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What is Cryptography?

Cryptography is the study of techniques for preventing
access to sensitive data by parties who are not authorized
to access the data.
Cryptanalysis is the study of techniques for breaking
cryptographic systems.
Cryptology = Cryptography + Cryptanalysis
Cryptanalysis is useful for strengthening cryptographic
primitives.
Maintaining security and privacy is an ancient and primitive
need.
Particularly relevant for military and diplomatic applications.
Wide deployment of the Internet makes everybody a user
of cryptographic tools.
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Message encryption

Required for secure transmission of messages over a
public channel.
Alice wants to send a plaintext message M to Bob.
Alice encrypts M to generate the ciphertext message
C = fe(M, Ke).
Ke is the encryption key .
C is sent to Bob over the public channel.
Bob decrypts C to recover the plaintext message
M = fd (C, Kd ).
Kd is the decryption key .
Knowledge of Kd is required to retrieve M from C.
An eavesdropper (intruder, attacker, adversary, opponent,
enemy) cannot decrypt C.
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Ke = Kd .

Algorithms are fast and suitable for software and hardware
implementations.

The common key has to be agreed upon by Alice and Bob
before the actual communication.

Each pair of communicating parties needs a secret key.

If there are many communicating pairs, the key storage
requirement is high.
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Public-key or asymmetric encryption

Ke 6= Kd .

Introduced by Rivest, Shamir and Adleman (1978).

Ke is the public key known to everybody (even to
enemies).

Kd is the private key to be kept secret.

It is difficult to compute Kd from Ke.

Anybody can send messages to anybody. Only the proper
recipient can decrypt.

No need to establish keys a priori.

Each party requires only one key-pair for communicating
with everybody.

Algorithms are slow, in general.
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Real-life analogy

Symmetric encryption

Alice locks the message in a box by a key.

Bob uses a copy of the same key to unlock.

Asymmetric encryption

Alice presses a self-locking padlock in order to lock the
box. The locking process does not require a real key.

Bob has the key to open the padlock.
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Real-life analogy

Alice procures a lock L with key K . Alice wants to send K
to Bob for a future secret communication.
Alice procures another lock LA with key KA.
Bob procures a lock LB with key KB.
Alice puts K in a box, locks the box by LA using KA, and
sends the box to Bob.
Bob locks the box by LB using KB, and sends the
doubly-locked box back to Alice.
Alice unlocks LA by KA and sends the box again to Bob.
Bob unlocks LB by KB and obtains K .
A third party always finds the box locked either by LA or LB

or both.
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Key agreement or key exchange (contd)

Alice generates a key pair (Ae, Ad ).

Bob generates a key pair (Be, Bd).

Alice sends her public-key Ae to Bob.

Bob sends his public-key Be to Alice.

Alice computes KAB = f (Ae, Ad , Be).

Bob computes KBA = f (Be, Bd , Ae).

The protocol insures KAB = KBA to be used by Alice and
Bob as a shared secret.

An intruder cannot compute this secret using Ae and Be

only.
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Digital signatures

Alice establishes her binding to a message M by digitally
signing it.

Signing: Only Alice has the capability to sign M.

Verification: Anybody can verify whether Alice’s signature
on M is valid.

Forging: Nobody can forge signatures on behalf of Alice.

Digital signatures are based on public-key techniques.

Signature generation ≡ Decryption (uses private key), and
Signature verification ≡ Encryption (uses public key).
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Digital signatures

Alice establishes her binding to a message M by digitally
signing it.

Signing: Only Alice has the capability to sign M.

Verification: Anybody can verify whether Alice’s signature
on M is valid.

Forging: Nobody can forge signatures on behalf of Alice.

Digital signatures are based on public-key techniques.

Signature generation ≡ Decryption (uses private key), and
Signature verification ≡ Encryption (uses public key).

Non-repudiation: An entity should not be allowed to deny
valid signatures made by him.
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M = fv (S, Ke).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Signature with message recovery

Generation
Alice generates a key-pair (Ke, Kd ), publishes Ke, and
keeps Kd secret.
Alice signs M by her private key to obtain the signed
message S = fs(M, Kd ).

Verification
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Signature with message recovery

Generation
Alice generates a key-pair (Ke, Kd ), publishes Ke, and
keeps Kd secret.
Alice signs M by her private key to obtain the signed
message S = fs(M, Kd ).

Verification
Recover M from S by using Alice’s public key:
M = fv (S, Ke).

Forging signatures
K ′

d 6= Kd is used to generate forged signature
S′ = fs(M, K ′

d ). Verification yields M ′ = fv (S′, Ke) 6= M.

Drawback
Algorithms are slow, not suitable for long messages.
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Generation
Alice generates a key-pair (Ke, Kd ), publishes Ke, and
keeps Kd secret.
Alice generates a short representative m = H(M) of M.
Alice uses her private-key: s = fs(m, Kd).
Alice publishes (M, s) as the signed message.

Verification
Compute the representative m = H(M).
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Alice generates a key-pair (Ke, Kd ), publishes Ke, and
keeps Kd secret.
Alice generates a short representative m = H(M) of M.
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Generation
Alice generates a key-pair (Ke, Kd ), publishes Ke, and
keeps Kd secret.
Alice generates a short representative m = H(M) of M.
Alice uses her private-key: s = fs(m, Kd).
Alice publishes (M, s) as the signed message.

Verification
Compute the representative m = H(M).
Use Alice’s public-key to generate m′ = fv (s, Ke).
Accept the signature if and only if m = m′.

Forging
Verification is expected to fail if a key K ′

d 6= Kd is used to
generate s.
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Deterministic signatures: For a given message the same
signature is generated on every occasion the signing
algorithm is executed.

Probabilistic signatures: On different runs of the signing
algorithm different signatures are generated, even if the
message remains the same.

Probabilistic signatures offer better protection against
some kinds of forgery.
Deterministic signatures are of two types:

Multiple-use signatures: Slow. Parameters are used
multiple times.
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Digital signatures: classification

Deterministic signatures: For a given message the same
signature is generated on every occasion the signing
algorithm is executed.

Probabilistic signatures: On different runs of the signing
algorithm different signatures are generated, even if the
message remains the same.

Probabilistic signatures offer better protection against
some kinds of forgery.
Deterministic signatures are of two types:

Multiple-use signatures: Slow. Parameters are used
multiple times.
One-time signatures: Fast. Parameters are used only
once.
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Entity authentication

Alice proves her identity to Bob.

Alice demonstrates to Bob her knowledge of a secret piece
of information.

Alice may or may not reveal the secret itself to Bob.

Both symmetric and asymmetric techniques are used for
entity authentication.
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Set-up phase

Alice supplies a secret password P to Bob.

Bob transforms (typically encrypts) P to generate
Q = f (P).

Bob stores Q for future use.
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Bob transforms (typically encrypts) P to generate
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Set-up phase

Alice supplies a secret password P to Bob.

Bob transforms (typically encrypts) P to generate
Q = f (P).

Bob stores Q for future use.

Authentication phase

Alice supplies her password P ′ to Bob.

Bob computes Q′ = f (P ′).

Bob compares Q′ with the stored value Q.

Q′ = Q if and only if P ′ = P.
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Weak authentication: Passwords

Set-up phase

Alice supplies a secret password P to Bob.

Bob transforms (typically encrypts) P to generate
Q = f (P).

Bob stores Q for future use.

Authentication phase

Alice supplies her password P ′ to Bob.

Bob computes Q′ = f (P ′).

Bob compares Q′ with the stored value Q.

Q′ = Q if and only if P ′ = P.

If Q′ = Q, Bob accepts Alice’s identity.
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It should be difficult to invert the initial transform Q = f (P).
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It should be difficult to invert the initial transform Q = f (P).

Knowledge of Q, even if readable by enemies, does not
reveal P.
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It should be difficult to invert the initial transform Q = f (P).

Knowledge of Q, even if readable by enemies, does not
reveal P.

Drawbacks
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It should be difficult to invert the initial transform Q = f (P).

Knowledge of Q, even if readable by enemies, does not
reveal P.

Drawbacks

Alice reveals P itself to Bob. Bob may misuse this
information.
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Passwords (contd)

It should be difficult to invert the initial transform Q = f (P).

Knowledge of Q, even if readable by enemies, does not
reveal P.

Drawbacks

Alice reveals P itself to Bob. Bob may misuse this
information.

P resides in unencrypted form in the memory during the
authentication phase. A third party having access to this
memory obtains Alice’s secret.
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Generating R from C requires the knowledge of the secret.
Absence of the knowledge of the secret fails to generate a
satisfactory response with a good probability p.
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Alice does not reveal her secret directly to Bob.
Bob generates a challenge C and sends C to Alice.
Alice responds to C by sending a response R back to Bob.
Bob determines whether the response R is satisfactory.
Generating R from C requires the knowledge of the secret.
Absence of the knowledge of the secret fails to generate a
satisfactory response with a good probability p.
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(depending on p).
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Challenge-response techniques

Alice does not reveal her secret directly to Bob.
Bob generates a challenge C and sends C to Alice.
Alice responds to C by sending a response R back to Bob.
Bob determines whether the response R is satisfactory.
Generating R from C requires the knowledge of the secret.
Absence of the knowledge of the secret fails to generate a
satisfactory response with a good probability p.
The above protocol may be repeated more than once
(depending on p).
If Bob receives satisfactory response in every iteration, he
accepts Alice’s identity.
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Challenge-response techniques

Alice does not reveal her secret directly to Bob.
Bob generates a challenge C and sends C to Alice.
Alice responds to C by sending a response R back to Bob.
Bob determines whether the response R is satisfactory.
Generating R from C requires the knowledge of the secret.
Absence of the knowledge of the secret fails to generate a
satisfactory response with a good probability p.
The above protocol may be repeated more than once
(depending on p).
If Bob receives satisfactory response in every iteration, he
accepts Alice’s identity.

Drawback
C and R may reveal to Bob or an eavesdropper some
knowledge about Alice’s secret.
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party.
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Zero-knowledge protocol

A special class of challenge-response techniques.
Absolutely no information is leaked to Bob or to any third
party.

A real-life example
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Secret sharing

A secret is distributed to n parties.

All of these n parties should cooperate to reconstruct the
secret.

Participation of only 6 n − 1 parties should fail to
reconstruct the secret.

Generalization

Any m (or more) parties can reconstruct the secret (for
some m 6 n).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Secret sharing

A secret is distributed to n parties.

All of these n parties should cooperate to reconstruct the
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Participation of only 6 n − 1 parties should fail to
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Generalization

Any m (or more) parties can reconstruct the secret (for
some m 6 n).
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Used to convert strings of any length to strings of a fixed
length.
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Cryptographic hash functions

Used to convert strings of any length to strings of a fixed
length.
Used for the generation of (short) representatives of
messages.
Symmetric techniques are typically used for designing
hash functions.

Modification detection code (MDC)
An unkeyed hash function is used to guard against
unauthorized/accidental message alterations. Signature
schemes also use MDC’s.
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Cryptographic hash functions

Used to convert strings of any length to strings of a fixed
length.
Used for the generation of (short) representatives of
messages.
Symmetric techniques are typically used for designing
hash functions.

Modification detection code (MDC)
An unkeyed hash function is used to guard against
unauthorized/accidental message alterations. Signature
schemes also use MDC’s.

Message authentication code (MAC)
A keyed hash function is used to authenticate the source of
messages.
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A collision for a hash function H is a pair of two distinct
strings x , y with H(x) = H(y). Collisions must exist for any
hash function.
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Cryptographic hash functions: Properties

A collision for a hash function H is a pair of two distinct
strings x , y with H(x) = H(y). Collisions must exist for any
hash function.

First pre-image resistance
For most hash values y , it should be difficult to find a string
x with H(x) = y .
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Cryptographic hash functions: Properties

A collision for a hash function H is a pair of two distinct
strings x , y with H(x) = H(y). Collisions must exist for any
hash function.

First pre-image resistance
For most hash values y , it should be difficult to find a string
x with H(x) = y .

Second pre-image resistance
Given a string x , it should be difficult to find a different
string x ′ with H(x ′) = H(x).
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Cryptographic hash functions: Properties

A collision for a hash function H is a pair of two distinct
strings x , y with H(x) = H(y). Collisions must exist for any
hash function.

First pre-image resistance
For most hash values y , it should be difficult to find a string
x with H(x) = y .

Second pre-image resistance
Given a string x , it should be difficult to find a different
string x ′ with H(x ′) = H(x).

Collision resistance
It should be difficult to find two distinct strings x , x ′ with
H(x) = H(x ′).
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A public-key certificate insures that a public key actually
belongs to an entity.
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Certificates are issued by a trusted Certification
Authority (CA).
A certificate consists of a public key and other additional
information about the owner of the key.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Certification

A public-key certificate insures that a public key actually
belongs to an entity.
Certificates are issued by a trusted Certification
Authority (CA).
A certificate consists of a public key and other additional
information about the owner of the key.
The authenticity of a certificate is achieved by the digital
signature of the CA on the certificate.
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A public-key certificate insures that a public key actually
belongs to an entity.
Certificates are issued by a trusted Certification
Authority (CA).
A certificate consists of a public key and other additional
information about the owner of the key.
The authenticity of a certificate is achieved by the digital
signature of the CA on the certificate.
Compromised certificates are revoked and a certificate
revocation list (CRL) is maintained by the CA.
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Certification

A public-key certificate insures that a public key actually
belongs to an entity.
Certificates are issued by a trusted Certification
Authority (CA).
A certificate consists of a public key and other additional
information about the owner of the key.
The authenticity of a certificate is achieved by the digital
signature of the CA on the certificate.
Compromised certificates are revoked and a certificate
revocation list (CRL) is maintained by the CA.
If a certificate is not in the CRL, and the signature of the
CA on the certificate is verified, one gains the desired
confidence of treating the public-key as authentic.
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Models of attack

Partial breaking of a cryptosystem
The attacker succeeds in decrypting some ciphertext
messages, but without any guarantee that this capability
would help him break new ciphertext messages in future.
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Models of attack

Partial breaking of a cryptosystem
The attacker succeeds in decrypting some ciphertext
messages, but without any guarantee that this capability
would help him break new ciphertext messages in future.

Complete breaking of a cryptosystem
The attacker possesses the capability of decrypting any
ciphertext message. This may be attributed to a knowledge
of the decryption key(s).
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The attacker succeeds in decrypting some ciphertext
messages, but without any guarantee that this capability
would help him break new ciphertext messages in future.

Complete breaking of a cryptosystem
The attacker possesses the capability of decrypting any
ciphertext message. This may be attributed to a knowledge
of the decryption key(s).

Passive attack
The attacker only intercepts messages meant for others.
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Models of attack

Partial breaking of a cryptosystem
The attacker succeeds in decrypting some ciphertext
messages, but without any guarantee that this capability
would help him break new ciphertext messages in future.

Complete breaking of a cryptosystem
The attacker possesses the capability of decrypting any
ciphertext message. This may be attributed to a knowledge
of the decryption key(s).

Passive attack
The attacker only intercepts messages meant for others.

Active attack
The attacker alters and/or deletes messages and even
creates unauthorized messages.
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Types of passive attack

Ciphertext-only attack: The attacker has no
control/knowledge of the ciphertexts and the corresponding
plaintexts. This is the most difficult (but practical) attack.
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Types of passive attack

Ciphertext-only attack: The attacker has no
control/knowledge of the ciphertexts and the corresponding
plaintexts. This is the most difficult (but practical) attack.

Known plaintext attack: The attacker knows some
plaintext-ciphertext pairs. Easily mountable in public-key
systems.
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Types of passive attack

Ciphertext-only attack: The attacker has no
control/knowledge of the ciphertexts and the corresponding
plaintexts. This is the most difficult (but practical) attack.

Known plaintext attack: The attacker knows some
plaintext-ciphertext pairs. Easily mountable in public-key
systems.

Chosen plaintext attack: A known plaintext attack where
the plaintext messages are chosen by the attacker.
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Types of passive attack

Ciphertext-only attack: The attacker has no
control/knowledge of the ciphertexts and the corresponding
plaintexts. This is the most difficult (but practical) attack.

Known plaintext attack: The attacker knows some
plaintext-ciphertext pairs. Easily mountable in public-key
systems.

Chosen plaintext attack: A known plaintext attack where
the plaintext messages are chosen by the attacker.

Adaptive chosen plaintext attack: A chosen plaintext
attack where the plaintext messages are chosen adaptively
by the attacker.
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Types of passive attack (contd.)

Chosen ciphertext attack: A known plaintext attack
where the ciphertext messages are chosen by the attacker.
Mountable if the attacker gets hold of the victim’s
decryption device.
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Types of passive attack (contd.)

Chosen ciphertext attack: A known plaintext attack
where the ciphertext messages are chosen by the attacker.
Mountable if the attacker gets hold of the victim’s
decryption device.

Adaptive chosen ciphertext attack: A chosen ciphertext
attack where the ciphertext messages are chosen
adaptively by the attacker.
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Attacks on digital signatures

Total break: An attacker knows the signing key or has a
function that is equivalent to the signature generation
transformation.
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Attacks on digital signatures

Total break: An attacker knows the signing key or has a
function that is equivalent to the signature generation
transformation.

Selective forgery: An attacker can generate signatures
(without the participation of the legitimate signer) on a set
of messages chosen by the attacker.
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Attacks on digital signatures

Total break: An attacker knows the signing key or has a
function that is equivalent to the signature generation
transformation.

Selective forgery: An attacker can generate signatures
(without the participation of the legitimate signer) on a set
of messages chosen by the attacker.

Existential forgery: The attacker can generate signatures
on certain messages over which the attacker has no
control.
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Attacks on digital signatures (contd)
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Attacks on digital signatures (contd)

Key-only attack: The attacker knows only the verification
(public) key of the signer. This is the most difficult attack to
mount.
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Attacks on digital signatures (contd)

Key-only attack: The attacker knows only the verification
(public) key of the signer. This is the most difficult attack to
mount.

Known message attack: The attacker knows some
messages and the signatures of the signer on these
messages.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Attacks on digital signatures (contd)

Key-only attack: The attacker knows only the verification
(public) key of the signer. This is the most difficult attack to
mount.

Known message attack: The attacker knows some
messages and the signatures of the signer on these
messages.

Chosen message attack: This is similar to the known
message attack except that the messages for which the
signatures are known are chosen by the attacker.
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Attacks on digital signatures (contd)

Key-only attack: The attacker knows only the verification
(public) key of the signer. This is the most difficult attack to
mount.

Known message attack: The attacker knows some
messages and the signatures of the signer on these
messages.

Chosen message attack: This is similar to the known
message attack except that the messages for which the
signatures are known are chosen by the attacker.

Adaptive chosen message attack: The messages to be
signed are adaptively chosen by the attacker.
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Block ciphers

A block cipher f of block-size n and key-size r is a
function

f : Z
n
2 × Z

r
2 → Z

n
2

that maps (M, K ) to C = f (M, K ).
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Block ciphers

A block cipher f of block-size n and key-size r is a
function

f : Z
n
2 × Z

r
2 → Z

n
2

that maps (M, K ) to C = f (M, K ).

For each key K the map

fK : Z
n
2 → Z

n
2

taking a plaintext message M to the ciphertext message
C = fK (M) = f (M, K ) should be bijective (invertible).
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Block ciphers

A block cipher f of block-size n and key-size r is a
function

f : Z
n
2 × Z

r
2 → Z

n
2

that maps (M, K ) to C = f (M, K ).

For each key K the map

fK : Z
n
2 → Z

n
2

taking a plaintext message M to the ciphertext message
C = fK (M) = f (M, K ) should be bijective (invertible).

n and r should be large enough to preclude successful
exhaustive search.
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Block ciphers

A block cipher f of block-size n and key-size r is a
function

f : Z
n
2 × Z

r
2 → Z

n
2

that maps (M, K ) to C = f (M, K ).

For each key K the map

fK : Z
n
2 → Z

n
2

taking a plaintext message M to the ciphertext message
C = fK (M) = f (M, K ) should be bijective (invertible).

n and r should be large enough to preclude successful
exhaustive search.

Each fK should be a sufficiently random permutation.
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Block ciphers: Examples

Name n, r
DES (Data Encryption Standard) 64, 56
FEAL (Fast Data Encipherment Algorithm) 64, 64
SAFER (Secure And Fast Encryption Routine) 64, 64
IDEA (International Data Encryption Algorithm) 64, 128
Blowfish 64, 6 448
Rijndael 128/192/256,

128/192/256
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Block ciphers: Examples

Name n, r
DES (Data Encryption Standard) 64, 56
FEAL (Fast Data Encipherment Algorithm) 64, 64
SAFER (Secure And Fast Encryption Routine) 64, 64
IDEA (International Data Encryption Algorithm) 64, 128
Blowfish 64, 6 448
Rijndael 128/192/256,

128/192/256

Old standard: DES
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Block ciphers: Examples

Name n, r
DES (Data Encryption Standard) 64, 56
FEAL (Fast Data Encipherment Algorithm) 64, 64
SAFER (Secure And Fast Encryption Routine) 64, 64
IDEA (International Data Encryption Algorithm) 64, 128
Blowfish 64, 6 448
Rijndael 128/192/256,

128/192/256

Old standard: DES

New standard: AES (adaptation of the Rijndael cipher)
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A case study: AES (Advanced Encryption Standard)
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A case study: AES (Advanced Encryption Standard)

AES is an adaptation of the Rijndael cipher designed by
J. Daemen and V. Rijmen.
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A case study: AES (Advanced Encryption Standard)

AES is an adaptation of the Rijndael cipher designed by
J. Daemen and V. Rijmen.

Number of rounds Nr for AES is 10/12/14 for key-sizes
128/192/256.
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A case study: AES (Advanced Encryption Standard)

AES is an adaptation of the Rijndael cipher designed by
J. Daemen and V. Rijmen.

Number of rounds Nr for AES is 10/12/14 for key-sizes
128/192/256.

AES key schedule : From K , generate round keys
K0, K1, . . . , K4Nr +3.
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A case study: AES (contd.)
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A case study: AES (contd.)

State: AES represents a 128-bit message block as a 4 × 4
array of octets:

µ0µ1 . . . µ15 ≡

µ0 µ4 µ8 µ12

µ1 µ5 µ9 µ13

µ2 µ6 µ10 µ14

µ3 µ7 µ11 µ15
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A case study: AES (contd.)

State: AES represents a 128-bit message block as a 4 × 4
array of octets:

µ0µ1 . . . µ15 ≡

µ0 µ4 µ8 µ12

µ1 µ5 µ9 µ13

µ2 µ6 µ10 µ14

µ3 µ7 µ11 µ15

Each octet in the state is identified as an element of
F28 = F2[x ]/〈x8 + x4 + x3 + x + 1〉.
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A case study: AES (contd.)

State: AES represents a 128-bit message block as a 4 × 4
array of octets:

µ0µ1 . . . µ15 ≡

µ0 µ4 µ8 µ12

µ1 µ5 µ9 µ13

µ2 µ6 µ10 µ14

µ3 µ7 µ11 µ15

Each octet in the state is identified as an element of
F28 = F2[x ]/〈x8 + x4 + x3 + x + 1〉.
Each column in the state is identified as an element of
F28 [y ]/〈y4 + 1〉.
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Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the plaintext block M to a state S.
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AES encryption

Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the plaintext block M to a state S.

S = AddKey(S, K0, K1, K2, K3). [bitwise XOR]
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AES encryption

Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the plaintext block M to a state S.

S = AddKey(S, K0, K1, K2, K3). [bitwise XOR]

for i = 1, 2, . . . , Nr do the following:
S = SubState(S). [non-linear, involves inverses in F28 ]
S = ShiftRows(S). [cyclic shift of octets in each row]
If i 6= Nr , S = MixCols(S). [operation in F28 [y ]/〈y4 + 1〉]
S = AddKey(S, K4i , K4i+1, K4i+2, K4i+3). [bitwise XOR]
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AES encryption

Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the plaintext block M to a state S.

S = AddKey(S, K0, K1, K2, K3). [bitwise XOR]

for i = 1, 2, . . . , Nr do the following:
S = SubState(S). [non-linear, involves inverses in F28 ]
S = ShiftRows(S). [cyclic shift of octets in each row]
If i 6= Nr , S = MixCols(S). [operation in F28 [y ]/〈y4 + 1〉]
S = AddKey(S, K4i , K4i+1, K4i+2, K4i+3). [bitwise XOR]

Convert the state S to the ciphertext block C.
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Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the ciphertext block C to a state S.
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AES decryption

Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the ciphertext block C to a state S.

S = AddKey(S, K4Nr , K4Nr +1, K4Nr +2, K4Nr +3).
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Block ciphers
Stream ciphers
Hash functions

AES decryption

Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the ciphertext block C to a state S.

S = AddKey(S, K4Nr , K4Nr +1, K4Nr +2, K4Nr +3).

for i = Nr − 1, Nr − 2, . . . , 1, 0 do the following:
S = ShiftRows−1(S).
S = SubState−1(S).
S = AddKey(S, K4i , K4i+1, K4i+2, K4i+3).
If i 6= 0, S = MixCols−1(S).
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AES decryption

Generate key schedule K0, K1, . . . , K4Nr +3 from the key K .

Convert the ciphertext block C to a state S.

S = AddKey(S, K4Nr , K4Nr +1, K4Nr +2, K4Nr +3).

for i = Nr − 1, Nr − 2, . . . , 1, 0 do the following:
S = ShiftRows−1(S).
S = SubState−1(S).
S = AddKey(S, K4i , K4i+1, K4i+2, K4i+3).
If i 6= 0, S = MixCols−1(S).

Convert the state S to the plaintext block M.
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Multiple encryption

K K K

x y

1 2 3

K1 K2

x

h h

g g

h
1 2

1 2

3

m c

cm

(a)  Double encryption

(b) Triple encryption
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Modes of operation

Break the message M = M1M2 . . . Ml into blocks each of
bit-length n′ 6 n.
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Modes of operation

Break the message M = M1M2 . . . Ml into blocks each of
bit-length n′ 6 n.

ECB (Electronic Code-Book) mode: Here n′ = n.
Ci = fK (Mi).
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Block ciphers
Stream ciphers
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Modes of operation

Break the message M = M1M2 . . . Ml into blocks each of
bit-length n′ 6 n.

ECB (Electronic Code-Book) mode: Here n′ = n.
Ci = fK (Mi).

CBC (Cipher-Block Chaining) mode: Here n′ = n.
Ci = fK (Mi ⊕ Ci−1).
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Block ciphers
Stream ciphers
Hash functions

Modes of operation

Break the message M = M1M2 . . . Ml into blocks each of
bit-length n′ 6 n.

ECB (Electronic Code-Book) mode: Here n′ = n.
Ci = fK (Mi).

CBC (Cipher-Block Chaining) mode: Here n′ = n.
Ci = fK (Mi ⊕ Ci−1).

CFB (Cipher FeedBack) Mode: Here n′ 6 n. Set k0 = IV .
Ci = Mi ⊕ msbn′(fK (ki−1)). [Mask key and plaintext]
ki = lsbn−n′(ki−1) || Ci . [Generate next key]
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Block ciphers
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Modes of operation

Break the message M = M1M2 . . . Ml into blocks each of
bit-length n′ 6 n.

ECB (Electronic Code-Book) mode: Here n′ = n.
Ci = fK (Mi).

CBC (Cipher-Block Chaining) mode: Here n′ = n.
Ci = fK (Mi ⊕ Ci−1).

CFB (Cipher FeedBack) Mode: Here n′ 6 n. Set k0 = IV .
Ci = Mi ⊕ msbn′(fK (ki−1)). [Mask key and plaintext]
ki = lsbn−n′(ki−1) || Ci . [Generate next key]

OFB (Output FeedBack) Mode: Here n′ 6 n. Set k0 = IV .
ki = fK (ki−1). [Generate next key]
Ci = Mi ⊕ msbn′(ki). [Mask plaintext block]
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Attacks on block ciphers

Exhaustive key search: If the key space is small, all
possibilities for an unknown key can be matched against
known plaintext-ciphertext pairs. Many DES challenges are
cracked by exhaustive key search. DES has a small
key-size (56 bits). Only two plaintext-ciphertext pairs
usually suffice to determine a key uniquely.
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Attacks on block ciphers

Exhaustive key search: If the key space is small, all
possibilities for an unknown key can be matched against
known plaintext-ciphertext pairs. Many DES challenges are
cracked by exhaustive key search. DES has a small
key-size (56 bits). Only two plaintext-ciphertext pairs
usually suffice to determine a key uniquely.

Linear and differential cryptanalysis: By far the most
sophisticated attacks on block ciphers. Impractical if
sufficiently many rounds are used. AES is robust against
these attacks.
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Attacks on block ciphers (contd.)
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Attacks on block ciphers (contd.)

Specific attacks on AES:
Square attack
Collision attack
Algebraic attacks (like XSL)
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Attacks on block ciphers (contd.)

Specific attacks on AES:
Square attack
Collision attack
Algebraic attacks (like XSL)

Meet-in-the-middle attack: Applies to multiple encryption
schemes. With m stages we get the equivalent security of
⌈m/2⌉ keys only.
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Stream ciphers

Stream ciphers encrypt bit-by-bit.
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Stream ciphers

Stream ciphers encrypt bit-by-bit.
Plaintext stream: M = m1m2 . . . ml .
Key stream: K = k1k2 . . . kl .
Ciphertext stream: C = c1c2 . . . cl .
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Stream ciphers

Stream ciphers encrypt bit-by-bit.
Plaintext stream: M = m1m2 . . . ml .
Key stream: K = k1k2 . . . kl .
Ciphertext stream: C = c1c2 . . . cl .
Encryption: ci = mi ⊕ ki .
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Stream ciphers

Stream ciphers encrypt bit-by-bit.
Plaintext stream: M = m1m2 . . . ml .
Key stream: K = k1k2 . . . kl .
Ciphertext stream: C = c1c2 . . . cl .
Encryption: ci = mi ⊕ ki .
Decryption: mi = ci ⊕ ki .

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Stream ciphers

Stream ciphers encrypt bit-by-bit.
Plaintext stream: M = m1m2 . . . ml .
Key stream: K = k1k2 . . . kl .
Ciphertext stream: C = c1c2 . . . cl .
Encryption: ci = mi ⊕ ki .
Decryption: mi = ci ⊕ ki .
Source of security: unpredictability in the key-stream.
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Block ciphers
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Stream ciphers

Stream ciphers encrypt bit-by-bit.
Plaintext stream: M = m1m2 . . . ml .
Key stream: K = k1k2 . . . kl .
Ciphertext stream: C = c1c2 . . . cl .
Encryption: ci = mi ⊕ ki .
Decryption: mi = ci ⊕ ki .
Source of security: unpredictability in the key-stream.
Vernam’s one-time pad: For a truly random key stream,

Pr(ci = 0) = Pr(ci = 1) = 1
2

for each i , irrespective of the probabilities of the values
assumed by mi . This leads to unconditional security ,
that is, the knowledge of any number of plaintext-ciphertext
bit pairs, does not help in decrypting a new ciphertext bit.
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Stream ciphers: drawbacks

Key stream should be as long as the message stream.
Management of long key streams is difficult.
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Key stream should be as long as the message stream.
Management of long key streams is difficult.

It is difficult to generate truly random (and reproducible)
key streams.
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Stream ciphers: drawbacks

Key stream should be as long as the message stream.
Management of long key streams is difficult.

It is difficult to generate truly random (and reproducible)
key streams.

Pseudorandom bit streams provide practical solution, but
do not guarantee unconditional security.
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Stream ciphers: drawbacks

Key stream should be as long as the message stream.
Management of long key streams is difficult.

It is difficult to generate truly random (and reproducible)
key streams.

Pseudorandom bit streams provide practical solution, but
do not guarantee unconditional security.

Pseudorandom bit generators are vulnerable to
compromise of seeds.
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Stream ciphers: drawbacks

Key stream should be as long as the message stream.
Management of long key streams is difficult.

It is difficult to generate truly random (and reproducible)
key streams.

Pseudorandom bit streams provide practical solution, but
do not guarantee unconditional security.

Pseudorandom bit generators are vulnerable to
compromise of seeds.

Repeated use of the same key stream degrades security.
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Linear Feedback Shift Registers (LFSR)

d d 012D D−2−1 D D D

aaaa a 2 1 0−2dd−1

s s s s012d−1 sd−2

fe
ed

ba
ck

output
sd
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LFSR: Example

D D D D0123 output
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
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Block ciphers
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Hash functions

LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
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Block ciphers
Stream ciphers
Hash functions

LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
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Block ciphers
Stream ciphers
Hash functions

LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
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Block ciphers
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
11 0 1 1 0
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
11 0 1 1 0
12 1 0 1 1
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Block ciphers
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
11 0 1 1 0
12 1 0 1 1
13 0 1 0 1
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
11 0 1 1 0
12 1 0 1 1
13 0 1 0 1
14 1 0 1 0
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Block ciphers
Stream ciphers
Hash functions

LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
11 0 1 1 0
12 1 0 1 1
13 0 1 0 1
14 1 0 1 0
15 1 1 0 1
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LFSR: State transition

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

LFSR: State transition

Control bits: a0, a1, . . . , ad−1.
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LFSR: State transition

Control bits: a0, a1, . . . , ad−1.

State: s = (s0, s1, . . . , sd−1).
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LFSR: State transition

Control bits: a0, a1, . . . , ad−1.

State: s = (s0, s1, . . . , sd−1).

Each clock pulse changes the state as follows:

t0 = s1

t1 = s2
...

td−2 = sd−1

td−1 = a0s0 + a1s1 + a2s2 + · · · + ad−1sd−1 (mod2).
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LFSR: State transition (contd.)

In the matrix notation t = ∆Ls (mod2), where the
transition matrix is

∆L =















0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 1
a0 a1 a2 · · · ad−2 ad−1















.
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LFSR (contd)
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The output bit-stream behaves like a pseudorandom
sequence.
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The output bit-stream behaves like a pseudorandom
sequence.

The output stream must be periodic. The period should be
large.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

LFSR (contd)

The output bit-stream behaves like a pseudorandom
sequence.

The output stream must be periodic. The period should be
large.

Maximum period of a non-zero bit-stream = 2d − 1.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

LFSR (contd)

The output bit-stream behaves like a pseudorandom
sequence.

The output stream must be periodic. The period should be
large.

Maximum period of a non-zero bit-stream = 2d − 1.

Maximum-length LFSR has the maximum period.
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LFSR (contd)

The output bit-stream behaves like a pseudorandom
sequence.

The output stream must be periodic. The period should be
large.

Maximum period of a non-zero bit-stream = 2d − 1.

Maximum-length LFSR has the maximum period.

Connection polynomial

CL(x) = 1 + ad−1x + ad−2x2 + · · ·+ a1xd−1 + a0xd ∈ F2[X ].

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

LFSR (contd)

The output bit-stream behaves like a pseudorandom
sequence.

The output stream must be periodic. The period should be
large.

Maximum period of a non-zero bit-stream = 2d − 1.

Maximum-length LFSR has the maximum period.

Connection polynomial

CL(x) = 1 + ad−1x + ad−2x2 + · · ·+ a1xd−1 + a0xd ∈ F2[X ].

L is a maximum-length LFSR if and only if CL(x) is a
primitive polynomial of F2[x ].
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The linear relation of the feedback bit as a function of the
current state in LFSRs invites attacks.
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An attack on LFSR

The linear relation of the feedback bit as a function of the
current state in LFSRs invites attacks.
Berlekamp-Massey attack
Suppose that the bits mi and ci for 2d consecutive values
of i (say, 1, 2, . . . , 2d ) are known to an attacker. Then
ki = mi ⊕ ci are also known for these values of i . Define
the states Si = (ki , ki+1, . . . , ki+d−1) of the LFSR. Then,

Si+1 = ∆LSi (mod2)

for i = 1, 2, . . . , d . Treat each Si as a column vector. Then,
(

S2 S3 · · · Sd+1
)

= ∆L
(

S1 S2 · · · Sd
)

(mod2)

This reveals ∆L, that is, the secret a0, a1, . . . , ad−1.
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An attack on LFSR

The linear relation of the feedback bit as a function of the
current state in LFSRs invites attacks.
Berlekamp-Massey attack
Suppose that the bits mi and ci for 2d consecutive values
of i (say, 1, 2, . . . , 2d ) are known to an attacker. Then
ki = mi ⊕ ci are also known for these values of i . Define
the states Si = (ki , ki+1, . . . , ki+d−1) of the LFSR. Then,

Si+1 = ∆LSi (mod2)

for i = 1, 2, . . . , d . Treat each Si as a column vector. Then,
(

S2 S3 · · · Sd+1
)

= ∆L
(

S1 S2 · · · Sd
)

(mod2)

This reveals ∆L, that is, the secret a0, a1, . . . , ad−1.
Remedy: Introduce non-linearity to the LFSR output.
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Nonlinear filter generator

Feedback function

Output

F
ee

db
ac

k

Nonlinear filter function

. . .
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Hash functions

Collision resistance implies second pre-image resistance.
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Hash functions

Collision resistance implies second pre-image resistance.

Second pre-image resistance does not imply collision
resistance: Let S be a finite set of size > 2 and H a
cryptographic hash function. Then

H ′(x) =

{

0n+1 if x ∈ S,

1 ||H(x) otherwise,

is second pre-image resistant but not collision resistant.
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Hash functions (contd.)

Collision resistance does not imply first pre-image
resistance: Let H be an n-bit cryptographic hash function.
Then

H ′′(x) =

{

0 || x if |x | = n,

1 ||H(x) otherwise.

is collision resistant (so second pre-image resistant), but
not first pre-image resistant.
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Hash functions (contd.)

Collision resistance does not imply first pre-image
resistance: Let H be an n-bit cryptographic hash function.
Then

H ′′(x) =

{

0 || x if |x | = n,

1 ||H(x) otherwise.

is collision resistant (so second pre-image resistant), but
not first pre-image resistant.

First pre-image resistance does not imply second
pre-image resistance: Let m be a product of two unknown
big primes. Define H ′′′(x) = (1 || x)2 (modm). H ′′′ is first
pre-image resistant, but not second pre-image resistant.
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Hash functions: Construction

Compression function: A function F : Z
m
2 → Z

n
2, where

m = n + r .
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Compression function: A function F : Z
m
2 → Z

n
2, where

m = n + r .
Merkle-Damg ård’s meta method

Break the input x = x1x2 . . . xl to blocks each of bit-length r .
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Hash functions: Construction

Compression function: A function F : Z
m
2 → Z

n
2, where

m = n + r .
Merkle-Damg ård’s meta method

Break the input x = x1x2 . . . xl to blocks each of bit-length r .
Initialize h0 = 0r .
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Hash functions: Construction

Compression function: A function F : Z
m
2 → Z

n
2, where

m = n + r .
Merkle-Damg ård’s meta method

Break the input x = x1x2 . . . xl to blocks each of bit-length r .
Initialize h0 = 0r .
For i = 1, 2, . . . , l use compression hi = F (hi−1 || xi).
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Hash functions: Construction

Compression function: A function F : Z
m
2 → Z

n
2, where

m = n + r .
Merkle-Damg ård’s meta method

Break the input x = x1x2 . . . xl to blocks each of bit-length r .
Initialize h0 = 0r .
For i = 1, 2, . . . , l use compression hi = F (hi−1 || xi).
Output H(x) = hl as the hash value.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Hash functions: Construction

Compression function: A function F : Z
m
2 → Z

n
2, where

m = n + r .
Merkle-Damg ård’s meta method

Break the input x = x1x2 . . . xl to blocks each of bit-length r .
Initialize h0 = 0r .
For i = 1, 2, . . . , l use compression hi = F (hi−1 || xi).
Output H(x) = hl as the hash value.

F F FF
h

x x x x. . .
1 2 3 l

0 −1h2 3h l hl. . .
h1h
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Hash functions: Construction (contd)
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Hash functions: Construction (contd)

Properties
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Hash functions: Construction (contd)

Properties
If F is first pre-image resistant, then H is also first
pre-image resistant.
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Hash functions: Construction (contd)

Properties
If F is first pre-image resistant, then H is also first
pre-image resistant.
If F is collision resistant, then H is also collision resistant.
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Hash functions: Construction (contd)

Properties
If F is first pre-image resistant, then H is also first
pre-image resistant.
If F is collision resistant, then H is also collision resistant.

A concrete realization
Let f is a block cipher of block-size n and key-size r . Take:

F (M || K ) = fK (M).
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Hash functions: Construction (contd)

Properties
If F is first pre-image resistant, then H is also first
pre-image resistant.
If F is collision resistant, then H is also collision resistant.

A concrete realization
Let f is a block cipher of block-size n and key-size r . Take:

F (M || K ) = fK (M).

Keyed hash function
HMAC(M) = H(K ||P ||H(K ||Q ||M)), where H is an
unkeyed hash function, K is a key and P, Q are short
padding strings.
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Custom-designed hash functions

The SHA (Secure Hash Algorithm) family:
SHA-1 (160-bit), SHA-256 (256-bit),
SHA-384 (384-bit), SHA-512 (512-bit).
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Custom-designed hash functions

The SHA (Secure Hash Algorithm) family:
SHA-1 (160-bit), SHA-256 (256-bit),
SHA-384 (384-bit), SHA-512 (512-bit).

The MD family:
MD2 (128-bit), MD5 (128-bit).
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Custom-designed hash functions

The SHA (Secure Hash Algorithm) family:
SHA-1 (160-bit), SHA-256 (256-bit),
SHA-384 (384-bit), SHA-512 (512-bit).

The MD family:
MD2 (128-bit), MD5 (128-bit).

The RIPEMD family:
RIPEMD-128 (128-bit), RIPEMD-160 (160-bit).
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
Some other attacks:
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
Some other attacks:

Pseudo-collision attacks
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
Some other attacks:

Pseudo-collision attacks
Chaining attacks
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
Some other attacks:

Pseudo-collision attacks
Chaining attacks
Attacks on the underlying cipher
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
Some other attacks:

Pseudo-collision attacks
Chaining attacks
Attacks on the underlying cipher
Exhaustive key search for keyed hash functions
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For
an n-bit hash function, one needs to compute on an
average 2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires n > 128
(n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.
Some other attacks:

Pseudo-collision attacks
Chaining attacks
Attacks on the underlying cipher
Exhaustive key search for keyed hash functions
Long message attacks
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Part III: Public-key cryptosystems
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
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signature generation) should be difficult, unless some
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Some difficult computational problems
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite
fields, elliptic and hyperelliptic curves, class groups of
number fields, etc.)
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite
fields, elliptic and hyperelliptic curves, class groups of
number fields, etc.)
Finding shortest/closest vectors in a lattice
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite
fields, elliptic and hyperelliptic curves, class groups of
number fields, etc.)
Finding shortest/closest vectors in a lattice
Solving the subset sum problem
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite
fields, elliptic and hyperelliptic curves, class groups of
number fields, etc.)
Finding shortest/closest vectors in a lattice
Solving the subset sum problem
Finding roots of non-linear multivariate polynomials
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Intractable problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite
fields, elliptic and hyperelliptic curves, class groups of
number fields, etc.)
Finding shortest/closest vectors in a lattice
Solving the subset sum problem
Finding roots of non-linear multivariate polynomials
Solving the braid conjugacy problem
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Intractable problems (contd.)
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Intractable problems (contd.)

Many sophisticated algorithms are proposed to break the
trapdoor functions. Most of these are fully exponential.
Subexponential algorithms are sometimes known.
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Intractable problems (contd.)

Many sophisticated algorithms are proposed to break the
trapdoor functions. Most of these are fully exponential.
Subexponential algorithms are sometimes known.
For suitably chosen domain parameters, these algorithms
take infeasible time.
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Intractable problems (contd.)

Many sophisticated algorithms are proposed to break the
trapdoor functions. Most of these are fully exponential.
Subexponential algorithms are sometimes known.
For suitably chosen domain parameters, these algorithms
take infeasible time.
No non-trivial lower bounds on the complexity of these
computational problems are known. Even existence of
polynomial-time algorithms cannot be often ruled out.
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Intractable problems (contd.)

Many sophisticated algorithms are proposed to break the
trapdoor functions. Most of these are fully exponential.
Subexponential algorithms are sometimes known.
For suitably chosen domain parameters, these algorithms
take infeasible time.
No non-trivial lower bounds on the complexity of these
computational problems are known. Even existence of
polynomial-time algorithms cannot be often ruled out.
Certain special cases have been discovered to be
cryptographically weak. For practical designs, it is
essential to avoid these special cases.
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Intractable problems (contd.)

Many sophisticated algorithms are proposed to break the
trapdoor functions. Most of these are fully exponential.
Subexponential algorithms are sometimes known.
For suitably chosen domain parameters, these algorithms
take infeasible time.
No non-trivial lower bounds on the complexity of these
computational problems are known. Even existence of
polynomial-time algorithms cannot be often ruled out.
Certain special cases have been discovered to be
cryptographically weak. For practical designs, it is
essential to avoid these special cases.
Polynomial-time quantum algorithms are known for
factoring integers and computing discrete logarithms in
finite fields.
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Introduction to number theory
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)

N0 = {0, 1, 2, 3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)

P = {2, 3, 5, 7, 11, 13, . . .} (Primes)
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)

N0 = {0, 1, 2, 3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)

P = {2, 3, 5, 7, 11, 13, . . .} (Primes)

Divisibility: a | b if b = ac for some c ∈ Z.
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)

N0 = {0, 1, 2, 3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)

P = {2, 3, 5, 7, 11, 13, . . .} (Primes)

Divisibility: a | b if b = ac for some c ∈ Z.

Corollary: If a | b, then |a| 6 |b|.
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)

N0 = {0, 1, 2, 3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)

P = {2, 3, 5, 7, 11, 13, . . .} (Primes)

Divisibility: a | b if b = ac for some c ∈ Z.

Corollary: If a | b, then |a| 6 |b|.
Theorem: There are infinitely many primes.
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)

N0 = {0, 1, 2, 3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)

P = {2, 3, 5, 7, 11, 13, . . .} (Primes)

Divisibility: a | b if b = ac for some c ∈ Z.

Corollary: If a | b, then |a| 6 |b|.
Theorem: There are infinitely many primes.

Euclidean division: Let a, b ∈ Z with b > 0. There exist
unique q, r ∈ Z with a = qb + r and 0 6 r < b.
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)

N0 = {0, 1, 2, 3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)

P = {2, 3, 5, 7, 11, 13, . . .} (Primes)

Divisibility: a | b if b = ac for some c ∈ Z.

Corollary: If a | b, then |a| 6 |b|.
Theorem: There are infinitely many primes.

Euclidean division: Let a, b ∈ Z with b > 0. There exist
unique q, r ∈ Z with a = qb + r and 0 6 r < b.

Notations: q = a quotb, r = a remb.
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GCD (Greatest common divisor)
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GCD (Greatest common divisor)

Let a, b ∈ Z, not both zero. Then d ∈ N is called the gcd of
a and b, if:
(1) d | a and d | b.
(2) If d ′ | a and d ′ | b, then d ′ | d .
We denote d = gcd(a, b).
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GCD (Greatest common divisor)

Let a, b ∈ Z, not both zero. Then d ∈ N is called the gcd of
a and b, if:
(1) d | a and d | b.
(2) If d ′ | a and d ′ | b, then d ′ | d .
We denote d = gcd(a, b).

Euclidean gcd: gcd(a, b) = gcd(b, a remb) (for b > 0).
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GCD (Greatest common divisor)

Let a, b ∈ Z, not both zero. Then d ∈ N is called the gcd of
a and b, if:
(1) d | a and d | b.
(2) If d ′ | a and d ′ | b, then d ′ | d .
We denote d = gcd(a, b).

Euclidean gcd: gcd(a, b) = gcd(b, a remb) (for b > 0).

Extended gcd: Let a, b ∈ Z, not both zero. There exist
u, v ∈ Z such that

gcd(a, b) = ua + vb.
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Example
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Example

899 = 2 × 319 + 261,
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899, 319) = 29
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899, 319) = 29

Extended gcd computation
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899, 319) = 29

Extended gcd computation

29 = 261 − 4 × 58
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899, 319) = 29

Extended gcd computation

29 = 261 − 4 × 58

= 261 − 4 × (319 − 1 × 261) = (−4) × 319 + 5 × 261
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899, 319) = 29

Extended gcd computation

29 = 261 − 4 × 58

= 261 − 4 × (319 − 1 × 261) = (−4) × 319 + 5 × 261

= (−4) × 319 + 5 × (899 − 2 × 319)
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899, 319) = 29

Extended gcd computation

29 = 261 − 4 × 58

= 261 − 4 × (319 − 1 × 261) = (−4) × 319 + 5 × 261

= (−4) × 319 + 5 × (899 − 2 × 319)

= 5 × 899 + (−14) × 319.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular arithmetic
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Modular arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.
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Modular arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n
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Modular arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b
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Modular arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b

Multiplication: ab (modn) = (ab) remn.
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Modular arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b

Multiplication: ab (modn) = (ab) remn.

Inverse: a ∈ Zn is called invertible modulo n if
(ua) remn = 1 for some u ∈ Zn.
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Modular arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b

Multiplication: ab (modn) = (ab) remn.

Inverse: a ∈ Zn is called invertible modulo n if
(ua) remn = 1 for some u ∈ Zn.

Theorem: a ∈ Zn is invertible modulo n if and only if
gcd(a, n) = 1. In this case extended gcd gives ua + vn = 1.
We may take 0 6 u < n. We have u = a−1 (modn).
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Example of modular arithmetic
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Example of modular arithmetic

Take n = 257, a = 127, b = 217.
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Example of modular arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b (modn) = 344 − 257 = 87.
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Example of modular arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b (modn) = 344 − 257 = 87.

Subtraction: a − b = −90 < 0, so
a − b (modn) = −90 + 257 = 167.
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Example of modular arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b (modn) = 344 − 257 = 87.

Subtraction: a − b = −90 < 0, so
a − b (modn) = −90 + 257 = 167.

Multiplication:
ab (modn) = (127 × 217) rem257 = 27559 rem257 = 60.
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Example of modular arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b (modn) = 344 − 257 = 87.

Subtraction: a − b = −90 < 0, so
a − b (modn) = −90 + 257 = 167.

Multiplication:
ab (modn) = (127 × 217) rem257 = 27559 rem257 = 60.

Inverse: gcd(b, n) = 1 = (−45)b + 38n, so
b−1 (modn) = −45 + 257 = 212.
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Example of modular arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b (modn) = 344 − 257 = 87.

Subtraction: a − b = −90 < 0, so
a − b (modn) = −90 + 257 = 167.

Multiplication:
ab (modn) = (127 × 217) rem257 = 27559 rem257 = 60.

Inverse: gcd(b, n) = 1 = (−45)b + 38n, so
b−1 (modn) = −45 + 257 = 212.

Division:
a/b (modn) = ab−1 (modn) = (127× 212) rem257 = 196.
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Modular exponentiation: Slow algorithm
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (modn),
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (modn),

a3 = a2 × a = 195 × 127 = 93 (modn),
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (modn),

a3 = a2 × a = 195 × 127 = 93 (modn),

a4 = a3 × a = 93 × 127 = 246 (modn),
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (modn),

a3 = a2 × a = 195 × 127 = 93 (modn),

a4 = a3 × a = 93 × 127 = 246 (modn),

· · ·
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (modn),

a3 = a2 × a = 195 × 127 = 93 (modn),

a4 = a3 × a = 93 × 127 = 246 (modn),

· · ·
a216 = a215 × a = 131 × 127 = 189 (modn),
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Modular exponentiation: Slow algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (modn),

a3 = a2 × a = 195 × 127 = 93 (modn),

a4 = a3 × a = 93 × 127 = 246 (modn),

· · ·
a216 = a215 × a = 131 × 127 = 189 (modn),

a217 = a216 × a = 189 × 127 = 102 (modn).
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Modular exponentiation: Fast algorithm
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Modular exponentiation: Fast algorithm

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.
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Modular exponentiation: Fast algorithm

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

ae =
(

a2l−1
)el−1

(

a2l−2
)el−2 · · ·

(

a21
)e1

(

a20
)e0

(modn).
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Modular exponentiation: Fast algorithm

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

ae =
(

a2l−1
)el−1

(

a2l−2
)el−2 · · ·

(

a21
)e1

(

a20
)e0

(modn).

Compute a, a2, a22
, a23

, . . . , a2l−1
and multiply those a2i

modulo n for which ei = 1. Also for i > 1, we have

a2i
=

(

a2i−1
)2

(modn).
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Modular exponentiation: Example
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Modular exponentiation: Example

n = 257, a = 127, e = 217.
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn),
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),

a23
= (246)2 = 121 (modn),
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),

a23
= (246)2 = 121 (modn), a24

= (121)2 = 249 (modn),
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),

a23
= (246)2 = 121 (modn), a24

= (121)2 = 249 (modn),
a25

= (249)2 = 64 (modn),
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),

a23
= (246)2 = 121 (modn), a24

= (121)2 = 249 (modn),
a25

= (249)2 = 64 (modn), a26
= (64)2 = 241 (modn) and
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Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),

a23
= (246)2 = 121 (modn), a24

= (121)2 = 249 (modn),
a25

= (249)2 = 64 (modn), a26
= (64)2 = 241 (modn) and

a27
= (241)2 = 256 (modn).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular exponentiation: Example

n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae = a27

a26
a24

a23
a20

(modn).

a2 = 195 (modn), a22
= (195)2 = 246 (modn),

a23
= (246)2 = 121 (modn), a24

= (121)2 = 249 (modn),
a25

= (249)2 = 64 (modn), a26
= (64)2 = 241 (modn) and

a27
= (241)2 = 256 (modn).

ae = 256 × 241 × 249 × 121 × 127 = 102 (modn).
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Euler totient function
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Euler totient function

Let n ∈ N. Define

Z
∗
n = {a ∈ Zn | gcd(a, n) = 1}.

Thus, Z
∗
n is the set of all elements of Zn that are invertible

modulo n.
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Euler totient function

Let n ∈ N. Define

Z
∗
n = {a ∈ Zn | gcd(a, n) = 1}.

Thus, Z
∗
n is the set of all elements of Zn that are invertible

modulo n.

Call φ(n) = |Z∗
n|.
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Euler totient function

Let n ∈ N. Define

Z
∗
n = {a ∈ Zn | gcd(a, n) = 1}.

Thus, Z
∗
n is the set of all elements of Zn that are invertible

modulo n.

Call φ(n) = |Z∗
n|.

Example: If p is a prime, then φ(p) = p − 1.
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Euler totient function

Let n ∈ N. Define

Z
∗
n = {a ∈ Zn | gcd(a, n) = 1}.

Thus, Z
∗
n is the set of all elements of Zn that are invertible

modulo n.

Call φ(n) = |Z∗
n|.

Example: If p is a prime, then φ(p) = p − 1.

Example: Z6 = {0, 1, 2, 3, 4, 5}. We have gcd(0, 6) = 6,
gcd(1, 6) = 1, gcd(2, 6) = 2, gcd(3, 6) = 3, gcd(4, 6) = 2,
and gcd(5, 6) = 1. So Z

∗
6 = {1, 5}, that is, φ(6) = 2.
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Euler totient function (contd.)
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Euler totient function (contd.)

Theorem: Let n = pe1
1 · · · per

r with distinct primes pi ∈ P

and with ei ∈ N. Then

φ(n) = n
(

1 − 1
p1

)

· · ·
(

1 − 1
pr

)

= n
∏

p | n

(

1 − 1
p

)

.
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Euler totient function (contd.)

Theorem: Let n = pe1
1 · · · per

r with distinct primes pi ∈ P

and with ei ∈ N. Then

φ(n) = n
(

1 − 1
p1

)

· · ·
(

1 − 1
pr

)

= n
∏

p | n

(

1 − 1
p

)

.

Fermat’s little theorem: Let p ∈ P and a ∈ Z with p 6 | a.
Then ap−1 = 1 (modp).
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Euler totient function (contd.)

Theorem: Let n = pe1
1 · · · per

r with distinct primes pi ∈ P

and with ei ∈ N. Then

φ(n) = n
(

1 − 1
p1

)

· · ·
(

1 − 1
pr

)

= n
∏

p | n

(

1 − 1
p

)

.

Fermat’s little theorem: Let p ∈ P and a ∈ Z with p 6 | a.
Then ap−1 = 1 (modp).

Euler’s theorem: Let n ∈ N and a ∈ Z with gcd(a, n) = 1.
Then aφ(n) = 1 (modn).
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Multiplicative order

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Multiplicative order

Let n ∈ N and a ∈ Z
∗
n. Define ordn a to be the smallest of

the positive integers h for which ah = 1 (modn).
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Multiplicative order

Let n ∈ N and a ∈ Z
∗
n. Define ordn a to be the smallest of

the positive integers h for which ah = 1 (modn).

Example: n = 17, a = 2. a1 = 2 (modn), a2 = 4 (modn),
a3 = 8 (modn), a4 = 16 (modn), a5 = 15 (modn),
a6 = 13 (modn), a7 = 9 (modn), and a8 = 1 (modn). So
ord17 2 = 8.
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Multiplicative order

Let n ∈ N and a ∈ Z
∗
n. Define ordn a to be the smallest of

the positive integers h for which ah = 1 (modn).

Example: n = 17, a = 2. a1 = 2 (modn), a2 = 4 (modn),
a3 = 8 (modn), a4 = 16 (modn), a5 = 15 (modn),
a6 = 13 (modn), a7 = 9 (modn), and a8 = 1 (modn). So
ord17 2 = 8.

Theorem: ak = 1 (modn) if and only if ordn a | k .
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Multiplicative order

Let n ∈ N and a ∈ Z
∗
n. Define ordn a to be the smallest of

the positive integers h for which ah = 1 (modn).

Example: n = 17, a = 2. a1 = 2 (modn), a2 = 4 (modn),
a3 = 8 (modn), a4 = 16 (modn), a5 = 15 (modn),
a6 = 13 (modn), a7 = 9 (modn), and a8 = 1 (modn). So
ord17 2 = 8.

Theorem: ak = 1 (modn) if and only if ordn a | k .

Theorem: Let h = ordn a. Then, ordn ak = h/ gcd(h, k).
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Multiplicative order

Let n ∈ N and a ∈ Z
∗
n. Define ordn a to be the smallest of

the positive integers h for which ah = 1 (modn).

Example: n = 17, a = 2. a1 = 2 (modn), a2 = 4 (modn),
a3 = 8 (modn), a4 = 16 (modn), a5 = 15 (modn),
a6 = 13 (modn), a7 = 9 (modn), and a8 = 1 (modn). So
ord17 2 = 8.

Theorem: ak = 1 (modn) if and only if ordn a | k .

Theorem: Let h = ordn a. Then, ordn ak = h/ gcd(h, k).

Theorem: ordn a | φ(n).
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Primitive root

If ordn a = φ(n), then a is called a primitive root modulo n.
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Primitive root

If ordn a = φ(n), then a is called a primitive root modulo n.

Theorem (Gauss): An integer n > 1 has a primitive root if
and only if n = 2, 4, pe, 2pe, where p is an odd prime and
e ∈ N.
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Primitive root

If ordn a = φ(n), then a is called a primitive root modulo n.

Theorem (Gauss): An integer n > 1 has a primitive root if
and only if n = 2, 4, pe, 2pe, where p is an odd prime and
e ∈ N.

Example: 3 is a primitive root modulo the prime n = 17:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
3k (mod17) 1 3 9 10 13 5 15 11 16 14 8 7 4 12

14 15 16
2 6 1
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Primitive root (contd.)
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Primitive root (contd.)

Example: n = 2 × 32 = 18 has a primitive root 5 with order
φ(18) = 6:

k 0 1 2 3 4 5 6
5k (mod18) 1 5 7 17 13 11 1

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Primitive root (contd.)

Example: n = 2 × 32 = 18 has a primitive root 5 with order
φ(18) = 6:

k 0 1 2 3 4 5 6
5k (mod18) 1 5 7 17 13 11 1

Example: n = 20 = 22 × 5 does not have a primitive root.
We have φ(20) = 8, and the orders of the elements of Z

∗
20

are ord20 1 = 1, ord20 3 = ord20 7 = ord20 13 = ord20 17 = 4,
and ord20 9 = ord20 19 = 2.
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Discrete logarithm

Let p ∈ P, g a primitive root modulo p, and
a ∈ {1, 2, . . . , p − 1}. Then there exists a unique integer
x ∈ {0, 1, 2, . . . , p − 2} such that gx = a (modp). We call x
the index or discrete logarithm of a to the base g. We
denote this by x = indg a.
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Discrete logarithm

Let p ∈ P, g a primitive root modulo p, and
a ∈ {1, 2, . . . , p − 1}. Then there exists a unique integer
x ∈ {0, 1, 2, . . . , p − 2} such that gx = a (modp). We call x
the index or discrete logarithm of a to the base g. We
denote this by x = indg a.

Indices follow arithmetic modulo p − 1.

indg(ab) = indg a + indg b (modp − 1),

indg(ae) = e indg a (modp − 1).
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Discrete logarithm: Example
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Discrete logarithm: Example

Take p = 17 and g = 3.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ind3 a 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8
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Discrete logarithm: Example

Take p = 17 and g = 3.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ind3 a 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

ind3 6 = 15 and ind3 11 = 7. Since 6 × 11 = 15 (mod17),
we have ind3 15 = ind3 6 + ind3 11 = 15 + 7 = 6 (mod16).
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Common intractable problems of cryptography
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Common intractable problems of cryptography

Integer factorization problem (IFP): Given n ∈ N, compute
the complete prime factorization of n. Suppose there is an
algorithm A that computes a non-trivial factor of n. We can use
A repeatedly in order to compute the complete factorization of
n. If n = pq (with p, q ∈ P), then computing p or q suffices.
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Common intractable problems of cryptography

Integer factorization problem (IFP): Given n ∈ N, compute
the complete prime factorization of n. Suppose there is an
algorithm A that computes a non-trivial factor of n. We can use
A repeatedly in order to compute the complete factorization of
n. If n = pq (with p, q ∈ P), then computing p or q suffices.
Example

Input: n = 85067.
Output: 85067 = 257 × 331.
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Common intractable problems of cryptography

Integer factorization problem (IFP): Given n ∈ N, compute
the complete prime factorization of n. Suppose there is an
algorithm A that computes a non-trivial factor of n. We can use
A repeatedly in order to compute the complete factorization of
n. If n = pq (with p, q ∈ P), then computing p or q suffices.
Example

Input: n = 85067.
Output: 85067 = 257 × 331.

Discrete logarithm problem (DLP): Let p ∈ P and g a
primitive root modulo p. Given a ∈ Z

∗
p, compute indg a.
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Common intractable problems of cryptography

Integer factorization problem (IFP): Given n ∈ N, compute
the complete prime factorization of n. Suppose there is an
algorithm A that computes a non-trivial factor of n. We can use
A repeatedly in order to compute the complete factorization of
n. If n = pq (with p, q ∈ P), then computing p or q suffices.
Example

Input: n = 85067.
Output: 85067 = 257 × 331.

Discrete logarithm problem (DLP): Let p ∈ P and g a
primitive root modulo p. Given a ∈ Z

∗
p, compute indg a.

Example
Input: p = 17, g = 3, a = 11.
Output: indg a = 7.
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Intractable problems (contd)
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
IFP is the inverse of the integer multiplication problem.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
IFP is the inverse of the integer multiplication problem.
DLP is the inverse of the modular exponentiation problem.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
IFP is the inverse of the integer multiplication problem.
DLP is the inverse of the modular exponentiation problem.
Integer multiplication and modular exponentiation are easy
computational problems. They are believed to be one-way
functions.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
IFP is the inverse of the integer multiplication problem.
DLP is the inverse of the modular exponentiation problem.
Integer multiplication and modular exponentiation are easy
computational problems. They are believed to be one-way
functions.
There is, however, no proof that IFP and DLP must be
difficult.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
IFP is the inverse of the integer multiplication problem.
DLP is the inverse of the modular exponentiation problem.
Integer multiplication and modular exponentiation are easy
computational problems. They are believed to be one-way
functions.
There is, however, no proof that IFP and DLP must be
difficult.
Efficient quantum algorithms exist for solving IFP and DLP.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very
difficult.
The best known algorithms for IFP and DLP are
subexponential.
IFP is the inverse of the integer multiplication problem.
DLP is the inverse of the modular exponentiation problem.
Integer multiplication and modular exponentiation are easy
computational problems. They are believed to be one-way
functions.
There is, however, no proof that IFP and DLP must be
difficult.
Efficient quantum algorithms exist for solving IFP and DLP.
IFP and DLP are believed to be computationally equivalent.
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Intractable problems (contd)

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example

Input: p = 17, g = 3, gx = 11 (modp) and gy = 13 (modp).
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example

Input: p = 17, g = 3, gx = 11 (modp) and gy = 13 (modp).
Output: gxy = 4 (modp).
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example

Input: p = 17, g = 3, gx = 11 (modp) and gy = 13 (modp).
Output: gxy = 4 (modp).

(x = 7, y = 4, that is, xy = 28 = 12 (modp − 1), that is,
gxy = 312 = 4 (modp).)
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example

Input: p = 17, g = 3, gx = 11 (modp) and gy = 13 (modp).
Output: gxy = 4 (modp).

(x = 7, y = 4, that is, xy = 28 = 12 (modp − 1), that is,
gxy = 312 = 4 (modp).)

DHP is another believably difficult computational problem.
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example

Input: p = 17, g = 3, gx = 11 (modp) and gy = 13 (modp).
Output: gxy = 4 (modp).

(x = 7, y = 4, that is, xy = 28 = 12 (modp − 1), that is,
gxy = 312 = 4 (modp).)

DHP is another believably difficult computational problem.

If DLP can be solved, then DHP can be solved
(gxy = (gx )y ).
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P and g a
primitive root modulo p. Given gx and gy modulo p,
compute gxy modulo p.
Example

Input: p = 17, g = 3, gx = 11 (modp) and gy = 13 (modp).
Output: gxy = 4 (modp).

(x = 7, y = 4, that is, xy = 28 = 12 (modp − 1), that is,
gxy = 312 = 4 (modp).)

DHP is another believably difficult computational problem.

If DLP can be solved, then DHP can be solved
(gxy = (gx )y ).

The converse is only believed to be true.
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RSA encryption
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RSA encryption

Key generation
The recipient generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed = 1 (modφ(n)).

Public key: (n, e).
Private key: (n, d).
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RSA encryption

Key generation
The recipient generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed = 1 (modφ(n)).

Public key: (n, e).
Private key: (n, d).

Encryption
Input: Plaintext m ∈ Zn and the recipient’s public key (n, e).
Output: Ciphertext c = me (modn).
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RSA encryption

Key generation
The recipient generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed = 1 (modφ(n)).

Public key: (n, e).
Private key: (n, d).

Encryption
Input: Plaintext m ∈ Zn and the recipient’s public key (n, e).
Output: Ciphertext c = me (modn).

Decryption
Input: Ciphertext c and the recipient’s private key (n, d).
Output: Plaintext m = cd (modn).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Example of RSA encryption
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Example of RSA encryption

Let p = 257, q = 331, so that n = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 7, so that
d = e−1 = 60343 (modφ(n)).

Public key: (85067, 7).
Private key: (85067, 60343).
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Example of RSA encryption

Let p = 257, q = 331, so that n = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 7, so that
d = e−1 = 60343 (modφ(n)).

Public key: (85067, 7).
Private key: (85067, 60343).

Let m = 34152. Then
c = me = (34152)7 = 53384 (modn).
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Example of RSA encryption

Let p = 257, q = 331, so that n = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 7, so that
d = e−1 = 60343 (modφ(n)).

Public key: (85067, 7).
Private key: (85067, 60343).

Let m = 34152. Then
c = me = (34152)7 = 53384 (modn).

Recover m = cd = (53384)60343 = 34152 (modn).
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Example of RSA encryption

Let p = 257, q = 331, so that n = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 7, so that
d = e−1 = 60343 (modφ(n)).

Public key: (85067, 7).
Private key: (85067, 60343).

Let m = 34152. Then
c = me = (34152)7 = 53384 (modn).

Recover m = cd = (53384)60343 = 34152 (modn).

Decryption by an exponent d ′ other than d does not give
back m. For example, take d ′ = 38367. We have
m′ = cd ′

= (53384)38367 = 71303 (modn).
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Why RSA works?
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Why RSA works?

Assume that m ∈ Z
∗
n. By Euler’s theorem,

mφ(n) = 1 (modn).
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Why RSA works?

Assume that m ∈ Z
∗
n. By Euler’s theorem,

mφ(n) = 1 (modn).

Now, ed = 1 (modφ(n)), that is, ed = 1 + kφ(n) for some
integer k . Therefore,

cd = med = m1+kφ(n) = m×
(

mφ(n)
)k

= m×1k = m (modn).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Why RSA works?

Assume that m ∈ Z
∗
n. By Euler’s theorem,

mφ(n) = 1 (modn).

Now, ed = 1 (modφ(n)), that is, ed = 1 + kφ(n) for some
integer k . Therefore,

cd = med = m1+kφ(n) = m×
(

mφ(n)
)k

= m×1k = m (modn).

Note: The message can be recovered uniquely even when
m /∈ Z

∗
n.
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RSA signature

Key generation
The signer generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed = 1 (modφ(n)).

Public key: (n, e).
Private key: (n, d).
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RSA signature

Key generation
The signer generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed = 1 (modφ(n)).

Public key: (n, e).
Private key: (n, d).

Signature generation
Input: Message m ∈ Zn and signer’s private key (n, d).
Output: Signed message (m, s) with s = md (modn).
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RSA signature

Key generation
The signer generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed = 1 (modφ(n)).

Public key: (n, e).
Private key: (n, d).

Signature generation
Input: Message m ∈ Zn and signer’s private key (n, d).
Output: Signed message (m, s) with s = md (modn).

Signature verification
Input: Signed message (m, s) and signer’s public key (n, e).
Output: “Signature verified” if se = m (modn),

“Signature not verified” if se 6= m (modn).
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Example of RSA signature

Let p = 257, q = 331, so that m = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 19823, so that
d = e−1 = 71567 (modφ(n)).

Public key: (85067, 19823).
Private key: (85067, 71567).
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Example of RSA signature

Let p = 257, q = 331, so that m = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 19823, so that
d = e−1 = 71567 (modφ(n)).

Public key: (85067, 19823).
Private key: (85067, 71567).

Let m = 3759 be the message to be signed. Generate
s = md = 13728 (modn). The signed message is
(3759, 13728).
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Example of RSA signature

Let p = 257, q = 331, so that m = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 19823, so that
d = e−1 = 71567 (modφ(n)).

Public key: (85067, 19823).
Private key: (85067, 71567).

Let m = 3759 be the message to be signed. Generate
s = md = 13728 (modn). The signed message is
(3759, 13728).
Verification of (m, s) = (3759, 13728) involves the
computation of se = (13728)19823 = 3759 (modn). Since
this equals m, the signature is verified.
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Example of RSA signature

Let p = 257, q = 331, so that m = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 19823, so that
d = e−1 = 71567 (modφ(n)).

Public key: (85067, 19823).
Private key: (85067, 71567).

Let m = 3759 be the message to be signed. Generate
s = md = 13728 (modn). The signed message is
(3759, 13728).
Verification of (m, s) = (3759, 13728) involves the
computation of se = (13728)19823 = 3759 (modn). Since
this equals m, the signature is verified.
Verification of a forged signature (m, s) = (3759, 42954)
gives se = (42954)19823 = 22968 (modn). Since
se 6= m (modn), the forged signature is not verified.
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Security of RSA
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Security of RSA

If n can be factored, φ(n) can be computed and so d can
be determined from e by extended gcd computation. Once
d is known, any ciphertext can be decrypted and any
signature can be forged.
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Security of RSA

If n can be factored, φ(n) can be computed and so d can
be determined from e by extended gcd computation. Once
d is known, any ciphertext can be decrypted and any
signature can be forged.
At present no other method is known to decrypt
RSA-encrypted messages or forge RSA signatures.
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Security of RSA

If n can be factored, φ(n) can be computed and so d can
be determined from e by extended gcd computation. Once
d is known, any ciphertext can be decrypted and any
signature can be forged.
At present no other method is known to decrypt
RSA-encrypted messages or forge RSA signatures.
RSA derives security from the intractability of the IFP.
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Security of RSA

If n can be factored, φ(n) can be computed and so d can
be determined from e by extended gcd computation. Once
d is known, any ciphertext can be decrypted and any
signature can be forged.
At present no other method is known to decrypt
RSA-encrypted messages or forge RSA signatures.
RSA derives security from the intractability of the IFP.
If e, d , n are known, there exists a probabilistic
polynomial-time algorithm to factor n. So RSA key
inversion is as difficult as IFP. But RSA decryption or
signature forging without the knowledge of d may be easier
than factoring n.
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Security of RSA

If n can be factored, φ(n) can be computed and so d can
be determined from e by extended gcd computation. Once
d is known, any ciphertext can be decrypted and any
signature can be forged.
At present no other method is known to decrypt
RSA-encrypted messages or forge RSA signatures.
RSA derives security from the intractability of the IFP.
If e, d , n are known, there exists a probabilistic
polynomial-time algorithm to factor n. So RSA key
inversion is as difficult as IFP. But RSA decryption or
signature forging without the knowledge of d may be easier
than factoring n.
In practice, we require the size of n to be > 1024 bits with
each of p, q having nearly half the size of n.
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Diffie-Hellman key exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.
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Diffie-Hellman key exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.

Alice generates a random a ∈ {2, 3, . . . , p − 2} and sends
ga (modp) to Bob.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Diffie-Hellman key exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.

Alice generates a random a ∈ {2, 3, . . . , p − 2} and sends
ga (modp) to Bob.

Bob generates a random b ∈ {2, 3, . . . , p − 2} and sends
gb (modp) to Alice.
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Diffie-Hellman key exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.

Alice generates a random a ∈ {2, 3, . . . , p − 2} and sends
ga (modp) to Bob.

Bob generates a random b ∈ {2, 3, . . . , p − 2} and sends
gb (modp) to Alice.

Alice computes gab = (gb)a (modp).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Diffie-Hellman key exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.

Alice generates a random a ∈ {2, 3, . . . , p − 2} and sends
ga (modp) to Bob.

Bob generates a random b ∈ {2, 3, . . . , p − 2} and sends
gb (modp) to Alice.

Alice computes gab = (gb)a (modp).

Bob computes gab = (ga)b (modp).
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Diffie-Hellman key exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.

Alice generates a random a ∈ {2, 3, . . . , p − 2} and sends
ga (modp) to Bob.

Bob generates a random b ∈ {2, 3, . . . , p − 2} and sends
gb (modp) to Alice.

Alice computes gab = (gb)a (modp).

Bob computes gab = (ga)b (modp).

The quantity gab (modp) is the secret shared by Alice and
Bob.
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Example of Diffie-Hellman key exchange

Alice and Bob first take p = 91573, g = 67.
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Example of Diffie-Hellman key exchange

Alice and Bob first take p = 91573, g = 67.

Alice generates a = 39136 and sends ga = 48745 (modp)
to Bob.
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Example of Diffie-Hellman key exchange

Alice and Bob first take p = 91573, g = 67.

Alice generates a = 39136 and sends ga = 48745 (modp)
to Bob.

Bob generates b = 8294 and sends gb = 69167 (modp) to
Alice.
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Example of Diffie-Hellman key exchange

Alice and Bob first take p = 91573, g = 67.

Alice generates a = 39136 and sends ga = 48745 (modp)
to Bob.

Bob generates b = 8294 and sends gb = 69167 (modp) to
Alice.

Alice computes (69167)39136 = 71989 (modp).
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Example of Diffie-Hellman key exchange

Alice and Bob first take p = 91573, g = 67.

Alice generates a = 39136 and sends ga = 48745 (modp)
to Bob.

Bob generates b = 8294 and sends gb = 69167 (modp) to
Alice.

Alice computes (69167)39136 = 71989 (modp).

Bob computes (48745)8294 = 71989 (modp).
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Example of Diffie-Hellman key exchange

Alice and Bob first take p = 91573, g = 67.

Alice generates a = 39136 and sends ga = 48745 (modp)
to Bob.

Bob generates b = 8294 and sends gb = 69167 (modp) to
Alice.

Alice computes (69167)39136 = 71989 (modp).

Bob computes (48745)8294 = 71989 (modp).

The secret shared by Alice and Bob is 71989.
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Security of DH key exchange

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Security of DH key exchange

An eavesdropper knows p, g, ga, gb and desires to
compute gab (modp), that is, the eavesdropper has to
solve the DHP.
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Security of DH key exchange

An eavesdropper knows p, g, ga, gb and desires to
compute gab (modp), that is, the eavesdropper has to
solve the DHP.

If discrete logs can be computed in Z
∗
p, then a can be

computed from ga and one subsequently obtains
gab = (gb)a (modp). So algorithms for solving the DLP
can be used to break DH key exchange.
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Security of DH key exchange

An eavesdropper knows p, g, ga, gb and desires to
compute gab (modp), that is, the eavesdropper has to
solve the DHP.

If discrete logs can be computed in Z
∗
p, then a can be

computed from ga and one subsequently obtains
gab = (gb)a (modp). So algorithms for solving the DLP
can be used to break DH key exchange.

Breaking DH key exchange may be easier than solving DLP.
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Security of DH key exchange

An eavesdropper knows p, g, ga, gb and desires to
compute gab (modp), that is, the eavesdropper has to
solve the DHP.

If discrete logs can be computed in Z
∗
p, then a can be

computed from ga and one subsequently obtains
gab = (gb)a (modp). So algorithms for solving the DLP
can be used to break DH key exchange.

Breaking DH key exchange may be easier than solving DLP.

At present, no method other than computing discrete logs
in Z

∗
p is known to break DH key exchange.
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Security of DH key exchange

An eavesdropper knows p, g, ga, gb and desires to
compute gab (modp), that is, the eavesdropper has to
solve the DHP.

If discrete logs can be computed in Z
∗
p, then a can be

computed from ga and one subsequently obtains
gab = (gb)a (modp). So algorithms for solving the DLP
can be used to break DH key exchange.

Breaking DH key exchange may be easier than solving DLP.

At present, no method other than computing discrete logs
in Z

∗
p is known to break DH key exchange.

Practically, we require p to be of size > 1024 bits. The
security does not depend on the choice of g. However, a
and b must be sufficiently randomly chosen.
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ElGamal encryption

Key generation
The recipient selects a random big prime p and a primitive
root g modulo p, chooses a random d ∈ {2, 3, . . . , p − 2},
and computes y = gd (modp).

Public key: (p, g, y).
Private key: (p, g, d).
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ElGamal encryption

Key generation
The recipient selects a random big prime p and a primitive
root g modulo p, chooses a random d ∈ {2, 3, . . . , p − 2},
and computes y = gd (modp).

Public key: (p, g, y).
Private key: (p, g, d).

Encryption
Input: Plaintext m ∈ Zp and recipient’s public key (p, g, y).
Output: Ciphertext (s, t).

Generate a random integer d ′ ∈ {2, 3, . . . , p − 2}.
Compute s = gd ′

(modp) and t = myd ′

(modp).
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ElGamal encryption

Key generation
The recipient selects a random big prime p and a primitive
root g modulo p, chooses a random d ∈ {2, 3, . . . , p − 2},
and computes y = gd (modp).

Public key: (p, g, y).
Private key: (p, g, d).

Encryption
Input: Plaintext m ∈ Zp and recipient’s public key (p, g, y).
Output: Ciphertext (s, t).

Generate a random integer d ′ ∈ {2, 3, . . . , p − 2}.
Compute s = gd ′

(modp) and t = myd ′

(modp).
Decryption
Input: Ciphertext (s, t) and recipient’s private key (p, g, d).
Output: Recovered plaintext m = ts−d (modp).
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ElGamal encryption (contd.)
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ElGamal encryption (contd.)

Correctness: We have s = gd ′

(modp) and
t = myd ′

= m(gd)d ′

= mgdd ′

(modp). Therefore,
m = tg−dd ′

= t(gd ′

)−d = ts−d (modp).
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ElGamal encryption (contd.)

Correctness: We have s = gd ′

(modp) and
t = myd ′

= m(gd)d ′

= mgdd ′

(modp). Therefore,
m = tg−dd ′

= t(gd ′

)−d = ts−d (modp).
Example of ElGamal encryption
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ElGamal encryption (contd.)

Correctness: We have s = gd ′

(modp) and
t = myd ′

= m(gd)d ′

= mgdd ′

(modp). Therefore,
m = tg−dd ′

= t(gd ′

)−d = ts−d (modp).
Example of ElGamal encryption

Take p = 91573 and g = 67. The recipient chooses
d = 23632 and so y = (67)23632 = 87955 (modp).
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ElGamal encryption (contd.)

Correctness: We have s = gd ′

(modp) and
t = myd ′

= m(gd)d ′

= mgdd ′

(modp). Therefore,
m = tg−dd ′

= t(gd ′

)−d = ts−d (modp).
Example of ElGamal encryption

Take p = 91573 and g = 67. The recipient chooses
d = 23632 and so y = (67)23632 = 87955 (modp).
Let m = 29485 be the message to be encrypted. The
sender chooses d ′ = 1783 and computes
s = gd ′

= 52958 (modp) and t = myd ′

= 1597 (modp).
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ElGamal encryption (contd.)

Correctness: We have s = gd ′

(modp) and
t = myd ′

= m(gd)d ′

= mgdd ′

(modp). Therefore,
m = tg−dd ′

= t(gd ′

)−d = ts−d (modp).
Example of ElGamal encryption

Take p = 91573 and g = 67. The recipient chooses
d = 23632 and so y = (67)23632 = 87955 (modp).
Let m = 29485 be the message to be encrypted. The
sender chooses d ′ = 1783 and computes
s = gd ′

= 52958 (modp) and t = myd ′

= 1597 (modp).
The recipient retrieves
m = ts−d = 1597 × (52958)−23632 = 29485 (modp).
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Security of ElGamal encryption

An eavesdropper knows g, p, y , s, t , where y = gd (modp)
and s = gd ′

(modp). Determining m from (s, t) is
equivalent to computing gdd ′

(modp), since
t = mgdd ′

(modp). (Here, m is masked by the quantity
gdd ′

(modp).) But d , d ′ are unknown to the attacker. So
the ability to solve the DHP lets the eavesdropper break
ElGamal encryption.
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Security of ElGamal encryption

An eavesdropper knows g, p, y , s, t , where y = gd (modp)
and s = gd ′

(modp). Determining m from (s, t) is
equivalent to computing gdd ′

(modp), since
t = mgdd ′

(modp). (Here, m is masked by the quantity
gdd ′

(modp).) But d , d ′ are unknown to the attacker. So
the ability to solve the DHP lets the eavesdropper break
ElGamal encryption.

Practically, we require p to be of size > 1024 bits for
achieving a good level of security.
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ElGamal signature

Key generation
Like ElGamal encryption, one chooses p, g and computes
a key-pair (y , d) where y = gd (modp). The public key is
(p, g, y), and the private key is (p, g, d).
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ElGamal signature

Key generation
Like ElGamal encryption, one chooses p, g and computes
a key-pair (y , d) where y = gd (modp). The public key is
(p, g, y), and the private key is (p, g, d).
Signature generation
Input: Message m ∈ Zp and signer’s private key (p, g, d).
Output: Signed message (m, s, t).

Generate a random session key d ′ ∈ {2, 3, . . . , p − 2}.
Compute s = gd ′

(modp) and
t = d ′−1(H(m) − dH(s)) (modp − 1).
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ElGamal signature

Key generation
Like ElGamal encryption, one chooses p, g and computes
a key-pair (y , d) where y = gd (modp). The public key is
(p, g, y), and the private key is (p, g, d).
Signature generation
Input: Message m ∈ Zp and signer’s private key (p, g, d).
Output: Signed message (m, s, t).

Generate a random session key d ′ ∈ {2, 3, . . . , p − 2}.
Compute s = gd ′

(modp) and
t = d ′−1(H(m) − dH(s)) (modp − 1).

Signature verification
Input: Signed message (m, s, t) and signer’s public key (p, g, y).

Set a1 = gH(m) (modp) and a2 = yH(s)st (modp).
Output “signature verified” if and only if a1 = a2.
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ElGamal signature (contd.)
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ElGamal signature (contd.)

Correctness: H(m) = dH(s) + td ′ (modp − 1). So
a1 = gH(m) = (gd )H(s)(gd ′

)t = yH(s)st = a2 (modp).
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ElGamal signature (contd.)

Correctness: H(m) = dH(s) + td ′ (modp − 1). So
a1 = gH(m) = (gd )H(s)(gd ′

)t = yH(s)st = a2 (modp).
Example:
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ElGamal signature (contd.)

Correctness: H(m) = dH(s) + td ′ (modp − 1). So
a1 = gH(m) = (gd )H(s)(gd ′

)t = yH(s)st = a2 (modp).
Example:

Take p = 104729 and g = 89. The signer chooses the
private exponent d = 72135 and so
y = gd = 98771 (modp).
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ElGamal signature (contd.)

Correctness: H(m) = dH(s) + td ′ (modp − 1). So
a1 = gH(m) = (gd )H(s)(gd ′

)t = yH(s)st = a2 (modp).
Example:

Take p = 104729 and g = 89. The signer chooses the
private exponent d = 72135 and so
y = gd = 98771 (modp).
Let m = 23456 be the message to be signed. The signer
chooses the session exponent d ′ = 3951 and computes
s = gd ′

= 14413 (modp) and t = d ′−1(m − ds) =
(3951)−1(23456 − 72135 × 14413) = 17515 (modp − 1).
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ElGamal signature (contd.)

Correctness: H(m) = dH(s) + td ′ (modp − 1). So
a1 = gH(m) = (gd )H(s)(gd ′

)t = yH(s)st = a2 (modp).
Example:

Take p = 104729 and g = 89. The signer chooses the
private exponent d = 72135 and so
y = gd = 98771 (modp).
Let m = 23456 be the message to be signed. The signer
chooses the session exponent d ′ = 3951 and computes
s = gd ′

= 14413 (modp) and t = d ′−1(m − ds) =
(3951)−1(23456 − 72135 × 14413) = 17515 (modp − 1).
Verification involves computation of
a1 = gm = 29201 (modp) and
a2 = ysst = (98771)14413 × (14413)17515 = 29201 (modp).
Since a1 = a2, the signature is verified.
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ElGamal signature (contd.)
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ElGamal signature (contd.)

Forging: A forger chooses d ′ = 3951 and computes
s = gd ′

= 14413 (modp). But computation of t involves d
which is unknown to the forger. So the forger randomly
selects t = 81529. Verification of this forged signature
gives a1 = gm = 29201 (modp) as above. But
a2 = ysst = (98771)14413 × (14413)81529 = 85885 (modp),
that is, a1 6= a2 and the forged signature is not verified.
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ElGamal signature (contd.)

Forging: A forger chooses d ′ = 3951 and computes
s = gd ′

= 14413 (modp). But computation of t involves d
which is unknown to the forger. So the forger randomly
selects t = 81529. Verification of this forged signature
gives a1 = gm = 29201 (modp) as above. But
a2 = ysst = (98771)14413 × (14413)81529 = 85885 (modp),
that is, a1 6= a2 and the forged signature is not verified.
Security:
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ElGamal signature (contd.)

Forging: A forger chooses d ′ = 3951 and computes
s = gd ′

= 14413 (modp). But computation of t involves d
which is unknown to the forger. So the forger randomly
selects t = 81529. Verification of this forged signature
gives a1 = gm = 29201 (modp) as above. But
a2 = ysst = (98771)14413 × (14413)81529 = 85885 (modp),
that is, a1 6= a2 and the forged signature is not verified.
Security:

Computation of s can be done by anybody. However,
computation of t involves the signer’s private exponent d . If
the forger can solve the DLP modulo p, then d can be
computed from the public-key y , and the correct signature
can be generated.
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ElGamal signature (contd.)

Forging: A forger chooses d ′ = 3951 and computes
s = gd ′

= 14413 (modp). But computation of t involves d
which is unknown to the forger. So the forger randomly
selects t = 81529. Verification of this forged signature
gives a1 = gm = 29201 (modp) as above. But
a2 = ysst = (98771)14413 × (14413)81529 = 85885 (modp),
that is, a1 6= a2 and the forged signature is not verified.
Security:

Computation of s can be done by anybody. However,
computation of t involves the signer’s private exponent d . If
the forger can solve the DLP modulo p, then d can be
computed from the public-key y , and the correct signature
can be generated.
The prime p should be large (of bit-size > 1024) in order to
preclude this attack.

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Some other encryption algorithms

Encryption algorithm Security depends on
Rabin encryption Square-root problem
Goldwasser-Micali encryption Quadratic residuosity problem
Blum-Goldwasser encryption Square-root problem
Chor-Rivest encryption Subset sum problem
XTR DLP
NTRU Closest vector problem in lattices
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Some other digital signature algorithms

Signature algorithm Security depends on
Rabin signature Square-root problem
Schnorr signature DLP
Nyberg-Rueppel signature DLP
Digital signature algorithm (DSA) DLP
Elliptic curve version of DSA (ECDSA) DLP in elliptic curves
XTR signature DLP
NTRUSign Closest vector problem
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Blind signatures
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:

Alice gets Bob’s public-key (n, e).
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:

Alice gets Bob’s public-key (n, e).

Alice computes m = H(M) ∈ Zn.
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:

Alice gets Bob’s public-key (n, e).

Alice computes m = H(M) ∈ Zn.

Alice sends to Bob the masked message
m′ = ρem (modn) for a random ρ.
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:

Alice gets Bob’s public-key (n, e).

Alice computes m = H(M) ∈ Zn.

Alice sends to Bob the masked message
m′ = ρem (modn) for a random ρ.

Bob sends the signature σ = m′d (modn) back to Alice.
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Blind signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:

Alice gets Bob’s public-key (n, e).

Alice computes m = H(M) ∈ Zn.

Alice sends to Bob the masked message
m′ = ρem (modn) for a random ρ.

Bob sends the signature σ = m′d (modn) back to Alice.

Alice computes Bob’s signature s = ρ−1σ (modn) on M.
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Correctness of Chaum’s blind RSA signature
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Correctness of Chaum’s blind RSA signature

Assume that ρ ∈ Z
∗
n.
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Correctness of Chaum’s blind RSA signature

Assume that ρ ∈ Z
∗
n.

Since ed = 1 (modφ(n)), we have
σ = m′d = (ρem)d = ρed md = ρmd (modn).
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Correctness of Chaum’s blind RSA signature

Assume that ρ ∈ Z
∗
n.

Since ed = 1 (modφ(n)), we have
σ = m′d = (ρem)d = ρed md = ρmd (modn).

Therefore, s = ρ−1σ = md = H(M)d (modn).
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Undeniable signatures
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Undeniable signatures

Active participation of the signer is necessary during
verification.
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Undeniable signatures

Active participation of the signer is necessary during
verification.

A signer is not allowed to deny a legitimate signature made
by him.
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Undeniable signatures

Active participation of the signer is necessary during
verification.

A signer is not allowed to deny a legitimate signature made
by him.

An undeniable signature comes with a denial or disavowal
protocol that generates one of the following three outputs:

Signature verified
Signature forged
The signer is trying to deny his signature by not

participating in the protocol properly.
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Undeniable signatures

Active participation of the signer is necessary during
verification.

A signer is not allowed to deny a legitimate signature made
by him.

An undeniable signature comes with a denial or disavowal
protocol that generates one of the following three outputs:

Signature verified
Signature forged
The signer is trying to deny his signature by not

participating in the protocol properly.

Examples
Chaum-van Antwerpen undeniable signature scheme
RSA-based undeniable signature scheme
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Challenge-response authentication
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).

Bob reads Alice’s public key e and computes c = fe(r , e).
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).

Bob reads Alice’s public key e and computes c = fe(r , e).

Bob sends the challenge (w , c) to Alice.
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).

Bob reads Alice’s public key e and computes c = fe(r , e).

Bob sends the challenge (w , c) to Alice.

Alice computes r ′ = fd(c, d).
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).

Bob reads Alice’s public key e and computes c = fe(r , e).

Bob sends the challenge (w , c) to Alice.

Alice computes r ′ = fd(c, d).

If H(r ′) 6= w , Alice quits the protocol.
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).

Bob reads Alice’s public key e and computes c = fe(r , e).

Bob sends the challenge (w , c) to Alice.

Alice computes r ′ = fd(c, d).

If H(r ′) 6= w , Alice quits the protocol.

Alice sends the response r ′ to Bob.
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private
key d in the key-pair (e, d).

Bob generates a random bit string r and computes
w = H(r).

Bob reads Alice’s public key e and computes c = fe(r , e).

Bob sends the challenge (w , c) to Alice.

Alice computes r ′ = fd(c, d).

If H(r ′) 6= w , Alice quits the protocol.

Alice sends the response r ′ to Bob.

Bob accepts Alice’s identity if and only if r ′ = r .
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Challenge-response authentication (Correctness)
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Challenge-response authentication (Correctness)

Bob checks whether Alice can correctly decrypt the
challenge c.
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Challenge-response authentication (Correctness)

Bob checks whether Alice can correctly decrypt the
challenge c.

Bob sends w as a witness of his knowledge of r .
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Challenge-response authentication (Correctness)

Bob checks whether Alice can correctly decrypt the
challenge c.

Bob sends w as a witness of his knowledge of r .

Before sending the decrypted plaintext r ′, Alice confirms
that Bob actually knows the plaintext r .
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The Guillou-Quisquater (GQ) zero-knowledge protocol
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗
n. [Commitment]
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗
n. [Commitment]

Alice sends to Bob w = ce (modn). [Witness]
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗
n. [Commitment]

Alice sends to Bob w = ce (modn). [Witness]
Bob sends to Alice a random ǫ ∈ {1, 2, . . . , e}. [Challenge]
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗
n. [Commitment]

Alice sends to Bob w = ce (modn). [Witness]
Bob sends to Alice a random ǫ ∈ {1, 2, . . . , e}. [Challenge]
Alice sends to Bob r = csǫ (modn). [Response]
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗
n. [Commitment]

Alice sends to Bob w = ce (modn). [Witness]
Bob sends to Alice a random ǫ ∈ {1, 2, . . . , e}. [Challenge]
Alice sends to Bob r = csǫ (modn). [Response]
Bob computes w ′ = mǫre (modn).
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The Guillou-Quisquater (GQ) zero-knowledge protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗
n and computes

s = m−d (modn). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗
n. [Commitment]

Alice sends to Bob w = ce (modn). [Witness]
Bob sends to Alice a random ǫ ∈ {1, 2, . . . , e}. [Challenge]
Alice sends to Bob r = csǫ (modn). [Response]
Bob computes w ′ = mǫre (modn).
Bob accepts Alice’s identity if and only if w ′ 6= 0 and w ′ = w .
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The GQ protocol (contd.)
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The GQ protocol (contd.)

Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).
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The GQ protocol (contd.)

Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).

Security
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The GQ protocol (contd.)

Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).

Security

The quantity sǫ is blinded by the random commitment c.
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The GQ protocol (contd.)

Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).

Security

The quantity sǫ is blinded by the random commitment c.
As a witness for c, Alice presents its encrypted version w .
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The GQ protocol (contd.)

Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).

Security

The quantity sǫ is blinded by the random commitment c.
As a witness for c, Alice presents its encrypted version w .
Bob (or an eavesdropper) cannot decrypt w to compute c
and subsequently sǫ.
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Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).

Security

The quantity sǫ is blinded by the random commitment c.
As a witness for c, Alice presents its encrypted version w .
Bob (or an eavesdropper) cannot decrypt w to compute c
and subsequently sǫ.
An eavesdropper’s guess about ǫ is successful with
probability 1/e.
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The GQ protocol (contd.)

Correctness

w ′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce =
w (modn).

Security

The quantity sǫ is blinded by the random commitment c.
As a witness for c, Alice presents its encrypted version w .
Bob (or an eavesdropper) cannot decrypt w to compute c
and subsequently sǫ.
An eavesdropper’s guess about ǫ is successful with
probability 1/e.
The check w ′ 6= 0 precludes the case c = 0 which lets a
claimant succeed always.
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Digital certificates: Introduction

Bind public-keys to entities.

Required to establish the authenticity of public keys.

Guard against malicious public keys.

Promote confidence in using others’ public keys.

Require a Certification Authority (CA) whom every entity
over a network can believe. Typically, a government
organization or a reputed company can be a CA.
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Require a Certification Authority (CA) whom every entity
over a network can believe. Typically, a government
organization or a reputed company can be a CA.
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Digital certificates: Introduction

Bind public-keys to entities.

Required to establish the authenticity of public keys.

Guard against malicious public keys.

Promote confidence in using others’ public keys.

Require a Certification Authority (CA) whom every entity
over a network can believe. Typically, a government
organization or a reputed company can be a CA.

In case a certificate is compromised, one requires to
revoke it.

A revoked certificate cannot be used to establish the
authenticity of a public key.
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Digital certificates: Contents

A digital certificate contains particulars about the entity
whose public key is to be embedded in the certificate:

Name, address and other personal details of the entity.

The public key of the entity. The key pair may be generated
by either the entity or the CA. If the CA generates the key
pair, then the private key is handed over to the entity by
trusted couriers.

The certificate is digitally signed by the private key of the
CA.
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Digital certificates: Contents

A digital certificate contains particulars about the entity
whose public key is to be embedded in the certificate:

Name, address and other personal details of the entity.

The public key of the entity. The key pair may be generated
by either the entity or the CA. If the CA generates the key
pair, then the private key is handed over to the entity by
trusted couriers.

The certificate is digitally signed by the private key of the
CA.

If signatures cannot be forged, nobody other than the CA
can generate a valid certificate for an entity.
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Digital certificates: Revocation

A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity’s private key
Detection of malicious activities of the owner of the certificate

An invalid certificate is revoked by the CA.

Certificate Revocation List (CRL): The CA maintains a
list of revoked certificates.

If Alice wants to use Bob’s public key, she obtains the
certificate for Bob’s public key. If the CA’s signature is
verified on this certificate and if the certificate is not found
in the CRL, then Alice gains the desired confidence to use
Bob’s public key.
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Let n be the integer to be factored.
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Integer factoring algorithms

Let n be the integer to be factored.

Older algorithms

Trial division (efficient if all prime divisors of n are small)

Pollard’s rho method

Pollard’s p − 1 method (efficient if p − 1 has only small
prime factors for some prime divisor p of n)

Williams’ p + 1 method (efficient if p + 1 has only small
prime factors for some prime divisor p of n)
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Integer factoring algorithms

Let n be the integer to be factored.

Older algorithms

Trial division (efficient if all prime divisors of n are small)

Pollard’s rho method

Pollard’s p − 1 method (efficient if p − 1 has only small
prime factors for some prime divisor p of n)

Williams’ p + 1 method (efficient if p + 1 has only small
prime factors for some prime divisor p of n)

In the worst case these algorithms take exponential (in log n)
running time.
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(c + o(1))(ln n)ω(ln ln n)1−ω
]
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]

ω = 0 : L(n, ω, c) is polynomial in ln n.
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Modern algorithms

Subexponential running time:
L(n, ω, c) = exp

[

(c + o(1))(ln n)ω(ln ln n)1−ω
]

ω = 0 : L(n, ω, c) is polynomial in ln n.
ω = 1 : L(n, ω, c) is exponential in ln n.
0 < ω < 1 : L(n, ω, c) is between polynomial and exponential

Algorithm Inventor(s) Running time
Continued fraction method Morrison & Brillhart (1975) L(n, 1/2, c)
(CFRAC)
Quadratic sieve method Pomerance (1984) L(n, 1/2, 1)
(QSM)
Cubic sieve method (CSM) Reyneri L(n, 1/2, 0.816)

Elliptic curve method (ECM) H. W. Lenstra (1987) L(n, 1/2, c)

Number field sieve method A. K. Lenstra, H. W. Lenstra, L(n, 1/3, 1.923)
(NFSM) Manasse & Pollard (1990)
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Examples
Take n = 899.
n = 900 − 1 = 302 − 12 = (30 − 1) × (30 + 1) = 29 × 31.
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Fermat’s factoring method

Examples
Take n = 899.
n = 900 − 1 = 302 − 12 = (30 − 1) × (30 + 1) = 29 × 31.
Take n = 833.
3×833 = 2500−1 = 502−12 = (50−1)×(50+1) = 49×51.
gcd(50 − 1, 833) = 49 is a non-trivial factor of 833.
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Examples
Take n = 899.
n = 900 − 1 = 302 − 12 = (30 − 1) × (30 + 1) = 29 × 31.
Take n = 833.
3×833 = 2500−1 = 502−12 = (50−1)×(50+1) = 49×51.
gcd(50 − 1, 833) = 49 is a non-trivial factor of 833.

Objective

To find integers x , y ∈ Zn such that x2 = y2 (modn). Unless
x = ±y (modn), gcd(x − y , n) is a non-trivial divisor of n.
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Fermat’s factoring method

Examples
Take n = 899.
n = 900 − 1 = 302 − 12 = (30 − 1) × (30 + 1) = 29 × 31.
Take n = 833.
3×833 = 2500−1 = 502−12 = (50−1)×(50+1) = 49×51.
gcd(50 − 1, 833) = 49 is a non-trivial factor of 833.

Objective

To find integers x , y ∈ Zn such that x2 = y2 (modn). Unless
x = ±y (modn), gcd(x − y , n) is a non-trivial divisor of n.

If n is composite (but not a prime power), then for a randomly
chosen pair (x , y) with x2 = y2 (modn), the probability that
x 6= ±y (modn) is at least 1/2.
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The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors.
H =

⌈√
n

⌉

and J = H2 − n.
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Let n be an odd integer with no small prime factors.
H =

⌈√
n

⌉

and J = H2 − n.

(H + c)2 = J + 2Hc + c2 (modn) for small integers c.
Call T (c) = J + 2Hc + c2.
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The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors.
H =

⌈√
n

⌉

and J = H2 − n.

(H + c)2 = J + 2Hc + c2 (modn) for small integers c.
Call T (c) = J + 2Hc + c2.

Suppose T (c) factors over small primes p1, p2, . . . , pt :

(H + c)2 = pα1
1 pα2

2 · · · pαt
t (modn).

This is called a relation .
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The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors.
H =

⌈√
n

⌉

and J = H2 − n.

(H + c)2 = J + 2Hc + c2 (modn) for small integers c.
Call T (c) = J + 2Hc + c2.

Suppose T (c) factors over small primes p1, p2, . . . , pt :

(H + c)2 = pα1
1 pα2

2 · · · pαt
t (modn).

This is called a relation .

The left side is already a square.
The right side is also a square if each αi is even.
But this is very rare.
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QSM (contd.)

Collect many relations:

Relation 1: (H + c1)
2 = pα11

1 pα12
2 · · · pα1t

t
Relation 2: (H + c2)

2 = pα21
1 pα22

2 · · · pα2t
t

· · ·
Relation r : (H + cr )

2 = pαr1
1 pαr2

2 · · · pαrt
t















(modn).
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QSM (contd.)

Collect many relations:

Relation 1: (H + c1)
2 = pα11

1 pα12
2 · · · pα1t

t
Relation 2: (H + c2)

2 = pα21
1 pα22

2 · · · pα2t
t

· · ·
Relation r : (H + cr )

2 = pαr1
1 pαr2

2 · · · pαrt
t















(modn).

Let β1, β2, . . . , βr ∈ {0, 1}.

[

(H + c1)
β1(H + c2)

β2 · · · (H + cr )
βr

]2
= pγ1

1 pγ2
2 · · · pγt

t (modn).
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QSM (contd.)

Collect many relations:

Relation 1: (H + c1)
2 = pα11

1 pα12
2 · · · pα1t

t
Relation 2: (H + c2)

2 = pα21
1 pα22

2 · · · pα2t
t

· · ·
Relation r : (H + cr )

2 = pαr1
1 pαr2

2 · · · pαrt
t















(modn).

Let β1, β2, . . . , βr ∈ {0, 1}.

[

(H + c1)
β1(H + c2)

β2 · · · (H + cr )
βr

]2
= pγ1

1 pγ2
2 · · · pγt

t (modn).

The left side is already a square.
Tune β1, β2, . . . , βr to make each γi even.
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QSM (contd.)

α11β1 + α21β2 + · · · + αr1βr = γ1,

α12β1 + α22β2 + · · · + αr2βr = γ2,

· · ·
α1tβ1 + α2tβ2 + · · · + αrtβr = γt .
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QSM (contd.)

α11β1 + α21β2 + · · · + αr1βr = γ1,

α12β1 + α22β2 + · · · + αr2βr = γ2,

· · ·
α1tβ1 + α2tβ2 + · · · + αrtβr = γt .

Linear system with t equations and r variables β1, β2, . . . , βr :










α11 α21 · · · αr1

α12 α22 · · · αr2
...

... · · · ...
α1t α2t · · · αrt





















β1

β2
...
βt











=











0
0
...
0











(mod2).

Dr. Abhijit Das Introduction to Cryptography



Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems

Public-key cryptanalysis

Integer factoring
Discrete logarithms
Side channel attacks
Backdoor attacks

QSM (contd.)

For r > t , there are non-zero solutions for β1, β2, . . . , βr . Take

x = (H + c1)
β1(H + c2)

β2 · · · (H + cr )
βr (modn),

y = pγ1/2
1 pγ2/2

2 · · · pγt/2
t (modn).

If x 6= ±y (modn), then gcd(x − y , n) is a non-trivial factor of n.
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QSM (contd.)

For r > t , there are non-zero solutions for β1, β2, . . . , βr . Take

x = (H + c1)
β1(H + c2)

β2 · · · (H + cr )
βr (modn),

y = pγ1/2
1 pγ2/2

2 · · · pγt/2
t (modn).

If x 6= ±y (modn), then gcd(x − y , n) is a non-trivial factor of n.

Let p = pi be a small prime.

p | T (c) implies (H + c)2 = n (modp).

If n is not a quadratic residue modulo p, then p6 |T (c) for any c.

Consider only the small primes p modulo which n is a quadratic
residue.
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Example of QSM: Parameters

n = 7116491.

H =
⌈√

n
⌉

= 2668.

Take all primes < 100 modulo which n is a square:

B = {2, 5, 7, 17, 29, 31, 41, 59, 61, 67, 71, 79, 97}.

t = 13.

Take r = 13. (In practice, one takes r ≈ 2t .)
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Example of QSM: Relations

Relation 1: (H + 3)2 = 2 × 53 × 71
Relation 2: (H + 8)2 = 5 × 7 × 31 × 41
Relation 3: (H + 49)2 = 2 × 412 × 79
Relation 4: (H + 64)2 = 7 × 292 × 59
Relation 5: (H + 81)2 = 2 × 5 × 72 × 29 × 31
Relation 6: (H + 109)2 = 2 × 7 × 17 × 41 × 61
Relation 7: (H + 128)2 = 53 × 71 × 79
Relation 8: (H + 145)2 = 2 × 712 × 79
Relation 9: (H + 182)2 = 172 × 592

Relation 10: (H + 228)2 = 52 × 72 × 17 × 61
Relation 11: (H + 267)2 = 2 × 72 × 17 × 29 × 31
Relation 12: (H + 382)2 = 7 × 59 × 67 × 79
Relation 13: (H + 411)2 = 2 × 54 × 31 × 61























































































(modn).
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Example of QSM: Linear System













































1 0 1 0 1 1 0 1 0 0 1 0 1
3 1 0 0 1 0 3 0 0 2 0 0 4
0 1 0 1 2 1 0 0 0 2 2 1 0
0 0 0 0 0 1 0 0 2 1 1 0 0
0 0 0 2 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 1
0 1 2 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 2 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 2 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

























































































β1

β2

β3

β4

β5

β6

β7

β8

β9

β10

β11

β12

β13













































=













































0
0
0
0
0
0
0
0
0
0
0
0
0













































(mod2).
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Example of QSM: Solution of Relations

(β1, β2, β3, . . . , β13) x y gcd(x − y , n)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1 1 7116491
(1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 1755331 560322 1847
(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) 526430 459938 1847
(1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0) 7045367 7045367 7116491
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 2850 1003 1847
(1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) 6916668 6916668 7116491
(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0) 5862390 5862390 7116491
(1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0) 3674839 6944029 1847
(0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1) 1079130 3965027 3853
(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1) 5466596 1649895 1
(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1) 5395334 1721157 1
(1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1) 6429806 3725000 3853
(0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1) 1196388 5920103 1
(1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1) 1799801 3818773 3853
(0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1) 5081340 4129649 3853
(1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1) 7099266 17225 1
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To compute the discrete logarithm of a in Z
∗
p to the primitive

base g
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Side channel attacks
Backdoor attacks

Algorithms for computing discrete logarithms

To compute the discrete logarithm of a in Z
∗
p to the primitive

base g

Older algorithms

Brute-force search

Shanks’ Baby-step-giant-step method

Pollard’s rho method

Pollard’s lambda method

Pohlig-Hellman method (Efficient if p − 1 has only small
prime divisors)
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Algorithms for computing discrete logarithms

To compute the discrete logarithm of a in Z
∗
p to the primitive

base g

Older algorithms

Brute-force search

Shanks’ Baby-step-giant-step method

Pollard’s rho method

Pollard’s lambda method

Pohlig-Hellman method (Efficient if p − 1 has only small
prime divisors)

Worst-case complexity: Exponential in log p
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Based on the index calculus method (ICM)
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Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:
L(p, ω, c) = exp

[

(c + o(1))(ln p)ω(ln ln p)1−ω
]

.
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Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:
L(p, ω, c) = exp

[

(c + o(1))(ln p)ω(ln ln p)1−ω
]

.

Algorithm Inventor(s) Running time
Basic ICM Western & Miller (1968) L(p, 1/2, c)

Linear sieve method (LSM) Coppersmith, Odlyzko
Residue list sieve method & Schroeppel (1986) L(p, 1/2, 1)
Gaussian integer method
Cubic sieve method (CSM) Reyneri L(p, 1/2, 0.816)

Number field sieve method Gordon (1993) L(p, 1/3, 1.923)
(NFSM)
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The basic index calculus method: Precomputation
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The basic index calculus method: Precomputation

Factor base: First t primes B = {p1, p2, . . . , pt}
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The basic index calculus method: Precomputation

Factor base: First t primes B = {p1, p2, . . . , pt}

To compute di = indg pi for i = 1, 2, . . . , t
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Integer factoring
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Side channel attacks
Backdoor attacks

The basic index calculus method: Precomputation

Factor base: First t primes B = {p1, p2, . . . , pt}

To compute di = indg pi for i = 1, 2, . . . , t

For random j ∈ {1, 2, . . . , p − 2}, try to factor g j (modp) over B.
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The basic index calculus method: Precomputation

Factor base: First t primes B = {p1, p2, . . . , pt}

To compute di = indg pi for i = 1, 2, . . . , t

For random j ∈ {1, 2, . . . , p − 2}, try to factor g j (modp) over B.

Relation: g j = pα1
1 pα2

2 · · · pαt
t (modp)
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The basic index calculus method: Precomputation

Factor base: First t primes B = {p1, p2, . . . , pt}

To compute di = indg pi for i = 1, 2, . . . , t

For random j ∈ {1, 2, . . . , p − 2}, try to factor g j (modp) over B.

Relation: g j = pα1
1 pα2

2 · · · pαt
t (modp)

Linear equation in t variables d1, d2, . . . , dt :

j = α1d1 + α2d2 + · · · + αtdt (modp − 1)
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The basic ICM: Precomputation (contd.)

Generate r > t relations for different values of j :

Relation 1: j1 = α11d1 + α12d2 + · · · + α1tdt

Relation 2: j2 = α21d1 + α22d2 + · · · + α2tdt

· · ·
Relation r : jr = αr1d1 + αr2d2 + · · · + αrtdt















(modp−1).
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The basic ICM: Precomputation (contd.)

Generate r > t relations for different values of j :

Relation 1: j1 = α11d1 + α12d2 + · · · + α1tdt

Relation 2: j2 = α21d1 + α22d2 + · · · + α2tdt

· · ·
Relation r : jr = αr1d1 + αr2d2 + · · · + αrtdt















(modp−1).

Solve the system modulo p − 1 to determine d1, d2, . . . , dt .
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The basic ICM: Second stage
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The basic ICM: Second stage

Choose random j ∈ {1, 2, . . . , p − 2}.
Try to factor ag j (modp) over B.
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The basic ICM: Second stage

Choose random j ∈ {1, 2, . . . , p − 2}.
Try to factor ag j (modp) over B.

A successful factorization gives:

ag j = pβ1
1 pβ2

2 · · · pβt
t (modp).
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The basic ICM: Second stage

Choose random j ∈ {1, 2, . . . , p − 2}.
Try to factor ag j (modp) over B.

A successful factorization gives:

ag j = pβ1
1 pβ2

2 · · · pβt
t (modp).

Take discrete log:

indg a = −j + β1d1 + β2d2 + · · · + βtdt (modp − 1).
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The basic ICM: Second stage

Choose random j ∈ {1, 2, . . . , p − 2}.
Try to factor ag j (modp) over B.

A successful factorization gives:

ag j = pβ1
1 pβ2

2 · · · pβt
t (modp).

Take discrete log:

indg a = −j + β1d1 + β2d2 + · · · + βtdt (modp − 1).

Substitute the values of d1, d2, . . . , dt to get indg a.
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The basic ICM: Example (Precomputation)

Paramaters: p = 839, g = 31, B = {2, 3, 5, 7, 11}, t = 5, r = 10.
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The basic ICM: Example (Precomputation)

Paramaters: p = 839, g = 31, B = {2, 3, 5, 7, 11}, t = 5, r = 10.

Relations

Relation 1: g118 = 23 × 52

Relation 2: g574 = 27 × 5
Relation 3: g318 = 22 × 33

Relation 4: g46 = 27

Relation 5: g786 = 22 × 33 × 7
Relation 6: g323 = 2 × 3 × 11
Relation 7: g606 = 34

Relation 8: g252 = 23 × 32 × 7
Relation 9: g160 = 3 × 52

Relation 10: g600 = 2 × 33 × 5



































































(modp).
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The basic ICM: Example (Precomputation)

































3 0 2 0 0
7 0 1 0 0
2 3 0 0 0
7 0 0 0 0
2 3 0 1 0
1 1 0 0 1
0 4 0 0 0
3 2 0 1 0
0 1 2 0 0
1 3 1 0 0













































d1

d2

d3

d4

d5













=






























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118
574
318
46

786
323
606
252
160
600

































(modp − 1).
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The basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo
p − 1 = 838.
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The basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo
p − 1 = 838.

The solution is unique.
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Integer factoring
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Side channel attacks
Backdoor attacks

The basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo
p − 1 = 838.

The solution is unique.

d1 = ind31 2 = 246
d2 = ind31 3 = 780
d3 = ind31 5 = 528
d4 = ind31 7 = 468
d5 = ind31 11 = 135























(modp − 1).
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The basic ICM: Example (Second Stage)
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Backdoor attacks

The basic ICM: Example (Second Stage)

Take a = 561.

ag312 = 600 = 23 × 3 × 52 (modp), that is,

ind31 561 = −312 + 3 × 246 + 780 + 2 × 528 = 586 (modp − 1).
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The basic ICM: Example (Second Stage)

Take a = 561.

ag312 = 600 = 23 × 3 × 52 (modp), that is,

ind31 561 = −312 + 3 × 246 + 780 + 2 × 528 = 586 (modp − 1).

Take a = 89.

ag342 = 99 = 32 × 11 (modp), that is,

ind31 89 = −342 + 2 × 780 + 135 = 515 (modp − 1).
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The basic ICM: Example (Second Stage)

Take a = 561.

ag312 = 600 = 23 × 3 × 52 (modp), that is,

ind31 561 = −312 + 3 × 246 + 780 + 2 × 528 = 586 (modp − 1).

Take a = 89.

ag342 = 99 = 32 × 11 (modp), that is,

ind31 89 = −342 + 2 × 780 + 135 = 515 (modp − 1).

Take a = 625.

ag806 = 70 = 2 × 5 × 7 (modp), that is,

ind31 625 = −806 + 246 + 528 + 468 = 436 (modp − 1).
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Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.
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Applicable for both symmetric and asymmetric cryptosystems.
Relevant for smart-card based implementations.
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Applicable for both symmetric and asymmetric cryptosystems.
Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.
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Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.
Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

Timing attack: utilizes reasonably accurate measurement
of several private-key operations under the same key.
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Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.
Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

Timing attack: utilizes reasonably accurate measurement
of several private-key operations under the same key.

Power attack: analyzes power consumption patterns of
the decrypting device during one or more private-key
operations.
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Discrete logarithms
Side channel attacks
Backdoor attacks

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.
Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

Timing attack: utilizes reasonably accurate measurement
of several private-key operations under the same key.

Power attack: analyzes power consumption patterns of
the decrypting device during one or more private-key
operations.

Fault attack: Random hardware faults during the
private-key operation may reveal the key to an attacker.
Even a single faulty computation may suffice.
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Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.
Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

Timing attack: utilizes reasonably accurate measurement
of several private-key operations under the same key.

Power attack: analyzes power consumption patterns of
the decrypting device during one or more private-key
operations.

Fault attack: Random hardware faults during the
private-key operation may reveal the key to an attacker.
Even a single faulty computation may suffice.

Remedies: Shield the decrypting device from external
measurements, recheck computations, add random delays.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routine, so
that published public keys reveal the corresponding private
keys to the designer.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routine, so
that published public keys reveal the corresponding private
keys to the designer.

A good backdoor allows only the designer to steal keys.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routine, so
that published public keys reveal the corresponding private
keys to the designer.

A good backdoor allows only the designer to steal keys.

Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routine, so
that published public keys reveal the corresponding private
keys to the designer.

A good backdoor allows only the designer to steal keys.

Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent

Backdoor attacks on ElGamal and Diffie-Hellman systems are
also known.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routine, so
that published public keys reveal the corresponding private
keys to the designer.

A good backdoor allows only the designer to steal keys.

Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent

Backdoor attacks on ElGamal and Diffie-Hellman systems are
also known.

Remedy: Use trustworthy (like open-source) software.
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Proving security of a cryptosystem
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Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical
system to be secure.
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Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical
system to be secure.

A standard security review, even by competent
cryptographers, can only prove insecurity; it can never
prove security. By following the pack you can leverage the
cryptanalytic expertise of the worldwide community, not just
a handful of hours of a consultant’s time.

– Bruce Schneier, Crypto-gram, March 15, 1999
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Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical
system to be secure.

A standard security review, even by competent
cryptographers, can only prove insecurity; it can never
prove security. By following the pack you can leverage the
cryptanalytic expertise of the worldwide community, not just
a handful of hours of a consultant’s time.

– Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:
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Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical
system to be secure.

A standard security review, even by competent
cryptographers, can only prove insecurity; it can never
prove security. By following the pack you can leverage the
cryptanalytic expertise of the worldwide community, not just
a handful of hours of a consultant’s time.

– Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:

Use of good non-linearity (diffusion)
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Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical
system to be secure.

A standard security review, even by competent
cryptographers, can only prove insecurity; it can never
prove security. By following the pack you can leverage the
cryptanalytic expertise of the worldwide community, not just
a handful of hours of a consultant’s time.

– Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:

Use of good non-linearity (diffusion)
Resilience against known attacks
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Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical
system to be secure.

A standard security review, even by competent
cryptographers, can only prove insecurity; it can never
prove security. By following the pack you can leverage the
cryptanalytic expertise of the worldwide community, not just
a handful of hours of a consultant’s time.

– Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:

Use of good non-linearity (diffusion)
Resilience against known attacks
Computational equivalence with difficult problems
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