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e,

What is Cryptography?

Cryptography is the study of techniques for preventing access to seasitata by
parties who are not authorized to access the data.

Cryptanalysis is the study of techniques for breaking cryptographic syste
Cryptology = Cryptography + Cryptanalysis

Cryptanalysis is useful for strengthening cryptographimgives.
Maintaining security and privacy is an ancient and pringtneed.
Particularly relevant for military and diplomatic appliaans.

Wide deployment of the Internet makes everybody a user gitographic tools.
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Message encryption
Required for secure transmission of messages over a puiamel.
Alice wants to send plaintext messagd/ to Bob.
Alice encrypts M to generate theiphertext messagé’ = f.(M, K.).
K. 1s theencryption key.
C'is sent to Bob over the public channel.
Bob decrypts C' to recover the plaintext messagé = f;(C, K;).
K, is thedecryption key.
Knowledge ofK; is required to retrievé/ from C'.

An eavesdropper (intruder, attacker, adversary, opporeaeimy) cannot decrypt.
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e,

Secret-key or symmetric encryption
K. = K,.
Algorithms are fast and suitable for software and hardwamagl€ementations.

The common key has to be agreed upon by Alice and Bob beforactihial commu-
nication.

Each pair of communicating parties needs a secret key.

If there are many communicating pairs, the key storage rement is high.
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Public-key or asymmetric encryption
K. + K,
Introduced by Rivest, Shamir and Adleman (1978).
K. i1s thepublic key known to everybody (even to enemies).
K, Is theprivate key to be kept secret.
It is difficult to computeK,; from K..
Anybody can send messages to anybody. Only the proper eatipan decrypt.
No need to establish keys a priori.
Each party requires only one key-pair for communicatingwewerybody.

Algorithms are slow, in general.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 6



Real-life analogy
Symmetric encryption
Alice locks the message in a box by a key.

Bob uses a copy of the same key to unlock.

Asymmetric encryption

Alice presses a padlock in order to lock the box. The lockirarpss does not require
a real key.

Bob has the key to open the padlock.
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Using symmetric and asymmetric encryption together

Alice reads Bob’s public key..

Alice generates a random secret Kgy

Alice encryptsM by K to generate’ = f.(M, K).
Alice encryptsK by K. to generatd. = fr(K, K.).
Alice sendg (), L) to Bob.

Bob recoversk asK = fp(L, Ky).

Bob decrypts” asM = f,;(C, K).
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Key agreement or key exchange

Real-life analogy

Alice procures a lock. with key K. Alice wants to sends to Bob for a future secret
communication.

Alice procures another lock 4 with key K 4 to be used at Alice’s end only.

Bob procures a locK gz with key Kz to be used at Bob’s end only.

Alice puts K in a box, locks the box by. 4 using K 4, and sends the box to Bob.
Bob locks the box by. 3 using Kz, and sends the doubly-locked box back to Alice.
Alice unlocksL 4 by K 4 and sends the box again to Bob.

Bob unlocksL g by Kz and obtaingx'.

A third party always finds the box locked either by or Lz or both.
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Key agreement or key exchange (contd)

Alice generates a key paid., Ay).

Bob generates a key paiB., B,).

Alice sends her public-key, to Bob.

Bob sends his public-kegs. to Alice.

Alice computesK ap = f(A., Ay, Be).

Bob computedizs = f(B., By, A¢).

The protocol insure& s,z = K4 to be used by Alice and Bob as a shared secret.

An intruder cannot compute this secret usihigand B, only.
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Digital signatures
Alice establishes her binding to a messddday digitally signing it.
Signing: Only Alice has the capability to sigih/.
Verification: Anybody can verify whether Alice’s signature ad is valid.
Forging: Nobody can forge signatures on behalf of Alice.
Digital signatures are based on public-key techniques.

Signature generatioa Decryption (uses private key), and
Signature verificatiors Encryption (uses public key).

Non-repudiation: An entity should not be allowed to deny valid sighatures mayle
him.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 11



i
Signature with message recovery
Generation
Alice generates a key-paif<., K;), publishesk,, and keepd<, secret.
Alice signsM by her private key to obtain the signed messége f,(M, K,).
Verification
Anybody can recovei! from S by using Alice’s public key:M = f,(S, K.).
Forging signatures

A key K, other thanK, is used to generate the forged signatdfe= f,(M, K)).
Verification yieldsM’ = f,(5’, K.). We would havell’ # M. M'is not expected to
have the same redundancy#shas, and s@’ is rejected.

Drawback

Public-key algorithms are slow. This is of concern for signlong messages.
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Signature with appendix

Generation

Alice generates a key-pai¥., K;), publishesk., and keepdy, secret.
Alice generates a short representative= H (M) of M.

Alice uses her private-key = f.(m, K;).

Alice publisheq M, s) as the signed message.

Verification

Compute the representative = H(M).

Use Alice’s public-key to generaie’ = f,(s, K,).

Accept the signature if and onlyif = m/.

Forging

Verification is expected to fail if a ke, # K, is used to generate
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Digital signatures: classification

Deterministic signatures: For a given message the same signature is generated on
every occasion the signing algorithm is executed.

Probabilistic signatures: On different runs of the signing algorithm different signa-
tures are generated, even if the message remains the same.

Probabilistic signatures offer better protection agaswhe kinds of forgery.
Deterministic signatures are of two types:
Multiple-use signatures: Slow. Parameters are used multiple times.

One-time signatures:Fast. Parameters are used only once.
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Entity authentication
Alice proves her identity to Bob.
Alice demonstrates to Bob her knowledge of a secret piecefofmation.
Alice may or may not reveal the secret itself to Bob.

Both symmetric and asymmetric techniques are used foryamithentication.
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i
Weak authentication: Passwords
Set-up phase
Alice supplies a secret passwaktto Bob.
Bob transforms (typically encryptd) to generat&) = f(P).
Bob storeg) for future use.
Authentication phase
Alice supplies her password’ to Bob.
Bob computes)’ = f(FP’).
Bob compares)’ with the stored valué).
Q' =Qifandonlyif P = P.
If Q' = (), Bob accepts Alice’s identity.
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Passwords (contd)
It should be difficult to invert the initial transfor®@ = f(P).
Knowledge of(), even if readable by enemies, does not reveal
Drawbacks
Alice revealsP itself to Bob. Bob may misuse this information.

P resides in unencrypted form in the memory during the autbatdn phase. A third
party having access to this memory obtains Alice’s secret.
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Challenge-response technigues
Alice does not reveal her secret directly to Bob.
Bob generates a challengeand sendg’ to Alice.
Alice responds t@' by sending a responde back to Bob.
Bob determines whether the resporises satisfactory.

GeneratingRk from C' requires the knowledge of the secret.

Absence of the knowledge of the secret fails to generateisfaatbry response with
a significantly positive probability.

The above protocol may be repeated more than once (depenidjr)g
If Bob receives satisfactory response in every iterati@abcepts Alice’s identity.

Drawback

C and R may reveal to Bob or an eavesdropper some knowledge abag’&\Becret.
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Zero-knowledge protocol
A special class of challenge-response techniques.

Absolutely no information is leaked to Bob or to any thirdtyar

A real-life example

Door with secret key

A

Left exit Right exit
B
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Secret sharing
A secret is distributed ta parties.
All of thesen parties should cooperate to reconstruct the secret.
Participation of only< n — 1 parties should fail to reconstruct the secret.
Generalization
Any m (or more) parties can reconstruct the secret (for some n).

Participation of only< m — 1 parties should fail to reconstruct the secret.
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Cryptographic hash functions
Used to convert strings of any length to strings of a fixed teng
Used for the generation of (short) representatives of ngessa
Symmetric techniques are typically used for designing Hasbtions.

Modification detection code (MDC)

An unkeyed hash function is used to guard against unautga/azcidental message
alterations. Signature schemes also use MDC's.

Message authentication code (MAC)

A keyed hash function is used to authenticate the source sfages.
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Cryptographic hash functions: Properties

A collision for a hash functior¥? is a pair of two distinct strings, y with H(z) =
H(y). Collisions must exist for any hash function.

First pre-image resistance

For most hash valueg it should be difficult to find a string with H(x) = y.
Second pre-image resistance

Given a stringr, it should be difficult to find a different string with H(2') = H(x).
Collision resistance

It should be difficult to find two distinct strings, =’ with H(z) = H(x').
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Certification
A public-key certificate insures that a public key actually belongs to an entity.

Certificates are issued by a trust€drtification Authority (CA).

A certificate consists of a public key and other addition&nmation about the owner
of the key.

The authenticity of a certificate is achieved by the digitghature of the CA on the
certificate.

Compromised certificates are revoked ardificate revocation list(CRL) is main-
tained by the CA.

If a certificate is not in the CRL, and the signature of the CAtloa certificate is
verified, one gains the desired confidence of treating théglby as authentic.
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e,
Models of attack

Partial breaking of a cryptosystem

The attacker succeeds in decrypting some ciphertext messhgt without any guar-
antee that this capability would help him break new cipheénmeessages in future.

Complete breaking of a cryptosystem

The attacker possesses the capability of decrypting amedigxt message. This may
be attributed to a knowledge of the decryption key(s).

Passive attack
The attacker only intercepts messages meant for others.

Active attack

The attacker alters and/or deletes messages and eversaneatghorized messages.
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e,
Types of passive attack

Ciphertext-only attack: The attacker has no control/knowledge of the ciphertexts
and the corresponding plaintexts. This is the most diffifult practical) attack.

Known plaintext attack: The attacker knows some plaintext-ciphertext pairs. Easil
mountable in public-key systems.

Chosen plaintext attack: A known plaintext attack where the plaintext messages are
chosen by the attacker.

Adaptive chosen plaintext attack: A chosen plaintext attack where the plaintext
messages are chosen adaptively by the attacker.

Chosen ciphertext attack: A known plaintext attack where the ciphertext messages
are chosen by the attacker. Mountable if the attacker gdtsdiahe victim’s decryp-

tion device.

Adaptive chosen ciphertext attack:A chosen ciphertext attack where the ciphertext
messages are chosen adaptively by the attacker.
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Attacks on digital signatures

Total break: An attacker knows the signing key or has a function that isvedgnt to
the signature generation transformation.

Selective forgery: An attacker can generate signatures (without the participaf
the legitimate signer) on a set of messages chosen by tlogetta

Existential forgery: The attacker can generate signatures on certain messages ov
which the attacker has no control.
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Attacks on digital signatures (contd)

Key-only attack: The attacker knows only the verification (public) key of thgner.
This is the most difficult attack to mount.

Known message attack:The attacker knows some messages and the signatures of
the signer on these messages.

Chosen message attackThis is similar to the known message attack except that the
messages for which the signatures are known are chosen bytdu&er.

Adaptive chosen message attacklhe messages to be signed are adaptively chosen
by the attacker.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 27



Part Il

Symmetric cryptosystems
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Block ciphers

A block cipherf of block-sizen andkey-sizer is a function
fiZ5 X715 — Ly

that maps M, K)toC = f(M, K).
For each keyx the map

fi 1Ly — Ly

taking a plaintext messag¥ to the ciphertext messageé = fx(M) = f(M, K)
should be bijective (invertible).
n andr should be large enough to preclude successful exhaustwvelse

Eachfx should be a sufficiently random permutation.
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Block ciphers: Examples

Name n r
DES (Data Encryption Standard) 64 56
FEAL (Fast Data Encipherment Algorithm) 64 64
SAFER (Secure And Fast Encryption Routine)) 64 64
IDEA (International Data Encryption Algorithm) 64 128
Blowfish 64 < 448
Rijndael 128/192/256128/192/256

Old standard: DES

New standard: AES (adaptation of the Rijndael cipher)
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A case study: AES (Advanced Encryption Standard)

AES is an adaptation of the Rijndael cipher designed by Jnigaeand V. Rijmen.

Number ofrounds N, for AES is 10/12/14 for key-sizes 128/192/256.
AES key schedule From K generate round keys, K1, ..

State: AES represents a 128-bit message block éas<al array of octets:

<y K4Nr_+_3.

Ho

M4

8

f12

H1

M5

19

13

HoH1 - - - H15 = o

M6

10

14

3

M7

11

15

Each octet in the state is identified as an elemefitof Fy|x]/ (2% + 2 + 23 + 2+ 1).

Each column in the state is identified as an elemefitdf)] /(y* + 1).
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AES encryption

Generate the key schedul&, K, . .., Ky, .3 from the keyK.
Convert the plaintext blocR/ to a stateS.

S = AddKey(S, Ko, K1, Ko, Kg) [bItWISe XOR]
fori=1,2,..., N, do the following:
S = SubState(S). [a non-linear transformation involving inverseskin]
S = ShiftRows(.5). [cyclic shift of octets in each row]
If i £ N,, S = MixCols(S). [a column-wise operation iBys[y] /(y* + 1)]
S = AddKey(S, K4z’7 K42'—|—17 K4¢+2, K4¢+3>. [bItWISe XOR]

Convert the staté' to the ciphertext block’.
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AES decryption

Generate the key schedul&, K, . .., Ky, .3 from the keyK.
Convert the ciphertext block' to a statesS.

S = AddKey (S, Kyn,, Kin,+1, Kan,+2, Kan,+3).
fori=N,—1,N,—2,...,1,0do the following:

S = ShiftRows™'(.9).

S = SubState™*(.9).

S = AddKey(S, Ky, Kait1, Kuaivo, Kaits).
If i £ 0, S = MixCols(S).

Convert the staté to the plaintext block\/.
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Multiple encryption

(b) Triple encryption
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Modes of operation
Break the messagel = MM, ... M, into blocks each of bit-length’ < n.

ECB (Electronic Code-Book) mode:Heren' = n.
Ci = fx(M;).

CBC (Cipher-Block Chaining) mode: Heren' = n.
Ci = fx(M; ® Ci_y).

CFB (Cipher FeedBack) Mode:Heren’ < n. Initialize k, = 1V.

Ciy = M; ® msb,y(fr(ki_1)). [Mask the key and the plaintext block]

k; =1sb,_(ki_1) || Ci. [Generate the next key in the stream]
OFB (Output FeedBack) Mode: Heren’ < n. Initialize ky = 1V.

ki = fr(ki_1). [Generate the next key in the stream]

C; = M; & msb,(k;). [Mask the plaintext block]

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 35



e,
Attacks on block ciphers

Exhaustive key search:If the key space is small, all possibilities for an unknown
key can be matched against known plaintext-ciphertexspdifany DES challenges
are cracked by exhaustive key search. DES has a small key&#zbits). Only two
plaintext-ciphertext pairs usually suffice to determinesg kniquely.

Linear and differential cryptanalysis: By far the most sophisticated attacks on block
ciphers. Impractical if sufficiently many rounds are use&SAis robust against these
attacks.

Specific attacks on AES:

Square attack
Collision attack
Algebraic attacks (like XSL)

Meet-in-the-middle attack: Applies to multiple encryption schemes. Withstages
we get the equivalent security o /2| keys only.
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Stream ciphers

Stream ciphers encrypt bit-by-bit.

Plaintext streamM = myms...my.
Key stream:K = kiks ... k.
Ciphertext stream(' = ci¢y. .. .

Encryption: ¢; = m; & k;.
Decryption: m; = ¢; P k;.
Source of security: unpredictability in the key-stream.

Vernam'’s one-time pad: If the key stream is truly random, then
PI”(CZ' = O) — PF(CZ' — 1) — %
for eachi, irrespective of the probabilities of the values assumedhyThis leads to

unconditional security, i.e., the knowledge of any number of plaintext-ciphertakt
pairs, does not help in decrypting a new ciphertext bit.
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Stream ciphers: drawbacks

Key stream should be as long as the message stream. Managdhoag key streams
IS difficult.

It is difficult to generate truly random (and reproducibleykstreams.

Pseudorandom bit streams provide practical solution, butat guarantee uncondi-
tional security.

Pseudorandom bit generators are vulnerable to comprorhsseds.

Repeated use of the same key stream degrades security.
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Linear Feedback Shift Registers (LFSR)

3

feedback
{
|
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Dr. Abhijit Das

LFSR: Example

D

2

D

1

D

Time Ds Dy Dy Dy
0 I 1 0 1

1 I 1 1 0

2 r 1 1 1
3 10 1 1 1
4 10 0 1 1
5 10 0 0 1
6 L 0 0 0
o— output . 0 | 0 0
s [0 0 1 0
9 I 0 0 1
w1 1 0 0
m 0 1 1 0
221 0 1 1
370 1 0 1
4 1 0 1 0
1 1 0 1
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P
i@i LFSR: State transiti

; ition
Control bits: ag, ay,...,a4_1.
State: s= (sg, S1,-..,S4-1)-
Each clock pulse changes the state as follows:

ty = S1
tl = S9

tg—o = Sd—1
tg—1 = agpSp + a181 + as82 + - -+ 4+ ag—_184-1 (mod 2).

In the matrix notatiort = A; s (mod 2), where thdransition matrix is

0O 1 0 0 0
0 0 1 0 0
AL = : : : s : :
o o0 0 --- 0 1
apg ap az -+ Qg—2 0Ad-1
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LFSR (contd)
The output bit-stream behaves like a pseudorandom segquence
The output stream must be periodic. The period should be larg
Maximum period of a non-zero bit-stream2&— 1.
Maximum-length LFSR has the maximum period.

Connection polynomial
Cr(z) =1+ ag12 + agox* + -+ + a1z + agxt € Fy| X].

L is a maximum-length LFSR if and only @ () is a primitive polynomial off;|z].
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%
An attack on LFSR

Because of the linear relation of the feedback bit as a fanatf the current state,
LFSRs are vulnerable to several attacks.

Berlekamp-Massey attack

Suppose that the bits; andc; for 2d consecutive values af(say, 1,2, ...,2d) are
known to an attacker. Then = m; @ ¢; are also known for these values:ofDefine
the statesS; = (k;, kiv1, ..., kirq_1) Of the LFSR. We then have

Sz'+1 — ALSZ' (mod 2)

fori=1,2,...,d. Treat eaclb; as a column vector. We then have
<SQ 53 Sd+1> = AL(Sl SQ Sd) (mod 2)
This reveals)\; and consequently the sectgt ay, ..., az_1 with high probability.

Remedy: Introduce non-linearity to the LFSR output.
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Nonlinear combination generator

Uy
LFSR —»
LFSI% —u2> ¢ u
—>
Uy
LFSR( >
Nonlinear
function

Computer Science & Engineering, IIT Kharagpur

Introduction to cryptography

Slide 44



Dr. Abhijit Das

The Geffe generator

LFSR | - :
o :

LFSR |2
LFSR “35 L:
i f
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Nonlinear filter generator

Feedback function

r T 3 f
I ,

Nonlinear filter function

v

Output

Feedback
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e, _
| Hash functions

Collision resistance implies second pre-image resistance

Second pre-image resistance does not imply collisionteaste Let .S be a finite set
of size> 2 and letH be a cryptographic hash function. Then

ontl ifx €S
H (1) = ]
(=) {1 | H(x) otherwise,
IS second pre-image resistant but not collision resistant.

Collision resistance does not imply first pre-image resise@alet H be ann-bit cryp-
tographic hash function. Then

ne ~ [0z if |z| =n,
Hi(z) = {1\\ H(x) otherwise.

IS collision resistant (so second pre-image resistant)noufirst pre-image resistant.

First pre-image resistance does not imply second pre-inmagstance Let m be a
product of two unknown big primes. Defifé”(z) = (1||z)? (mod m). H" is first
pre-image resistant, but not second pre-image resistant.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 47



e,

Hash functions: Construction
Compression function: A function F' : ZJ' — Zi, wherem = n + r.
Merkle-Damgard’s meta method

Break the inputr = x5 . . . x; to blocks each of bit-length.
Initialize hg = 0".

Fori=1,2,...,l use compressioh; = F'(h;,_1 || z;).
OutputH (z) = h; as the hash value.

X1
i%hllhz% ’13”.h|__& h
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Hash functions: Construction (contd)
Properties
If FIs first pre-image resistant, théh is also first pre-image resistant.
If F'Is collision resistant, the# is also collision resistant.
A concrete realization

Let f is a block cipher of block-size and key-size-. Take:
FM || K) = fx(M).

Keyed hash function

HMAC(M)=H(K||P||H(K||Q|| M)), whereH is an unkeyed hash functiof;
Is a key andP, () are short padding strings.
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Custom-designed hash functions

The SHA (Secure Hash Algorithm) family:
SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), 8Fb12 (512-bit).

The MD family:
MD?2 (128-bit), MD5 (128-bit).

The RIPEMD family:
RIPEMD-128 (128-bit), RIPEMD-160 (160-bit).
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Attacks on hash functions

The birthday attack is based on the birthday paradox. Forsaiit hash function,
one needs to compute on an averageé hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requires: 128 (n > 160 Is preferable).
Algebraic attacks may make hash functions vulnerable.
Some other attacks:

Pseudo-collision attacks

Chaining attacks

Attacks on the underlying cipher

Exhaustive key search for keyed hash functions
Long message attacks
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Part Il
Public-key cryptosystems
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Intractable problems

Public-key cryptography is based tnapdoor one-way functions It should be easy
to encrypt a message or verify a signature, but invertingrdaesform (decryption or
signhature generation) should be difficult, unless somesgsedormation (the trapdoor)
IS known.

Several difficult computational problems are used to bunkltrapdoors. Examples:

Factoring composite integers

Computing square roots modulo a composite integer

Computing discrete logarithms in certain groups (finitedsglelliptic and
hyperelliptic curves, class group of number fields, etc.)

Finding shortest/closest vectors in a lattice

Solving the subset sum problem

Finding roots of non-linear multivariate polynomial eqoat

Solving the braid conjugacy problem
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Intractable problems (contd)

Many sophisticated algorithms are proposed to break tipeltrar functions. Most of
these are fully exponentiabubexponential algorithmsare sometimes known.

For suitably chosen domain parameters these algorithnesédasible time.

No non-trivial lower bounds on the complexity of these comapional problems are
known. Even existence of polynomial-time algorithms canip@ often ruled out.
However, studies over several decades (or even centua#sgl to discover practi-
cal algorithms.

Certain special cases have been discovered to be cryptogadlp weak. For practical
designs, it is essential to avoid these special cases.

Polynomial-time quantum algorithms are known for factgrintegers and computing
discrete logarithms in finite fields.
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Introduction to number theory
Common sets
N = {1,2,3,...} (Natural numbers)
Ny = {0,1,2,3,...} (Non-negative integers)

Z =4...,-3,-2,—1,0,1,2,3,...} (Integers)
P = {2,3,5,7,11,13,...} (Primes)

Divisibility: «a | bif b = ac for somec € Z.
Corollary: If a | b, then|a| < |b].
Theorem: There are infinitely many primes.

Euclidean division: Let a,b € Z with b > 0. There exist unique,r € Z with
a=¢gb+rand0d <r <b.

Notations ¢ = a quot b, r = a rem b.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 55



o
¥,

GCD (Greatest common divisor)
Leta,b € Z, not both zero. Therd € N is called the gcd of andb, If:
(1)d | a andd | b.
(2) If d' | a andd’ | b, thend' | d.
We denotel = ged(a, b).
Euclidean gcd: ged(a, b) = ged(b, a rem b) (for b > 0).
Extended gcd:Leta, b € Z, not both zero. There exist v € Z such that
gcd(a, b) = ua + vb.
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Example

899 = 2 x 319 + 261,
319 = 1 x 261 + 58,
261 = 4 x 58 + 29,
58 = 2 x 20.

gcd (899, 319) = 29
Extended gcd computation

20 = 261 — 4 x 58
= 261 — 4 x (319 — 1 x 261) = (—4) x 319 + 5 x 261
= (—=4) x 319+ 5 x (899 — 2 x 319) = 5 x 899 + (—14) x 319.
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Modular arithmetic

Letn € N. DefineZ, = {0,1,2,...,n — 1}.
a—+b fa+b<n
a+b—n fa+b>=>n

a—b ifa>0
a—b+n fa<bd

Addition: a + b (mod n) = {

Subtraction: a — b (mod n) = {

Multiplication: ab (mod n) = (ab) rem n.
Inverse: a € Z, is calledinvertible modulon if (ua) rem n = 1 for someu € Z,.

Theorem: a € Z, is invertible modulor if and only if ged(a,n) = 1. In this case
extended gcd givesa +vn = 1. We may takeé) < u < n. We haveu = a~! (mod n).
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Example of modular arithmetic
Taken = 257, a = 127, b = 217.
Addition: a + b = 344 > 257, Ss0a + b (mod n) = 344 — 257 = 87.
Subtraction: ¢ — b = —90 < 0, SOa — b (mod n) = —90 4 257 = 167.
Multiplication: ab (mod n) = (127 x 217) rem 257 = 27559 rem 257 = 60.
Inverse: ged(b,n) = 1 = (—45)b + 38n, s0b~ ! (mod n) = —45 + 257 = 212.
Division: a/b (mod n) = ab™! (mod n) = (127 x 212) rem 257 = 196.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 59



i
i@i
Modular exponentiation

Letn € N, a € Z, ande € Ny. To compute:® (mod n).

Slow algorithm

Computea, a®, a’, . . . , a® successively by multiplying with modulon.
Example: n = 257, a = 127, e = 217.

a* = axa=195 (mod n),
a’ = a*xa=195x 127 = 93 (mod n),
at = a’xa=93x 127 = 246 (mod n),

a*' = @*' x a =131 x 127 = 189 (mod n),
a*'" = a*'% x a =189 x 127 = 102 (mod n).
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Modular exponentiation (contd)

Fast algorithm

Binary representation: = (e;_i1e;_s...e160)2 = €112 110272 4 - e 21 420,

e -1\ €l—1 -2\ €1—2 1\ €1 0\ €0

a’® = <a2 ) (aQ ) <a2 ) (aQ ) (mod n).

Computea, a2, a¥.a®,....a% " and multiply those:?’ modulon for which e; = 1.
i i—1\ 2

Also fori > 1, we haven® = <a2 1) (mod n).

Example: n = 257, a = 127, e = 217.
e = (11011001)y = 27 4 26 + 2% + 23 + 20, Soa* = a'a2 a2 a?’a® (mod n).

a> = 195 (mod n), a = (195)2 = 246 (mod n), a® = (246)2 = 121 (mod n),
a® = (121)% = 249 (mod n), a®’ = (249)? = 64 (mod n), a® = (64)2 = 241 (mod n)
anda® = (241)? = 256 (mod n).

a® = 256 x 241 x 249 x 121 x 127 = 102 (mod n).
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Euler totient function

Letn € N. DefineZ! = {a € Z,, | ged(a,n) = 1}. ThusZ; is the set of all elements
of Z,, that are invertible module.

Call p(n) = |Z%|.
Example: If pis a prime, them)(p) =p — 1.

Example: Zs = {0,1,2,3,4,5}. We haveged(0,6) = 6, ged(1,6) = 1, ged(2,6) = 2,
ged(3,6) = 3, ged(4,6) = 2, andged(5,6) = 1. SO0Z§ = {1,5}, 1.e.,¢(6) = 2.

Theorem: Letn = pi' - - - p¢r with distinct primesp; € P and withe; € N. Then

T

Fermat's little theorem: Letp € P anda € Z with p } a. Thena?~! =1 (mod p).

Euler's theorem: Letn € Nanda € Z with ged(a, n) = 1. Thena®™ =1 (mod n).
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Multiplicative order

Letn € Nanda € Z;. Defineord,, a to be the smallest of thgositiveintegersh for
whicha” = 1 (mod n).

Example n = 17, a =2 a' =2 (mod n), a*> = 4 (mod n), a® = 8 (mod n),
= 16 (mod n), a® = 15 (mod n), a® = 13 (mod n), a” = 9 (mod n), and
a8 = 1 (mod n). Soordy;2 = 8.

Theorem: a* = 1 (mod n) if and only if ord, a | k.
Theorem: Let h = ord,, a. Thenord, a* = h/ ged(h, k).
Theorem: ord, a | ¢(n).

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 63



e,

Primitive root

If ord,, a = ¢(n), thena is called a primitive root modula.

Theorem (Gauss): An integern > 1 has a primitive root if and only ifh =

2,4, p° 2p°, wherep is an odd prime and € N.

Example: 3 is a primitive root modulo the prime = 17:

k
3% (mod 17)

Example: n = 2 x 3* = 18 has a primitive roof with order$(18) = 6:

k
5F (mod 18)
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Example: n = 20 = 2 x 5 does not have a primitive root. We hay€20) = 8,
and the orders of the elementsZ, areordyy 1 = 1, ordey 3 = ordyy 7 = ordyy 13 =

ordsg 17 = 4, andord20 9 = ordyy 19 = 2.
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Letp € P, g a primitive root modulg, anda € {1,2,...

unique integer: € {0,1,2,...

Discrete logarithm

Indices follow arithmetic modulp — 1.

ind,(ab) = ind,a +ind, b (mod p — 1),
ind,(a®) = eind,a (mod p — 1).

Example: Takep = 17 andg = 3.

a
inds a

1

2

3

4

D

6

7

819/1011112/13|14

0

14

1

12

D

15

11

1012371131419

,p — 1}. Then there exists a
,p — 2} such thay” = a (mod p). We callx theindex
or discrete logarithnmof a to the base. We denote this by = ind, a.

ind36 = 15 andind311 = 7. Since6 x 11 = 15 (mod 17), we haveind; 15 =
ind36 + indg 11=15+7=6 (mod 16)
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The most common intractable problems of cryptography

Integer factorization problem (IFP): Givenn € N, compute the complete prime
factorization ofn. Suppose there is an algorithimthat computes a non-trivial factor
of n. We can used repeatedly in order to compute the complete factorizatiomn. df

n = pq (with p, ¢ € P), then computing a single prime factgrgr ¢) of n suffices.

Example

Input n = 85067.
Output 85067 = 257 x 331.

Discrete logarithm problem (DLP): Let p € P andg a primitive root modulop.
Givena € Z;, computend, a.

Example
Input p=17,9g =3,a = 11.
Output ind,a = 7.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 66



e,

Intractable problems (contd)
IFP and DLP are believed to be computationally very difficult
The best known algorithms for IFP and DLP are subexponential
IFP is the inverse of the integer multiplication problem.
DLP is the inverse of the modular exponentiation problem.

Integer multiplication and modular exponentiation areyea@mputational problems.
They are believed to be one-way functions.

There is, however, no proof that IFP and DLP must be difficult.
Efficient guantum algorithms exist for solving IFP and DLP.

IFP and DLP are believed to be computationally equivalent.
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Letp € P andg a primitive root modulg. Given
g® andg¢?Y modulop, computeg™ modulop.

Example

Input p =17, g = 3, ¢* = 11 (mod p) andg? = 13 (mod p).

Output ¢*¥ = 4 (mod p).

(r=7,y=4,ie,vy=28=12 (mod p — 1), i.e.,¢* = 32 =4 (mod p).)
DHP is another believably difficult computational problem.
If DLP can be solved, then DHP can be solve® (= (¢*)Y).

The converse is only believed to be true.
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RSA encryption

Key generation

The recipient generates two random large primgg computes: = pg and¢(n) =
(p — 1)(¢ — 1), finds a random integer with gcd(e, ¢(n)) = 1, and determines an
integerd with ed = 1 (mod ¢(n)).

Public key (n, e).

Private key (n, d).

Encryption

Input Plaintext message € Z, and the recipient’s public ke, e).
Output Ciphertext message= m® (mod n).

Decryption

Input Ciphertext messageand the recipient’s private key., d).
Output Plaintext message. = ¢/ (mod n).
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Example of RSA encryption

Let p = 257, ¢ = 331, so thatn = pq = 85067 and¢(n) = (p — 1)(qg — 1) = 84480.
Takee = 7, so thatd = e~ = 60343 (mod ¢(n)).

Public key (85067, 7).

Private key (85067, 60343).

Let m = 34152. Thenc = m® = (34152)" = 53384 (mod n).

Recovermn = ¢ = (53384)%343 = 34152 (mod n).

Decryption by an exponemﬁ other thand does not give back:. For example, take
d' = 38367. We haven’ = ¢ = (53384)3%307 = 71303 (mod n).
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Why RSA works?
Assume thatn € Z*. By Euler’s theoremm®™ = 1 (mod n).

Now ed =1 (mod ¢(n)), i.e.,ed = 1 + k¢(n) for some integek. Therefore,
¢t = med = mIHo) — m x <m¢(”)>k = m x (1) = m (mod n).

Note: The message can be recovered uniquely even whenz; .
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RSA sighature

Key generation

The signer generates two random large primag computes: = pg and¢(n) =
(p — 1)(¢ — 1), finds a random integer with gcd(e, ¢(n)) = 1, and determines an
integerd with ed = 1 (mod ¢(n)).

Public key (n, e).
Private key (n, d).

Signature generation

Input Messagen € Z, to be signed and the signer’s private Key d).
Output The signed message, s), wheres = m? (mod n).

Signature verification
Input Signed messagen, s) and the signer’s public keyn, e).
Output “Signature verified” ifs® = m (mod n),
“Signature not verified” ifs® # m (mod n).
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Example of RSA signature

Let p = 257, ¢ = 331, so thatm = pg = 85067 and¢(n) = (p — 1)(q¢ — 1) = 84480.
Takee = 19823, so thatd = ¢! = 71567 (mod ¢(n)).

Public key: (85067, 19823).
Private key:(85067, 71567).

Let m = 3759 be the message to be signed. Genesatem” = 13728 (mod n). The
signed message (8759, 13728).

Verification of (m, s) = (3759, 13728) involves the computation of = (13728)1%% =
3759 (mod n). Since this equals:, the signature is verified.

Verification of a forged signaturen, s) = (3759, 42954) givess® = (42954)19%%3 =
22968 (mod n). We haves® # m (mod n), i.e., the forged signature is not verified.
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Security of RSA

If n can be factoredy(n) can be computed and sbcan be determined frora by
extended gcd computation. Onées known, any ciphertext can be decrypted and any
signature can be forged.

At present no method (other than factoring)is known to decrypt RSA-encrypted
messages or forge RSA signatures.

We say that RSA derives its security from the intractabiifyhe IFP.

If e, d, n are known, there exists a probabilistic polynomial-timgogithm to factom.
So RSA key inversion is as difficult as IFP. But RSA decryptoorsignature forging
without the knowledge of may beeasier than factoring.

In practice, we require the size afto be> 1024 bits with each o, ¢ having nearly
half the size ofr, in order to achieve a decent level of security.
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Diffie-Hellman key exchange
Alice and Bob decide about a prinpeand a primitive rooty modulop.
Alice generates a randome {2,3,...,p — 2} and sendg” (mod p) to Bob.
Bob generates a randobre {2,3,...,p — 2} and sendg’ (mod p) to Alice.
Alice computesy® = (¢°)* (mod p).
Bob computeg® = (¢g*)’ (mod p).

The quantityg® (mod p) is the secret shared by Alice and Bob.
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Example of Diffie-Hellman key exchange
Alice and Bob first take = 91573, g = 67.
Alice generates = 39136 and sendg® = 48745 (mod p) to Bob.
Bob generates = 8294 and sendg’ = 69167 (mod p) to Alice.
Alice computeg69167)3913° = 71989 (mod p).
Bob compute$48745)%2% = 71989 (mod p).
The secret shared by Alice and Boly/i$89.
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Security of DH key exchange

An eavesdropper knows, ¢, g%, ¢° and desires to compuig’ (mod p), that is, the
eavesdropper has to solve the DHP.

If discrete logs can be computed ¥#j, thena can be computed frorp” and one
subsequently obtaing® = (¢°)* (mod p). So algorithms for solving the DLP can be
used to break DH key exchange.

Breaking DH key exchangmay beeasier than solving the DLP.

At present no method other than computing discrete logs iis known to break DH
key exchange.

Practically, we require to be of size> 1024 bits. The security does not depend on
the choice of the primitive element However,a andb must be sufficiently randomly
chosen.
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ElGamal encryption

Key generation

The recipient selects a random big primand a primitive rooty modulop, chooses a
randomd € {2,3,...,p — 2}, and computeg = ¢g* (mod p).

Public key (p, g,v).
Private key (p, g, d).

Encryption

Input: Plaintext message € Z, and the recipient’s public ke, g, y).
Output: Encrypted message t).
Computation:

Generate a random integére {2,3,...,p — 2}.

Computes = ¢% (mod p) andt = my® (mod p).

Decryption

Input: Encrypted message, ) and the recipient’s private key, g, d).
Output: The recovered plaintext message= ts~¢ (mod p).
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Correctness of EIGamal encryption

We haves = ¢ (mod p) andt = my? = m(¢)? = mg™ (mod p). Therefore,
m =tg % =t(g?)"? = ts~ (mod p).

Example of EIGamal encryption

Takep = 91573 andg = 67. The recipient chooses= 23632 and soy = (67)*%0% =
87955 (mod p).

Let m = 29485 be the message to be encrypted. The sender chdbsed 783 and
computess = ¢¢ = 52958 (mod p) andt = my® = 1597 (mod p).

The recipient retrieves) = ts~% = 1597 x (52958) 723632 = 29485 (mod p).
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Security of EIGamal encryption

An eavesdropper knows, p, v, s,t, wherey = ¢ (mod p) ands = ¢* (mod p).
Determiningm from (s, t) is equivalent to computing® (mod p), sincet = mg®.
(Herem is masked by the quantigy” (mod p).) Butd, d’ are unknown to the attacker.
So the abllity to solve the DHP lets the eavesdropper bre@afalal encryption.

Practically, we require to be of size> 1024 bits for achieving a good level of security.
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ElGamal signature

Key generation

Like EIGamal encryption, one choosgs g and computes a key-paiy, d) where
y = ¢ (mod p). The public key ip, g, y), and the private key i&, g, d).

Signature generation

Input: Messagen < Z, to be signed and the signer’s private Keyg, d).
Output: The signed message, s, t).
Computation:

Generate a random session kB {2,3,...,p — 2}.

Computes = g% (mod p) andt = &'~ (H(m) — dH(s)) (mod p — 1).

Signature verification

Input: A signed messaden, s, t) and the signer’s public-kelp, g, y).
Computation:

Seta; = ¢! (mod p) anday = y7®)s! (mod p).

Output “signature verified” if and only id; = as.
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Correctness of ElIGamal Signature

H(m)=dH(s)+td. Soa; = g™ = (¢HHE) (¢") = y) gt = ay (mod p).
Example of EIGamal Signhature

Takep = 104729 andg = 89. The signer chooses the private exponésrt 72135 and
soy = g% = 98771 (mod p).

Let m = 23456 be the message to be signed. The signer chooses the segsmn ex
nentd = 3951 and computes = ¢¢ = 14413 (mod p) andt = d'~*(m — ds) =
(3951)71(23456 — 72135 x 14413) = 17515 (mod p — 1).

Verification involves computation af; = ¢™ = 29201 (mod p) anday = y°s’ =
(98771)1443 % (14413)171 = 29201 (mod p). Sincea; = a,, the signature is verified.

A forger may choose any randoih (say,3951 as above) and can compute= ¢ =
14413 (mod p). But computation of involves d which is unknown to the forger.
So the forger randomly selects= 81529. Verification of this forged signature gives
a; = ¢™ = 29201 (mod p) as above. Buti, = s’ = (98771)14413 x (14413)315% =
85885 (mod p), i.e.,a; # as, and the forged signature is not verified.
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Security of EIGamal signatures

Computation ofs can be done by anybody. However, computation mivolves the
signer’s private exponent If the forger can solve the DLP moduig thend can be
computed from the public-key, and the correct signature can be generated.

The primep should be large (of bit-size 1024) in order to preclude this attack.
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Some other encryption algorithms

Encryption algorithm Security depends on
Rabin encryption Square-root problem
Goldwasser-Micali encryptioQuadratic residuosity problem
Blum-Goldwasser encryptionSquare-root problem

Chor-Rivest encryption Subset sum problem
XTR DLP
NTRU Closest vector problem in lattices
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Some other digital signature algorithms

Signature algorithm Security depends on
Rabin signature Square-root problem
Schnorr sighature DLP
Nyberg-Rueppel sighature DLP

Digital signature algorithm (DSA) DLP
Elliptic curve version of DSA (ECDSA)DLP in elliptic curves
XTR signature DLP
NTRUSIgn Closest vector problem in lattices
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Blind signatures
A signer Bob signs a messagewithout knowingm.

Blind signatures insure anonymity in electronic paymeiiesges.

Chaum'’s blind RSA signhature

Input: A messagé/ generated by Alice.
Output: Bob’s blind RSA signature oy .
Steps:
Alice gets Bob’s public-keyn, e).
Alice computesn = H(M) € Z,.
Alice sends to Bob the masked message- p°m (mod n) for a randonyp.
Bob sends the signatuse= m/¢ (mod n) back to Alice.
Alice computes Bob’s signature= p~'o (mod n) on M.

Correctness: Assume thap € Z:. Sinceed = 1 (mod ¢(n)), we haves = m'? =
(p°m)? = pm? = pm? (mod n). Therefores = p~lo = m? = H(M)? (mod n).
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Undeniable signatures
An active participation of the signer is necessary duriggature verification.
A signer is not allowed to deny a legitimate signature madaily

An undeniable signature comes withdanial or disavowal protocol that generates
one of the following three outputs:

Signature verified

Signature forged

The signer is trying to deny his signature by not properltipgrating
In the protocol.

Examples

Chaum-van Antwerpen undeniable signature scheme
RSA-based undeniable signhature scheme
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Challenge-response authentication
Alice wants to prove to Bob her knowledge of the private Kag the key-pair(e, d).
Bob generates a random bit stringnd computes) = H(r).
Bob reads Alice’s public key and computes = f.(r, e).

Bob sends the challenge, ¢) to Alice.

Alice computes”’ = f;(c, d).
If H(r') # w, Alice quits the protocol.

Alice sends the responsgéto Bob.

Bob accepts Alice’s identity if and only if = r.

Correctness: Bob checks whether Alice can correctly decrypt the chakangBob
sendsw as awitnessof his knowledge of-. Before sending the decrypted plaintext
r’, Alice confirms that Bob actually knows the plaintext
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The Guillou-Quisquater zero-knowledge protocol
Alice generates an RSA-based exponent-aii) under the modulus.

Alice chooses a random € Z* and computes = m ¢ (mod n). Alice makesm
public and keeps secret. Alice tries to prove to Bob her knowledge of the decre

The protocol

Alice selects a randome Z. [Commitment]
Alice computes and sends to Bab= ¢¢ (mod n). [Withess]
Bob selects and sends to Alice arandem {1,2, ... e}. [Challenge]
Alice computes and sends to Beb= cs (mod n). [Response]

Bob computesy’ = mr® (mod n).
Bob accepts Alice’s identity if and only i’ # 0 andw’ = w.
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The Guillou-Quisquater zero-knowledge protocol (contd)
Correctness
w' = mr® =m(cs) = m(em )¢ = (m! =)’ = ¢¢ = w (mod n).
Security
The quantitys® is blinded by the random commitment
As a witness for, Alice presents its encrypted versian
Bob (or an eavesdropper) cannot decryfib compute: and subsequently .
An eavesdropper’s guess abaeus successful with probability/e.

The checkw’ # 0 precludes the case= 0 which lets a claimant succeed always.
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Digital certificates: Introduction
Bind public-keys to entities.
Required to establish the authenticity of public keys.
Guard against malicious public keys.
Promote confidence in using others’ public keys.

Require aCertification Authority (CA) whom every entity over a network can be-
lieve. Typically, a government organization or a reputethpany can be a CA.

In case a certificate is compromised, one requires to revoke |

A revoked certificate cannot be used to establish the autgraf a public key.
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Digital certificates: Contents

A digital certificate contains particulars about the entitlgose public key is to be
embedded in the certificate. It contains:

Name, address and other personal details of the entity.

The public key of the entity. The key pair may be generatedtteethe entity
or the CA. If the CA generates the key pair, then the privateik@danded over
to the entity by trusted couriers.

The certificate is digitally signed by the private key of th&.C

If signatures cannot be forged, nobody other than the CA eaegite a valid certifi-
cate for an entity.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 92



e,

Digital certificates: Revocation
A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity’s privage ke

An invalid certificate is revoked by the CA.
Certificate Revocation List(CRL): The CA maintains a list of revoked certificates.

If Alice wants to use Bob’s public key, she obtains the cewiie for Bob’s public key.
If the CA's signature is verified on this certificate and if €extificate is not found in
the CRL, then Alice gains the desired confidence to use Balidépkey.
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Part IV
Public-key cryptanalysis
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Integer factoring algorithms
Let n be the integer to be factored.

Older algorithms

e Trial division (efficient if all prime divisors of: are small)

e Pollard’s rho method

e Pollard’sp — 1 method (efficient ifp — 1 has only small prime factors for some
prime divisorp of n)

e Willlams’ p + 1 method (efficient ifp + 1 has only small prime factors for some
prime divisorp of n)

In the worst case these algorithms take exponentidbgin) running time.

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 95



e,

Modern algorithms
Subexponential running timé:(n, w, ¢) = exp |(¢ + o(1))(Inn)“(InInn)~|.
If w=0, L(n,w,c)is polynomial inln n.

If w=1, L(n,w, c) is exponential inn n.
For0 < w < 1, L(n,w, c¢) IS between polynomial and exponential.

Examples

Algorithm Inventor(s) Running time
Continued fraction method (CFRACMorrison & Brillhart (1975) | L(n,1/2,¢)
Quadratic sieve method (QSM) Pomerance (1984) L(n,1/2,1)
Cubic sieve method (CSM) Reyneri L(n,1/2,0.816)
Elliptic curve method (ECM) H. W. Lenstra (1987) L(n,1/2,c¢)
Number field sieve method (NFSM)A. K. Lenstra, H. W. Lenstrg,L(n, 1/3,1.923)

Manasse & Pollard (1990)
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Most modern integer factoring algorithms are based on Fesnmdea of writing a
multiple of n as the difference of two squares.

Examples

Taken = 899. Thenn =900 — 1 = 30> — 1> = (30 — 1) x (30 + 1) = 29 x 31.

Then taken = 833. It is not immediate how we can write as the difference of two
squares. But x 833 = 2499 = 2500 — 1 = 50> — 1 = (50 — 1) x (50 + 1) = 49 x 51.
We haveged (50 — 1,833) = 49, a non-trivial factor oR33.

Objective
We try to find integers:, y € Z, such thatr®* = y? (mod n). Unlessr = 4y (mod n),
ged(x — y,n) is a non-trivial divisor ofn.

If n is composite, then for a randomly chosen gairy) with 2> = 3* (mod n), the
probability thatr # +y (mod n) is at leastl /2.
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The quadratic sieve method (QSM)

Letn be an odd integer with no small prime factors. Itét= [/n ] andJ = H* —n.
For small integerg > 0 we have(H + ¢)* = J + 2Hc + ¢ (mod n). We try to factor
T(c) = J +2Hc + ¢ completely over small primes, ps, . . ., p;. If the factorization
IS successful, we getralation:

(H +c)> = p{ips2 -+ pi (mod n).

The left side is already a square. The right side is also aregii@achq; is even. But
this is very rare. So we collect many relations:

Relation 1: (H + ¢;)* = pi'py™2. .- pit

P1 P2
Relation 2: (H + ¢y)* = pi*py? - - - pi* (mod n)

Qg

Relationr: (H + ¢,)* = pi"'py™? - - p;
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Let 61, 0o, ..., B € {0,1}. Consider the product of the-th powers of Relations

2
(H+c1)"(H+ )+ (H+ )| = pl'pp -+ p]' (mod n).

Again the left side is a square. By tuning, -, ..., (3, we force eachy; to be even.
We have:

anfi+anfBe+ -+ a8 = M,
a1 + ooy + -+ - + B = Yo,

a1+ aoBo + - - -+ B =

This is a system of linear equations i unknown quantities’;, 0, . .., 5,.. Since
each~; is required to be even, and since eathe {0,1}, we solve the following
system modula:
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air Qor v o (B 0
g oy o Q|| B2 |0 (mod 2)
Qo ot o )\ By 0
Forr > t, we hope to obtain non-zero solutions fér, 5-, ..., .. For each such

solution we take

r = (H+c)"(H~+c)” - (H+¢)” (mod n),

2 2 2
/2, 72/ .szt/ (

y = pi'ps mod n).

If x # +y (mod n), thenged(x — y, n) yields a non-trivial factor of.

Let p be a small prime. The conditign| 7'(c) implies (H + ¢)* = n (mod p). That
IS, If n is not a square module, thenp does not dividél’(c¢) for any value ofc. So it
suffices to consider only the small primesnodulo whichn is a square.
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Example of QSM
n = 7116491.
H=[\/n] = 2668.
As the factor base we take all primes100 modulo whichn Is a square. This gives:
B ={2,5,7,17,29,31,41,59,61,67,71,79,97}.
t = 13.
We also take = 13. In practice, one takes~ 2t.

The following relations are obtained.
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Dr. Abhijit Das

Relation 10:
Relation 11:
Relation 12:
Relation 13:

Relation 1:
Relation 2: (H + 8)?
Relation 3: (H + 49)?
Relation 4: (H + 64)?
Relation 5: (H + 81)?
Relation 6:
Relation 7:
Relation 8:
Relation 9:

(H + 3)*

)
)
)
)
)
H +109)?
H + 128)?
H + 145)?
H + 182)*
H + 228)?
H + 267)?
H + 382)*
)

H + 411)?

N N NS NS N NN N

2 x 5% x 71
bXT7Tx 31 x41

2 x 412 x 79

7 % 29% x 59

2 x5 x7%x%x29 x 31
2 X7 x17x41 x 61
5 x 71 x 79

2 x 712 x 79
17% x 592

52 x 7% x 17 x 61

2 x 7% x 17 x 29 x 31
7 X D59 X 67 %79

2 x 5% x 31 x 61
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We get the linear system:

O R OO OO oo oo o W

-

O OO OO M= OO = O

-

_ O O OO O oo o oo

-

-

O OO OO OO N OO

O O OO OO R M= O

-

OO O kRO OO+, RF~, O+

-

SR R OO OO oo oo wo

— NN O OO0 OO OO —
OO OO INOOoOOoONO OO
O OO R OO RINNOD
OO OO OO NN O
— O R OFR OO0 F—~,OO
OO R OO R OOO R

-
-
-
-
-
-

A
B
O3
Da
Bs
6
7
s
B
Sho
Pu
bra
SE

S OO OO OO oo oo oo oo

-

(mod 2).

This system ha$6 solutions. These solutions and the corresponding valuaspf
andgcd(z — y, n) are given in the next slide. We obtain= 1847 x 3853.
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b1 B2 B3 Bs Bs5 Bs Br PBs Po P B Pz Piz| =« y |gcd(r —y,n)
o o0 0 0 0 0 000 0 0 0 0 1 1 7116491
1 01 00 0 1 O 0 0 0 0 011755331 560322 1847
0O 01 0 0 0 0 1 0 0 0 0 071526430 | 459938 1847
1 00 00 0 1 1 0 0 0 0 01]7045367|7045367| 7116491
o0 0 0 0 0 00 1 0 0 0 0] 280 1003 1847
1 01 0 0 0 1 0 1 0 0 0 0 ]6916668|6916668 7116491
O 0 1 0 0 0 0 1 1 0 0 0 0 ]5862390|5862390 7116491
1 0 0 00 0 1 1 1 0 0 0 0 ]3674839|6944029 1847
o1 0 0 1 1 0 0 0 0 1 0 1 11079130|3965027 3853
11 1 0 1 1 1 0 O O 1 0 1 ]5466596|1649895 1
01 1 0 1 1 0 1 0 0 1 0 1 (5395334|1721157 1

1 1 0 0 1 1 1 1 O O 1 0 1]6429806]|3725000 3853
o 1 0 0 1 1 0 0 1 0 1 0 1 ]1196388|5920103 1

1 11 01 1 1 0 1 O 1 O 1 /|1799801|3818773 3853
o1 1 0 1 1 0 1 1 0 1 0 1 |5081340(4129649 3853
1 10 0 1 1 1 1 1 O 1 0 17099266 17225 1
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Algorithms for computing discrete logarithms

Suppose that we want to compute the discrete logarithmioiZ; with respect to the
primitive rootg.

Older algorithms

e Brute-force search

e Shanks’ Baby-step-giant-step method
e Pollard’s rho method

¢ Pollard’s lambda method

e Pohlig-Hellman method (Efficient i — 1 has only small prime divisors)

In the worst case, these algorithms are exponentiakip.
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Modern algorithms
Based on the index calculus method (ICM)

Subexponential running timé:(p, w, ¢) = exp |(¢ + o(1))(Inp)“(InIn p)*~+).

Examples

Algorithm Inventor(s) Running time
Basic ICM Western & Miller (1968) L(p,1/2,¢)
Linear sieve method (LSM) Coppersmith, Odlyzko
Residue list sieve method & Schroeppel (1986) | L(p,1/2,1)
Gaussian integer method
Cubic sieve method (CSM) Reyneri L(p,1/2,0.816)
Number field sieve method (NFSM)  Gordon (1993) L(p,1/3,1.923)
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The basic index calculus method

Suppose we want to complitel, a In Z.
Precomputation stage
Let B = {p1, po, - - ., p+} comprise the first primes. B is called thefactor base
In this stage, we compute the discrete lags- ind, p; for: =1,2,... ¢
Generate randomi € {1,2,...,p — 2} and computey’ (mod p). If this quantity
factors completely oveB, we get arelation:

g’ = pips? - pit (mod p).
Taking discrete logarithm we get:

j = aid; + aady + - - - + oudy (mod p — 1).

This is a linear equation (modujo— 1) in ¢ unknown quantitied;, ds, . . . , d;.
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Generate > ¢ relations for different values oft.

Relation 1:j1 = aq1dy + apods + - - - + aqidy
Relation 2:j2 = o1dy + aeoody + - - - + qod
o (mod p — 1).
Relationr: Ir = a,1dy + apods + - -+ + opdy
Solve the system modulo— 1 to determine the unknown indic€s, d-, . . ., d;.

The second stage

Again we choose randomand try to factorag’ (mod p) completely overB. If the
factorization is successful, we have:

ag’ = pi'py---p/* (mod p), e,
ind,a = —j + Bidy + Pody + + - - + Bidy (mod p — 1).

Substituting the values af;, ds, . . ., d; givesind, a.
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Example of the basic ICM

We takep = 839, g = 31, andB = {2,3,5,7,11}, i.e.,t = 5. In order to obtain a
matrix with rankt, we usually require > 2t. So taker = 10.

The following relations are generated:

Relation 1; ¢''® = 23 x 52
Relation 2: ¢°™* = 27 x 5
Relation 3;: ¢3! = 22 x 33
Relation 4: ¢*0 = 27
Relation5: ¢ = 22 x 33 x 7

Q
|

9
Relation 6: ¢°* = 2 x 3 x 11 (mod p).
Relation 7: ¢%%% = 3*
Relation 8: ¢*? = 22 x 32 x 7

Relation 9: ¢! = 3 x 52
Relation 10: ¢ = 2 x 33 x 5

This leads to the linear system given in the next slide.
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30 2 0 0 118
701 0 0 574
2300 0f 318
70000d; 46
23 0 1 0 786
1 1.0 0 1 33_323 (mod p —1).
o4000d4 606
32 0 1 0]\ 252
01 2 0 0 160
1 31 0 0 600

The coefficient matrix is of rank modulo&838, and the system has the solution:

d1 = ind31 2 = 246
dg = ind31 3 = 780
d3 = il’ldgl b = bH28 (mod D — 1)
d4 = il’ldgl 7 = 468
d5 = ind31 11 = 135
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Let us now compute individual logarithms:

Fora = 561, we have:

ag’'® = 600 = 2° x 3 x 5% (mod p), i.e,

indg; 561 = —312 + 3 x 246 4+ 780 4+ 2 x 528 = 586 (mod p — 1).

Fora = 89, we have:

ag®* = 99 = 3% x 11 (mod p), i.e.
indy; 89 = —342 + 2 x 780 + 135 = 515 (mod p — 1).

Fora = 625, we have:

ag® = 70 =2 x5x 7 (mod p), ie,

inds; 625 = —806 + 246 + 528 + 468 = 436 (mod p — 1).
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Side channel attacks
Applicable for both symmetric and asymmetric cryptosysem
Relevant for smart-card based implementations.

Reveal secret information (key) by observing the decrggsiigning device.

Timing attack: utilizes reasonably accurate measurement of severalte+key op-
erations under the same key.

Power attack: analyzes power consumption patterns of the decryptingceedtiring
one or more private-key operations.

Fault attack: Random hardware faults during the private-key operatioy regeal
the key to an attacker. Even a single faulty computation nuffics.

Remedies:Shielding the decrypting device from external measures)erthecking
computations, adding random delays, etc.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routioghat published public
keys reveal the private keys to the designer.

A good backdoor allows nobody other than the designer to k&ya.

Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent

Backdoor attacks on ElGamal and Diffie-Hellman cryptosyst@re also known.

Remedy: Use of trustworthy software (like open-source products).
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Proving security of a cryptosystem

With our current knowledge, weannot prove a practical system to be secure.

A standard security review, even by competent cryptogregploan only prove

Insecurity; it can never prove security. By following theckg/ou can leverage

the cryptanalytic expertise of the worldwide communityt just a handful of
hours of a consultant’s time.

— Bruce Schneier, Crypto-gram, March 15, 1999
Desirable attributes for strongcryptosystem:

Use of good non-linearity (diffusion)
Resilience against known attacks

Computational equivalence with difficult mathematicallgems
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