = 0 represents a plane curve.F is called thefunction field of C, denoted
F = K(C).

F = K(C) =
{

β0(x)+β1(x)y+β2(x)y
2+ · · ·+βd−1yd−1 | βi(x) ∈ K(x)

}

.

The arithmetic inF is the polynomial arithmetic ofK(x)[y] modulo the defining
polynomialC(x,y).

Unique factorization of non-zero elements inK(x): γ(x) = a
t

∏
i=1

pi(x)
ei , where

a∈ K∗ = K \ {0}, t > 0, pi(x) are pairwise distinct monic irreducible polynomials
in K[x], andei ∈ Z.

This notion of unique factorization is not carried to the case of general function
fieldsF = K(C). We cannot even clearly identify irreducible elements inF.

Number rings are Dedekind domains where unique factorization holds at the level
of ideals. Function fields are fields, so the notion of factorization at the level of
ideals makes little sense.

Despite that, we need to generate multiplicative relationsin F. We have to take a
new approach.



Field of Constants

Let F = K(C) be a function field overK.

K̂ = {α ∈ F | α is algebraic overK} is a field containingK.

K̂ is called the field of constants ofF overK.

K̂ is a finite extension ofK.

The field of constants of the rational function fieldK(x) is K itself.

If C(x,y) is absolutely irreducible, then̂K = K.

Example: TakeK = R (or any prime fieldFp with p≡ 3 (mod 4)). Since−1 does
not have a square root inK, the polynomialC(x,y) = x2+y2 is irreducible inK[x].
Take F = K(C) for this C. Sincex,y ∈ K(C), andK(C) is a field, the element
x/y ∈ K(C), that is,± i ∈ K(C). Here,K̂ = K( i ) and[K̂ : K] = 2. This happened
becauseC(x,y) is not absolutely irreducible. In̄K[x,y], we have the factorization
C(x,y) = (x+ iy)(x− iy).

We assumed thatC(x,y) is absolutely irreducible. So we will henceforth assume
thatK̂ = K.



Valuations in Rational Function Fields
Let p(x) be a monic irreducible polynomial ofK[x].

Every non-zeroα(x) ∈ K(x) can be written as

α(x) = p(x)e g(x)
h(x)

,

with g(x),h(x) ∈ K[x], p(x) 6 |g(x)h(x), ande∈ Z. We writee= vp(x)(α(x)).

The functionvp(x) : K(x)∗ → Z is called thep-adic valuation of K(x). It is a
surjective group homomorphism.

It is often convenient to takevp(0) =∞ with the convention thatm<∞, and∞+∞=
m+∞ = ∞+m= ∞ for anym∈ Z.

For anyα(x),β (x) ∈ K(x), we then have

vp(x)(α(x)β (x)) = vp(x)(α(x))+vp(x)(β (x))
and

vp(x)(α(x)+β (x))> min
(

vp(x)(α(x)),vp(x)(β (x))
)

.

Moreover, ifvp(x)(α(x)) 6= vp(x)(β (x)), then

vp(x)(α(x)+β (x)) = min
(

vp(x)(α(x)),vp(x)(β (x))
)

.



Valuation Rings of Rational Function Fields

The valuation ring ofK(x) (with respect top(x)) is defined as

Op(x) =

{

g(x)
h(x)

∣

∣

∣
g(x),h(x) ∈ K[x], p(x) 6 | h(x)

}

=
{

α(x) ∈ K(x) | vp(x)(α(x))> 0
}

.

For everyα(x) ∈ K(x)∗, eitherα(x) ∈ Op(x) or α(x)−1 ∈ Op(x) (or both).

Op(x) is a local ring with the unique maximal ideal

pp(x) =

{

g(x)
h(x)

∣

∣

∣
g(x),h(x) ∈ K[x], p(x) | g(x), p(x) 6 | h(x)

}

=
{

α(x) ∈ K(x) | vp(x)(α(x))> 0
}

.

The group of units inOp(x) is

O
∗
p(x) = Op(x) \pp(x) =

{

α(x) ∈ K(x) | vp(x)(α(x)) = 0
}

.

Op(x) is a principal ideal domain. Its non-zero ideals are generated byp(x)m for
m∈ N. The polynomialp(x) itself generatespp(x).

The mapOp(x)/pp(x) → K[x]/〈p(x)〉 taking α(x)+ pp(x) 7→ α(x) remp(x) is a field
isomorphism. These fields have extension degree degp(x) overK.



The Infinite Valuation of Rational Function Fields

Let α(x) = g(x)/h(x) 6= 0. We define the infinite valuation ofα(x) as

v∞(α(x)) = degh(x)−degg(x).

We also takev∞(0) = ∞.

The corresponding valuation ring is

O∞ =

{

g(x)
h(x)

∣

∣

∣
g(x),h(x) ∈ K[x], degg(x)6 degh(x)

}

= {α(x) ∈ K(x) | v∞(α(x))> 0} .
O∞ is a local ring with the unique maximal ideal

p∞ =

{

g(x)
h(x)

∣

∣

∣
g(x),h(x) ∈ K[x], degg(x)< degh(x)

}

= {α(x) ∈ K(x) | v∞(α(x))> 0} .
The group of units inO∞ are

O
∗
∞ = O∞ \p∞ = {α(x) ∈ K(x) | v∞(α(x)) = 0} .

O∞ is a principal ideal domain withp∞ generated by 1/x.



Zeros and Poles of Rational Functions

Let p(x) be a monic irreducible polynomial inK[x], andα(x) ∈ K(x).

If vp(x)(α(x)) = m> 0, thenp(x) is a zero ofα(x) of orderm.

If vp(x)(α(x)) =−m< 0, thenp(x) is a pole ofα(x) of orderm.

Zeros and poles at infinity are likewise defined in terms of theinfinite valuationv∞.

A non-zero rational functionα(x) has only finitely many zeros and poles.

Let P denote the set of all monic irreducible polynomials inK[x].

For any non-zero rational functionα(x), we have

∑
p∈P∪{∞}

[

vp(α(x))degp
]

= 0.

The above sum is actually a sum of only finitely many non-zero terms. Here,
deg∞ = 1 (for the infinite valuation).



Places in a Function Field

Much of the study made for rational function fields holds for arbitrary function fields
F = K(C) = K(x)[y]/〈C(x,y)〉.
A valuation ring of F overK is a ringO satisfying the properties:

1 K $ O $ F.

2 For everyα(x,y) ∈ F, eitherα(x,y) ∈ O or α(x,y)−1 ∈ O (or both).

A function field contains infinitely many such valuation rings.

O is a local ring with its unique maximal idealp = O \O∗, whereO∗ is the group
of units inO.

p is called aplace in F. LetP denote the set of all places inF.

The finite places in the rational function fieldK(x) correspond to monic irreducible
polynomials inK[x], and the infinite place to 1/x.

For a general function field, we have to play with places.



Places in a Function Field
Let O be a valuation ring ofF = K(C) with maximal idealp.

O is a principal ideal domain.

A generatorp(x,y) of p is called aprime or auniformizer for p.

The non-zero proper ideals ofO are generated byp(x,y)m for m∈ N.

Every non-zeroα(x,y) ∈ F has a (unique) representation of the formα(x,y) =
p(x,y)eu(x,y) with e∈ Z andu(x,y) ∈ O∗. The value ofe does not depend on the
generatorp(x,y) of p.

Thep-adic valuation of F is the functionvp(α(x,y)) = e (wheree is as above). We
also takevp(0) = ∞. For allα(x,y),β (x,y) ∈ F, we have:

1 vp(α(x,y)β (x,y)) = vp(α(x,y))+vp(β (x,y)).
2 vp(α(x,y)+β (x,y))>min(vp(α(x,y)),vp(β (x,y)))with equality holding ifvp(α(x,y)) 6=

vp(β (x,y)).
3 vp(α(x,y))> 0 if and only if α(x,y) ∈ O.

4 vp(α(x,y)) = 0 if and only if α(x,y) ∈ O∗.

5 vp(α(x,y))> 0 if and only if α(x,y) ∈ p.

6 vp(α(x,y)) = 1 if and only if α(x,y) is a generator ofp, that is,α(x,y) = u(x,y)p(x,y) for
someu(x,y) ∈ O∗.



Places in a Function Field

Sincep is a maximal ideal inO, the quotient ringO/p is a field.

O/p is a finite extension ofK.

The extension degree[(O/p) : K] is called thedegreeof p, denoted degp.

Let α(x,y) ∈ F be non-zero.

If vp(α(x,y)) = m> 0, thenp is called azeroof α(x,y) of orderm.

If vp(α(x,y)) =−m< 0, thenp is called apoleof α(x,y) of orderm.

Every non-zeroα(x,y) ∈ F has only finitely many poles and zeros.

For every non-zeroα(x,y) ∈ F, we have

∑
p∈P

[

vp(α(x,y))degp
]

= 0.

Here,P consists of all the finite and all the infinite places inF.





Relation between Places inK(x) and Places inK(C)

The finite places inK(x) are in one-to-one correspondence with monic irreducible
polynomialsp(x) of K[x]. They are the ideals〈p(x)〉 = p(x)K[x]. Let Op(x) denote
the valuation ring with respect top(x), pp(x) its maximal ideal andvp(x) thep(x)-adic
valuation ofK(x).

A placep in F is said tolie over the irreducible polynomialp(x) (or its ideal〈p(x)〉
in K[x]) if 〈p(x)〉 ⊆ p. Let Op be the valuation ring with respect top, andvp the
correspondingp-adic valuation ofF = K(C).

If p lies overp(x), we have the following:

1 Op(x) ⊆ Op.

2 pp(x) = p∩K(x).

3 Op(x) = Op∩K(x).

4 There is a positive integere= e(p|p(x)) such thatvp(α(x)) = evp(x)(α(x)) for all α(x) ∈
K(x). We calle theramification index of p overp(x). If e> 1, we say thatp ramifies over
p(x). If e= 1, we say thatp does not ramify overp(x).

5 The fieldOp/p is a finite extension ofOp(x)/pp(x). The extension degree is denoted by
d(p|p(x)). It is sometimes called theinertial degreeof p overp(x).



Places inK(C) that Lie Over p(x)
Let p(x) be a monic irreducible polynomial inK[x]. How can we find all the places
p of F that lie overp(x)?

Mathematical notes
Every placep of F lies on exactly one placepp(x) of K(x). Indeed,pp(x) = p∩K(x).

Given a placepp(x) of K(x) (that is, given a monic irreducible polynomialp(x) in
K[x]), there exist only finitely many (but at least one) places inF, that lie overp(x).

Computational notes
For simplicity, assume thatC(x,y) ∈ K[x,y] is monic iny.

Consider the algebraic extensionL = K[x]/〈p(x)〉 of K. For example, ifK = Fq and
degp(x) = δ , thenL = Fqδ .

TreatC(x,y) ∈ L[y], sincex is now algebraic overK.

FactorC(x,y) = πe1
1 (y)πe2

2 (y) · · ·per
r (y) in L[y], whereπi(y) are monic (mutually

distinct) irreducible polynomials inL[y]. Let di = degπi(y).

Eachπi(y) gives a placepi in F, that lies overp(x). We havee(pi |p(x)) = ei and
d(pi |p(x)) = di . These are the only places that lie overp(x).

If d is they-degree ofC(x,y), we haved=
r

∑
i=1

eidi =
r

∑
i=1

e(pi |p(x))d(pi |p(x)).



Places are ActuallyPlaces

Let K be analgebraically closedfield.

Let C(x,y) ∈ K[x,y] be an irreducible polynomial withy-degreed.

The only irreducible polynomials ofK[x] arepa(x) = x−a with a∈ K.

Putx= a in the equation forC to getC(a,y) = 0.

C(a,y) splits into linear factors.

There are at mostd solutions fory in C(a,y) = 0.

For any solutionb, we have a point(a,b) onC that lies overpa(x).

Let v be the corresponding valuation ofF.

We havev(x−a)> 0 andv(y−b)> 0.

We say the valuationv is centeredat the point(a,b) onC.



Infinite Places

Let K andC continue to be as in the last slide.

K(x) has a unique infinite place with uniformizer 1/x.

What are the places inF = K(C) that lie over this infinite place?

Let m be thex-degree ofC(x,y).

Consider the curveC∞(x,y) = xmC(1/x,y).

Points onC∞ of the form(0,b) stand for points at infinity onC.

We determine all such points by solvingC(0,y) = 0.

For an infinite valuationv of F = K(C) corresponding to the point(0,b), we have
v(x)< 0 (x has a zero at(0,b) onC∞ and so a pole onC at (∞,b)) andv(y−b)> 0.

We say that the infinite valuationv is centeredat (0,b).



Divisors
Let P be the set of all places in a function fieldF overK. We treat the elements of
P as symbols. To highlight this fact, we write[p] for p ∈ P.

A divisor is an integer-linear combination of the symbols ofP:

∑
p∈P

np[p],

where allnp ∈ Z, andnp = 0 except for only finitely manyp ∈ P.

Two divisors are added as

∑
p∈P

mp[p]+ ∑
p∈P

np[p] = ∑
p∈P

(mp+np)[p].

Under this operation, the set Div(F) of all divisors is an additive Abelian group.

The identity of this group is thezero divisor
0= ∑

p∈P
0[p].

The additive inverse of a divisor is

− ∑
p∈P

np[p] = ∑
p∈P

(−np)[p].

Div(F) is the free Abelian group generated byP.



Degrees of Divisors

The degree of the divisorD = ∑p∈P np[p] is the integer

degD = ∑
p∈P

npdegp.

By definition, this is a sum of only finitely many non-zero terms.

The function deg : Div(F)→ Z is a homomorphism of additive groups.

The set of divisors of degree zero

Div0(F) = {D ∈ Div(F) | degD = 0}
is the kernel of the degree map, and is a subgroup of Div(F).

Let 0 6= α(x,y) ∈ F. The divisor ofα(x,y) is

Div(α(x,y)) = ∑
p∈P

vp(α(x,y))[p].

Such a divisor is called aprincipal divisor .

The set of all principal divisors is denoted as Prin(F).

Prin(F) is a subgroup of Div0(F).

As groups, we have Prin(F)⊆ Div0(F)⊆ Div(F).



Class Groups and Class Numbers

Two divisorsD1,D2 ∈ Div(F) are said to beequivalent, denotedD1 ∼ D2, if D1 =
D2+Div(α(x,y)) for some non-zeroα(x,y) ∈ F.

∼ is an equivalence relation on Div(F).

The set of all equivalence classes of Div(F) under∼ is called thedivisor class
group Cl(F) of F overK.

Cl(F) is actually the quotient group Div(F)/Prin(F).

The degree-zero part of Cl(F) is likewise defined as Cl0(F) = Div0(F)/Prin(F).

The sizeh= hF of Cl0(F) is called theclass numberof F overK.

If K is a finite field, then the class number ofF = K(C) is finite.



Principal Divisors

Let 0 6= α(x,y),β (x,y) ∈ F = K(C).

Div(α(x,y)β (x,y)) = Div(α(x,y))+Div(β (x,y)).

Div(α(x,y)) = 0 if and only if α(x,y) ∈ K∗.

Any α(x,y) transcendental overK has at least one zero and at least one pole.

Div(α(x,y)−1) =−Div(α(x,y)).

Div(α(x,y)) = Div(β (x,y)) if and only if α(x,y) = cβ (x,y) for somec∈ K∗.

The function Div :F∗ → Prin(F) is a group homomorphism.

α(x,y) has no finite poles if and only ifα(x,y) ∈ K[x,y].

Let the class numberh of F over K be finite, and letD be a divisor of degree
zero. Then,hD is a principal divisor, that is,hD= Div(γ(x,y)) for some non-zero
γ(x,y) ∈ K(C). The functionγ(x,y) is uniquely determined up to multiplication by
non-zero elements ofK.





Norms

Let C(x,y) = yd+αd−1(x)yd−1+αd−2(x)yd−2+ · · ·+α1(x)y+α0(x) ∈ K[x,y].

Let y1,y2, . . . ,yd be the conjugates ofy in K̄(C). Any one of these can be taken as
y∈ K(C). They are algebraically indistinguishable from one another.

C(x,y) = (y−y1)(y−y2) · · ·(y−yd).

Let α(x,y) ∈ K(C).

Let the minimal polynomial ofα overK(x) have degreet. We havet|d.

Let α1,α2, . . . ,αt be the conjugates ofα.

Thenorm of α as an element ofF overK is defined as

N(α) = NF|K(α) = (α1α2 · · ·αt)
d/t.

We haveN(α) ∈ K(x). Moreover, ifα is integral overK[x] (that is, the minimal
polynomial ofα is a monic polynomial inK[x]), thenN(α) ∈ K[x].



Norms of Linear Elements

Let α(x,y) = r(x)y+s(x) with r(x),s(x) ∈ K[x], r(x) 6= 0.

All the conjugates ofα in K̄(C) areαi = r(x)yi +s(x) for i = 1,2, . . . ,d.

The minimal polynomial ofα is therefore(y−α1)(y−α2) · · ·(y−αd) ∈ K[x,y].

The norm ofα(x,y) is

N(α(x,y)) =
d

∏
i=1

αi =
d

∏
i=1

(r(x)yi +s(x)) = (−r(x))d
d

∏
i=1

(

(

−s(x)/r(x)
)

−yi

)

= (−r(x))dC(x,−s(x)/r(x)) ∈ K[x].

Sinceα(x,y) ∈ K[x,y], it has no finite poles.

All the zeros ofα(x,y) lie over zeros ofN(α(x,y)).

We factorN(α(x,y)) (or equivalentlyrdC(x,−s/r)) in K[x].

For each irreducible factorp(x) of N(α(x,y)), we look at all the placesp of F that
lie overp(x).

All suchp need not be zeros ofα(x,y). Indeed,α(x,y) has a zero atp if and only if
vp(α)> 0. This would give us Div(α(x,y)).



Section 3

THE ADLEMAN–HUANG VARIANT OF
THE FUNCTION FIELD SIEVE METHOD

(THE SMALL PRIME CASE)



Setup: Polynomial Selection
To compute discrete logarithms inFpn with p small. The base field isK = Fp.

Choose a monic irreducible polynomialf (x) = xn + f1(x) ∈ K[x] with degf1(x) <
n2/3. RepresentFpn[x] = Fp[x]/〈f (x)〉.
Let d≈ n1/3 andd′ = ⌈n/d⌉ ≈ n2/3. Choose a monicm(x) ∈ K[x] of degreed′.

Choose a plane curveC(x,y) = 0 defined overK = Fp such that the substitution
y= m(x) givesC(x,m(x))≡ 0 (modf (x)).

Let dd′ = n+δ with δ < d. We have

xδ f (x) = m(x)d+αd−1(x)m(x)d−1+αd−2(x)m(x)d−2+ · · ·+α1(x)m(x)+α0(x)

with αi(x) ∈ K[x] and degαi(x)< d′ for all i = 0,1,2, . . . ,d−1. Take the curve

C(x,y) = yd+αd−1(x)y
d−1+αd−2(x)y

d−2+ · · ·+α1(x)y+α0(x) ∈ K[x,y].

We haveC(x,m(x))≡ xδ f (x)≡ 0 (modf (x)) as required.

Example construction
Takem(x) = xd′

. This impliesC(x,y) = yd+xδ f1(x).

Try randomf1(x) until one with at least one simple root is found andf (x) = xn+ f1(x) is
irreducible inK[x]. These choices guarantee thatC(x,y) is absolutely irreducible.

We need the class numberh of F = K(C) over K to be coprime to(pn−1)/(p−1). No
known easy check ensures this. So we assume that this condition holds. If the algorithm
fails, we retry with a differentf1(x).



Setup: Factor Base
We choose a smoothness boundB≈ n1/3.

The factor base consists of two parts.

The first partS={p1(x),p2(x), . . . ,pt(x)} contains all monic irreducible polynomials
of K[x] of degrees6 B.

Let p be a place inK(C) that lies over somepi(x) ∈ S. Choose any fixed placeq of
degree one inK(C). Then, the divisorD = [p]− (degp)[q] is of degree zero, that is,
hD is a principal divisor, that is,hD= Div(µ(x,y)) for someµ(x,y) ∈ K(C). This
functionµ(x,y) is uniquely determined up to multiplication by elements ofK∗.

The second partS′ = {µ1(x,y),µ2(x,y), . . . ,µT(x,y)} contains all functionsµj(x,y)
constructed as above from all the places lying over all the irreducible polynomials
of S. Additionally, S′ contains functions constructed from all the infinite placesof
F = K(C).

We do not need these functions explicitly. We will instead work only with their
indices (not exactly, see later).

Let µj be constructed from the placepj . Denote byvpj
the correspondingpj-adic

valuation. We require the capability to compute these valuations for functions of a
particular form.



Relation Generation
Choose random polynomialsr(x),s(x) ∈ K[x] of degree aboutn1/3.

Both r(x)m(x)+s(x) andr(x)y+s(x) should be smooth.

r(x)m(x)+ s(x) is smooth if and only if it factors completely over the irreducible
polynomials inS:

r(x)m(x)+s(x) =
t

∏
i=1

pi(x)
ei .

r(x)y+ s(x) is smooth if and only if its norm factors completely overS. If so, we

computeaj = vpj
(r(x)y+s(x)) for j = 1,2, . . . ,T. We have

T

∑
j=1

aj degpj = 0, and

Div(r(x)y+s(x))=
T

∑
j=1

aj [pj ] =
T

∑
j=1

aj [pj ]−
(

T

∑
j=1

aj degpj

)

[q] =
T

∑
j=1

aj

(

[pj ]−degpj [q]
)

.

Therefore,

Div
(

(r(x)y+s(x))h
)

= Div

(

T

∏
j=1

µj(x,y)
aj

)

,

that is,
(

r(x)y+s(x)
)h

= c
T

∏
j=1

µj(x,y)
aj

for somec∈ K∗.



The Homomorphism φ
Defineφ : K[x,y]/C(x,y)→ K[x]/〈f (x)〉 by y 7→ m(x).

The integral domainK[x,y]/C(x,y) is not the same asK(C) = K(x)[y]/〈C(x,y)〉.
Adleman and Huang prove thatφ(µj) is defined for allµj ∈ S′.

Apply φ to the multiplicative relation involvingr(x)y+s(x) to get

φ
(

(

r(x)y+s(x)
)h
)

=
(

r(x)m(x)+s(x)
)h

= c
T

∏
j=1

φ(µj(x,y))
aj ∈ Fpn.

Sincec∈ F∗
p, we havecp−1 = 1 (by Fermat’s little theorem). This gives

(

r(x)m(x)+s(x)
)(p−1)h

=
t

∏
i=1

pi(x)
(p−1)hei =

T

∏
j=1

φ(µj(x,y))
(p−1)aj ∈ Fpn.

Taking discrete logarithm to a baseg(x) gives

(p−1)h
t

∑
i=1

ei indg(x)pi(x)≡ (p−1)
T

∑
j=1

aj indg(x)

(

φ(µj(x,y))
)

(modpn−1),

that is,

h
t

∑
i=1

ei indg(x)pi(x)≡
T

∑
j=1

aj indg(x)

(

φ(µj(x,y))
)

(mod(pn−1)/(p−1)).



A Relation Finally

Assume that gcd(h,(pn−1)/(p−1)) = 1. Then, we have
t

∑
i=1

ei indg(x)pi(x)≡
T

∑
j=1

aj

[

h−1 indg(x)

(

φ(µj(x,y))
)]

(mod(pn−1)/(p−1)).

Let us denotewi ≡ indg(x)pi(x) (mod(pn−1)/(p−1)) for i = 1,2, . . . , t, andzj ≡
h−1 indg(x)

(

φ(µj(x,y))
)

(mod(pn−1)/(p−1)) for j = 1,2, . . . ,T.

Then, we have the linear congruence int+T variables:
t

∑
i=1

eiwi ≡
T

∑
j=1

ajzj (mod(pn−1)/(p−1)).

Assume thatg(x) = pi(x) for somei = 1,2, . . . , t. We then get the dehomogenizing
relationwi ≡ 1 (mod(pn−1)/(p−1)).

All collected relations are solved modulo(pn−1)/(p−1).

Sincep is small, the correct values ofwi andzj modulopn−1 can be obtained by
looking at thep−1 possibilities of each.



More about the Adleman–Huang Algorithm

Two questions remain unanswered from the exposition given so far.

1 How can we compute aj = vpj
(r(x)y+s(x))?

Adleman and Huang propose theNewton polygon methodto solve this problem.
It involves some power series calculations and can be done intime polynomial inn.

2 What about individual logarithm calculations?

The factors baseS now contains too few primes to make a randomly chosengja
smooth overS with a decent probability. Moreover, it is not clear how the indices
corresponding to the elements ofS′ can be used in this stage.

A common way to get around this difficulty is to use some kind ofdescent. Factor
gja into irreducible polynomials of moderate degrees. Expresseach polynomial
of moderate degree as a product of two or more polynomials of smaller degrees
(modulof (x), of course). Repeat until the polynomials reduce to those inS.



Section 4

THE JOUX–LERCIER VARIANT OF
THE FUNCTION FIELD SIEVE METHOD

(THE MEDIUM PRIME CASE)



A Renewed Look at the Adleman–Huang Algorithm
Consider the following commutative diagram.

K[x,y]
ψL ւ ցψR

K[x,y]/〈y−m(x)〉 K[x,y]/〈C(x,y)〉
φL

ց ւφR

K[x]/〈f (x)〉
On the left, we first sety= m(x) via ψL. Then, we putC(x,y) = 0 (this isφL). But
y= m(x), so puttingC(x,m(x)) = 0 essentially means reduction modulof (x).

On the right,we first putC(x,y) = 0 (this isψR) and then we puty= m(x) modulo
f (x) (this isφR or φ ).

For u(x,y) ∈ K[x,y], we get the same objectφL(ψL(u(x,y))) = φR(ψR(u(x,y))).

For the special caseu(x,y)= r(x)y+s(x), the left side (linear side) givesr(x)m(x)+
s(x) (modf (x)).

The right side (algebraic side) involves working in the function fieldK(C).

Joux and Lercier proposeC(x,y) of a very specific form so that both sides behave
as the linear side, and function field computations are eliminated altogether.





Setup: Polynomial Selection and Factor Base
Let K = Fq be the base field. We want to compute indices inFQ, whereQ = qn.
Note thatq may already be a prime power. The Joux–Lercier method is effective
whenq is medium-sized.

Two polynomial relations inx,y give two different representations ofFQ:
x= m1(y) andy= m2(x).

Let d1 = degm1(x) andd2 = degm2(y) with d1d2 > n.

We now have the commutative diagram:

Fq[x,y]
x= m1(y) ւ ց y= m2(x)

Fq[x,y]/〈x−m1(y)〉 Fq[x,y]/〈y−m2(x)〉

y= m2(x)
ց ւx= m1(y)

FQ = Fqn

We havex = m1(y) = m1(m2(x)). Let f (x) be a monic irreducible polynomial of
degreen with f (x)|[m1(m2(x))−x]. This givesFQ = Fq[x]/〈f (x)〉.
Similarly,y=m2(x) =m2(m1(y)). The minimal polynomial ofy=m2(x)∈FQ over
Fq must be of degreen and must dividem2(m1(y))−y.

The factor base consists of the 2q elementsx+a andy+a for all a∈ Fq.



Relation
Let u(x,y) ∈ Fq[x,y].

The left side givesu(x,m2(x)), whereas the right side givesu(m1(y),y). Since the
diagram is commutative, these two elements are equal.

Takeu(x,y) = r(x)y+s(x) with linear polynomialsr(x),s(x) ∈ Fq[x].

We have the equality inFQ:
r(x)m2(x)+s(x) = r(m1(y))y+s(m1(y)).

The left side is a polynomial of degreed2+1 and the right side is a polynomial of
degreed1+1.

If both sides split into linear factors, we have
(x+a1)(x+a2) · · ·(x+ad2+1) = λ (y+b1)(y+b2) · · ·(y+bd1+1)

for someλ ∈ F∗
q.

Taking logarithm gives
indg(x+a1)+ indg(x+a2)+ · · ·+ indg(x+ad2+1)

≡ indg λ + indg(y+b1)+ indg(y+b2)+ · · ·+ indg(y+bd1+1) (modQ−1),
or

indg(x+a1)+ indg(x+a2)+ · · ·+ indg(x+ad2+1)

≡ indg(y+b1)+ indg(y+b2)+ · · ·+ indg(y+bd1+1) (mod(Q−1)/(q−1)).



Why Medium Prime?
Parasitic solutions: Each relation is satisfied if we set indg(x+ a) = d1 + 1 and
indg(y+a) = d2+1 for all a∈ Fq.

Suppose that there exists ana ∈ Fq for which y+ a = m2(x)+ a splits into linear
factors (inx). This removes the obvious parasitic solutions.

The size of the factor base is 2q. We need at least as many relations.

The probability that a polynomial of degreed splits into linear factors is about 1/d!.
Therefore,r(x)m2(x)+ s(x) and r(m1(y))y+ s(m1(y)) are simultaneously smooth
with probability about 1/((d1+1)!(d2+1)!).

We taker(x) = wx+1 ands(x) = ux+v with w,u,v∈ Fq. So we must have

q3/((d1+1)!(d2+1)!)> 2q,

that is,
q2

> 2(d1+1)!(d2+1)!.

If we taker(x) = 1 ands(x) = ux+v, we require

q> 2(d1+1)!(d2+1)!.

Removal of parasitic solutions requiresq> (d1+1)!(d2+1)!.

Good choice:d1 ≈ d2 ≈
√

n.



Working with Smaller Medium Primes

So far, the factor base consists of only linear polynomials.Also, r(x),s(x) are taken
as linear polynomials.

Now, we introduce a smoothness boundB, and taked1 ≈
√

n/B andd2 ≈
√

Bn.

Chooser(x),s(x) as polynomials of degrees6 B.

r(x)m2(x)+s(x) is of degree6 d2+B≈
√

Bn+B.

r(m1(y))y+s(m1(y)) is of degree6 Bd1+1≈
√

Bn+1.

If B≪ n, both these degrees are approximately
√

Bn.

The factor base consists of all monic irreducible polynomials in x andy of degrees
6 B. There are at most 2qB such polynomials.

Total size of the sieving space isq2B+1.

The smoothness probability (of two sides together) is exp(−
√

n/Bln(n/B)).

In order to get sufficiently many relations, we require(B+1) lnq>
√

n/Bln(n/B).



Section 5

JOUX’S PINPOINTING ALGORITHM
FOR THE MEDIUM PRIME CASE



One-Sided Pinpointing

For simplicity, let us restrict toB= 1.

Takex= yd1 andy= m(x), wherem(x) ∈ Fq[x] is of degreed2.

For r(x) = x+b ands(x) = ax+c, we now have the equality inFQ:

r(x)y+s(x) = yd1+1+ayd1 +by+c= xm(x)+ax+bm(x)+c.

Look at they side. Find a single polynomial of the formud1+1+ud1 +By+C that
decomposes completely into linear factors inFq[u]. We need to try about(d1+1)!
random values ofB,C∈ Fq. This can be done by trial division or sieving.

For eacha ∈ F∗
q, substituteu = y/a to get the polynomialyd1+1 + ayd1 + by+ c,

whereb= Bad1 andc= Cad1+1. Each of these polynomials decomposes into linear
factors inFq[y]. For about(q−1)/(d2+1)! choices ofa, thex side is smooth too.

Get one relation with some effort. Get many other relations for free.

Efficiency increases by a factor of> 1
2 min(q−1,(d1+1)!).



Kummer Extensions

Let n= d1d2−1.

Assume thatFq contains all then-th roots of unity.

Chooseκ ∈ Fq such thatf (x) = xn−κ is irreducible inFq[x]. Define the extension
FQ = Fqn = Fq[x]/〈f (x)〉.
xn = κ in FQ, so (xq)n = κq = κ , that is, xq is again a root off (X) = Xn − κ .
Therefore, there exists a primitive rootµ of unity in Fq such thatxq = µx.

(Note: Xn − κ = (X− µ1x)(X− µ2x) · · ·(X− µnx), whereµ1,µ2, . . . ,µn ∈ Fq are
then-th roots of unity. Furthermore, the rootµ with xq = µx must be primitive. If
not, letµm = 1 for somem< n. But then,(xq)m = xm, that is,(xm)q−1 = 1, that is,
xm ∈ Fq, a contradiction to thatf (X) = Xn−κ is the minimal polynomial ofx.)

Takex= yd1/κ andy= xd2. Then,xd1d2 −κx= 0, that is,xf(x) = 0, as required.



Reduction in the Size of the Factor Base

Takea∈ F∗
q.

We have(x+a)qi
= xqi

+a= µ ix+a= µ i(x+a/µ i) for all i = 0,1,2, . . . ,n−1.

Therefore, indg(x+a/µ i)≡ qi indg(x+a) (mod(Q−1)/(q−1)).

Sincen = d1d2−1, we have gcd(n,d2) = 1, that is,µ ′ = µd2 is again a primitive
root of unity inFq.

We havey= xd2, soyq = xd2q = (xq)d2 = (µx)d2 = µd2y, that is,yq = µ ′y.

Therefore, indg(y+ a/(µ ′)i) ≡ qi indg(y+ a) (mod (Q− 1)/(q− 1)) for all i =
0,1,2, . . . ,n−1.

These free relations reduce the number of unknown indices (of the elements of the
factor base) by roughly a factor ofn.

Now, takea = 0. Sincexn = κ ∈ Fq, we have(xn)q−1 = 1, that is,nindgx ≡
0 (mod (Q− 1)/(q− 1)). If, in addition, n is coprime to(Q− 1)/(q− 1), then
indgx≡ 0 (mod(Q−1)/(q−1)). Likewise, indgy≡ 0 (mod(Q−1)/(q−1)).



Two-Sided Pinpointing

An equation of the formr(x)y+s(x) now has the form

xy+ay+bx+c= xd2+1+axd2 +bx+c= yd1+1/κ +byd1/κ +ay+c.

Choose a triple(A,B,λ ) with A 6= 0, B 6= 0, andBAd1 ann-th power inFq. Suppose
that both the polynomialsud2+1+ud2 +A(u+ λ ) and(vd1+1+ vd1)/κ +B(v+ λ )
split into linear factors.

Now, substituteu= x/a andv= y/b to get the polynomialsxd2+1+axd2 +Aad2x+
Aad2+1λ and yd1+1/κ + byd1/κ + Bbd1y+ Bbd1+1λ which split completely into
linear factors.

In order that these two polynomials are of the desired form, we must haveAad2 = b,
Bbd1 = a, Aad2+1λ = Bbd1+1λ = abλ = c.

Eliminatingb from the first two equations givead1d2−1 = an = 1/(BAd1). Thus, we
take asa anyn-th root of 1/(BAd1), and getb= Aad2 andc= abλ .

Different choices fora (as then-th root) give the same equation because of the action
of theq-th power Frobenius map.



Other Extensions of Pinpointing

The Kummer extension withn = d1d2 + 1 can be analogously handled usingx =
κ/yd1 andy= xd2.

Both one-sided and two-sided pinpointing can be generalized to the caseB> 1.

For example, the polynomialxd +
d−1

∑
i=0

aix
i decomposes into factors of degrees6 B

if and only if the polynomialud +ud−1+
d−2

∑
i=0

aia
d−i
d−1ui decomposes into factors of

degrees6 B.

The substitutionu= x/ad−1 will now do the trick.





Section 6

BEYOND PINPOINTING:
A QUASI-POLYNOMIAL ALGORITHM



The BGJT Algorithm

Proposed by Barbulescu, Gaudry, Joux and Thomé (eprint 2013/400).

Joux’s algorithm takesL(1/4+ ε) time for small characteristic.

To compute discrete logarithms inFQ, embedFQ in a fieldFq2k with q≈ k.

F2
q acts as the medium subfield. We use two polynomialsm1(x) and m2(x) for

representingFq2k over Fq2. We takexq congruent tom1(x)/m2(x) modulo the
defining polynomial.

In many cases, the running time isnO(logn) = 2O(log2 n), wheren is the bit size ofQ.

The basic innovation is an efficient descent algorithm for calculating individual
discrete logarithms.

The same descent algorithm applies to the relation-generation phase too.

To compute the index ofP(x) ∈ Fq2(x) with D = degP satisfying 16 D 6 k−1.

Express indP as a linear combination of indm2 and a few indPi , degPi 6 ⌈D/2⌉.
During relation generation,D = 1, that is, eachPi is a linear polynomial.



Homographic Action

Take a matrix with entries fromFq2:

M =

(

a b
c d

)

M acts onP as

M ·P=
aP+b
cP+d

.

The action is trivial ifa,b,c,d∈ Fq, so we actually takeM from

Pq = PGL(F2
q)/PGL(Fq),

where PGL stands for the projective general linear group of invertible 2×2 matrices.



Systematic Equation
We havexq−x= ∏a∈Fq(x−a).

Take the projective lineP1(Fq) (all the points(a : 1) with a∈ Fq and the point(1 : 0)
at infinity).

Choose a set of representativesS of theq+1 points such that

xqy−xyq = ∏
(α ,β )∈S

(βx−αy).

Apply the homographyM ∈ Pq to get:

(aP+b)q(cP+d)− (aP+b)(cP+d)q = ∏
(α ,β )∈S

[β (aP+b)−α(cP+d)]

= ∏
(α ,β )∈S

[(aβ −cα)P− (dα −bβ )]

= λ ∏
(α ,β )∈S

[

P−x
(

M−1 · (α : β )
)]

,

whereλ ∈ F∗
q2, andx

(

M−1 · (α : β )
)

is dα−bβ
aβ−cα if the point is finite or 1 for the point

at infinity.



Relations
The right-hand side is a product ofq+1 translates ofP by elements ofFq2.

Let P̄(x) beP(x) with all coefficients raised to theq-th power.

Sincexq = m1(x)/m2(x) in Fq2k, the left-hand side becomes

(aqP̄(m1/m2)+bq)(cP+d)− (aP+b)(cqP̄(m1/m2)+dq).

The denominator is a power ofm2(x).

The numerator is of degree6 (1+δ )D, whereδ = max(degm1,degm2).

We get a relation if the numerator is⌈D/2⌉-smooth.

By varying M ∈ Pq, we hope to generate a full-rank system involving theq2+1
translates ofP as variables.

This gives indPas a linear combination of indm2 andO(q2D) indices of polynomials
Pi of degrees6 ⌈D/2⌉.
The indices ofPi are computed recursively.

The recursion tree has a depth ofO(logD).

SinceD 6 k− 1, we express indP as a linear combination of indices of linear
polynomials in time max(q,k)O(logk).



Cases of Applicability

FQ = Fq2k with q≈ k.

p= charFQ = O(logQ)O(1). Let Q= pn. If p is small (like 2) andn has no small
prime factors, we embedFQ in a larger field. Letk ben if n is odd, orn/2 if n is

even. We takeq= p⌈logp k⌉, and work inFp2k.

In both the above cases, the running time is 2O((log logQ)2).

This is quasi-polynomial time.





Implications to Public-Key Cryptography
Classical Cryptography (ElGamal Encryption and Signature)

For prime fields, NFS is the champion.

For fields of small characteristics, the Coppersmith methodis superseded by the
Adleman–Huang FFS method.

Adaptations of the NFS are also good contenders.

Elliptic-Curve Cryptography (ECDSA)

No apparent direct implications of FFS.

Pairing-Based Cryptography (IBE, IBS)

Bilinear pairing maps on supersingular curves are frequently used.

For extension fields of small characteristics, the medium prime case may occur or
be forced.

The recent developments make the schemes vulnerable.



Practical Estimates for Supersingular Curves

Curve over DL in field Security Reference
F3509 F36·509 81.7 Adj et al. (eprint 2013/446)
F31429 F36·1429 96 Adj et al. (eprint 2013/737)
F23041 F24·3041 129 Adj et al. (eprint 2013/737)
F21223 F24·1223 59 Granger et al. (eprint 2014/119)
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