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Part I

Overview of cryptographic primitives
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What is Cryptography?

Cryptography is the study of techniques for preventing access to sensitive data by
parties who are not authorized to access the data.

Cryptanalysis is the study of techniques for breaking cryptographic systems.

Cryptology = Cryptography + Cryptanalysis

Cryptanalysis is useful for strengthening cryptographic primitives.

Maintaining security and privacy is an ancient and primitive need.

Particularly relevant for military and diplomatic applications.

Wide deployment of the Internet makes everybody a user of cryptographic tools.
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Message encryption

Required for secure transmission of messages over a public channel.

Alice wants to send aplaintext messageM to Bob.

Alice encryptsM to generate theciphertext messageC = fe(M,Ke).

Ke is theencryption key.

C is sent to Bob over the public channel.

BobdecryptsC to recover the plaintext messageM = fd(C,Kd).

Kd is thedecryption key.

Knowledge ofKd is required to retrieveM from C.

An eavesdropper (intruder, attacker, adversary, opponent, enemy) cannot decryptC.
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Secret-key or symmetric encryption

Ke = Kd.

Algorithms are fast and suitable for software and hardware implementations.

The common key has to be agreed upon by Alice and Bob before theactual commu-
nication.

Each pair of communicating parties needs a secret key.

If there are many communicating pairs, the key storage requirement is high.
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Public-key or asymmetric encryption

Ke 6= Kd.

Introduced by Rivest, Shamir and Adleman (1978).

Ke is thepublic key known to everybody (even to enemies).

Kd is theprivate key to be kept secret.

It is difficult to computeKd from Ke.

Anybody can send messages to anybody. Only the proper recipient can decrypt.

No need to establish keys a priori.

Each party requires only one key-pair for communicating with everybody.

Algorithms are slow, in general.
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Real-life analogy

Symmetric encryption

Alice locks the message in a box by a key.

Bob uses a copy of the same key to unlock.

Asymmetric encryption

Alice presses a padlock in order to lock the box. The locking process does not require
a real key.

Bob has the key to open the padlock.
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Using symmetric and asymmetric encryption together

Alice reads Bob’s public keyKe.

Alice generates a random secret keyK.

Alice encryptsM by K to generateC = fe(M, K).

Alice encryptsK by Ke to generateL = fE(K, Ke).

Alice sends(C,L) to Bob.

Bob recoversK asK = fD(L,Kd).

Bob decryptsC asM = fd(C,K).
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Key agreement or key exchange

Real-life analogy

Alice procures a lockL with keyK. Alice wants to sendK to Bob for a future secret
communication.

Alice procures another lockLA with keyKA to be used at Alice’s end only.

Bob procures a lockLB with keyKB to be used at Bob’s end only.

Alice putsK in a box, locks the box byLA usingKA, and sends the box to Bob.

Bob locks the box byLB usingKB, and sends the doubly-locked box back to Alice.

Alice unlocksLA by KA and sends the box again to Bob.

Bob unlocksLB by KB and obtainsK.

A third party always finds the box locked either byLA or LB or both.
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Key agreement or key exchange (contd)

Alice generates a key pair(Ae, Ad).

Bob generates a key pair(Be, Bd).

Alice sends her public-keyAe to Bob.

Bob sends his public-keyBe to Alice.

Alice computesKAB = f(Ae, Ad, Be).

Bob computesKBA = f(Be, Bd, Ae).

The protocol insuresKAB = KBA to be used by Alice and Bob as a shared secret.

An intruder cannot compute this secret usingAe andBe only.
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Digital signatures

Alice establishes her binding to a messageM by digitally signing it.

Signing: Only Alice has the capability to signM .

Verification: Anybody can verify whether Alice’s signature onM is valid.

Forging: Nobody can forge signatures on behalf of Alice.

Digital signatures are based on public-key techniques.

Signature generation≡ Decryption (uses private key), and
Signature verification≡ Encryption (uses public key).

Non-repudiation: An entity should not be allowed to deny valid signatures madeby
him.
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Signature with message recovery

Generation

Alice generates a key-pair(Ke, Kd), publishesKe, and keepsKd secret.

Alice signsM by her private key to obtain the signed messageS = fs(M, Kd).

Verification

Anybody can recoverM from S by using Alice’s public key:M = fv(S,Ke).

Forging signatures

A key K ′
d other thanKd is used to generate the forged signatureS ′ = fs(M,K ′

d).
Verification yieldsM ′ = fv(S

′, Ke). We would haveM ′ 6= M . M ′ is not expected to
have the same redundancy asM has, and soS ′ is rejected.

Drawback

Public-key algorithms are slow. This is of concern for signing long messages.
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Signature with appendix

Generation

Alice generates a key-pair(Ke, Kd), publishesKe, and keepsKd secret.

Alice generates a short representativem = H(M) of M .

Alice uses her private-key:s = fs(m, Kd).

Alice publishes(M, s) as the signed message.

Verification

Compute the representativem = H(M).

Use Alice’s public-key to generatem′ = fv(s, Ke).

Accept the signature if and only ifm = m′.

Forging

Verification is expected to fail if a keyK ′
d 6= Kd is used to generates.
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Digital signatures: classification

Deterministic signatures: For a given message the same signature is generated on
every occasion the signing algorithm is executed.

Probabilistic signatures: On different runs of the signing algorithm different signa-
tures are generated, even if the message remains the same.

Probabilistic signatures offer better protection againstsome kinds of forgery.

Deterministic signatures are of two types:

Multiple-use signatures:Slow. Parameters are used multiple times.

One-time signatures:Fast. Parameters are used only once.



"

#

!

 

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 15

Entity authentication

Alice proves her identity to Bob.

Alice demonstrates to Bob her knowledge of a secret piece of information.

Alice may or may not reveal the secret itself to Bob.

Both symmetric and asymmetric techniques are used for entity authentication.
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Weak authentication: Passwords

Set-up phase

Alice supplies a secret passwordP to Bob.

Bob transforms (typically encrypts)P to generateQ = f(P ).

Bob storesQ for future use.

Authentication phase

Alice supplies her passwordP ′ to Bob.

Bob computesQ′ = f(P ′).

Bob comparesQ′ with the stored valueQ.

Q′ = Q if and only if P ′ = P .

If Q′ = Q, Bob accepts Alice’s identity.
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Passwords (contd)

It should be difficult to invert the initial transformQ = f(P ).

Knowledge ofQ, even if readable by enemies, does not revealP .

Drawbacks

Alice revealsP itself to Bob. Bob may misuse this information.

P resides in unencrypted form in the memory during the authentication phase. A third
party having access to this memory obtains Alice’s secret.
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Challenge-response techniques

Alice does not reveal her secret directly to Bob.

Bob generates a challengeC and sendsC to Alice.

Alice responds toC by sending a responseR back to Bob.

Bob determines whether the responseR is satisfactory.

GeneratingR from C requires the knowledge of the secret.

Absence of the knowledge of the secret fails to generate a satisfactory response with
a significantly positive probabilityp.

The above protocol may be repeated more than once (dependingonp).

If Bob receives satisfactory response in every iteration, he accepts Alice’s identity.

Drawback

C andR may reveal to Bob or an eavesdropper some knowledge about Alice’s secret.
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Zero-knowledge protocol

A special class of challenge-response techniques.

Absolutely no information is leaked to Bob or to any third party.

A real-life example

Right exit

A

B

Left exit

Door with secret key
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Secret sharing

A secret is distributed ton parties.

All of thesen parties should cooperate to reconstruct the secret.

Participation of only6 n − 1 parties should fail to reconstruct the secret.

Generalization

Any m (or more) parties can reconstruct the secret (for somem 6 n).

Participation of only6 m − 1 parties should fail to reconstruct the secret.
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Cryptographic hash functions

Used to convert strings of any length to strings of a fixed length.

Used for the generation of (short) representatives of messages.

Symmetric techniques are typically used for designing hashfunctions.

Modification detection code (MDC)

An unkeyed hash function is used to guard against unauthorized/accidental message
alterations. Signature schemes also use MDC’s.

Message authentication code (MAC)

A keyed hash function is used to authenticate the source of messages.
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Cryptographic hash functions: Properties

A collision for a hash functionH is a pair of two distinct stringsx, y with H(x) =
H(y). Collisions must exist for any hash function.

First pre-image resistance

For most hash valuesy, it should be difficult to find a stringx with H(x) = y.

Second pre-image resistance

Given a stringx, it should be difficult to find a different stringx′ with H(x′) = H(x).

Collision resistance

It should be difficult to find two distinct stringsx, x′ with H(x) = H(x′).
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Certification

A public-key certificate insures that a public key actually belongs to an entity.

Certificates are issued by a trustedCertification Authority (CA).

A certificate consists of a public key and other additional information about the owner
of the key.

The authenticity of a certificate is achieved by the digital signature of the CA on the
certificate.

Compromised certificates are revoked and acertificate revocation list(CRL) is main-
tained by the CA.

If a certificate is not in the CRL, and the signature of the CA onthe certificate is
verified, one gains the desired confidence of treating the public-key as authentic.
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Models of attack

Partial breaking of a cryptosystem

The attacker succeeds in decrypting some ciphertext messages, but without any guar-
antee that this capability would help him break new ciphertext messages in future.

Complete breaking of a cryptosystem

The attacker possesses the capability of decrypting any ciphertext message. This may
be attributed to a knowledge of the decryption key(s).

Passive attack

The attacker only intercepts messages meant for others.

Active attack

The attacker alters and/or deletes messages and even creates unauthorized messages.
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Types of passive attack

Ciphertext-only attack: The attacker has no control/knowledge of the ciphertexts
and the corresponding plaintexts. This is the most difficult(but practical) attack.

Known plaintext attack: The attacker knows some plaintext-ciphertext pairs. Easily
mountable in public-key systems.

Chosen plaintext attack:A known plaintext attack where the plaintext messages are
chosen by the attacker.

Adaptive chosen plaintext attack: A chosen plaintext attack where the plaintext
messages are chosen adaptively by the attacker.

Chosen ciphertext attack: A known plaintext attack where the ciphertext messages
are chosen by the attacker. Mountable if the attacker gets hold of the victim’s decryp-
tion device.

Adaptive chosen ciphertext attack:A chosen ciphertext attack where the ciphertext
messages are chosen adaptively by the attacker.
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Attacks on digital signatures

Total break: An attacker knows the signing key or has a function that is equivalent to
the signature generation transformation.

Selective forgery: An attacker can generate signatures (without the participation of
the legitimate signer) on a set of messages chosen by the attacker.

Existential forgery: The attacker can generate signatures on certain messages over
which the attacker has no control.
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Attacks on digital signatures (contd)

Key-only attack: The attacker knows only the verification (public) key of the signer.
This is the most difficult attack to mount.

Known message attack:The attacker knows some messages and the signatures of
the signer on these messages.

Chosen message attack:This is similar to the known message attack except that the
messages for which the signatures are known are chosen by theattacker.

Adaptive chosen message attack:The messages to be signed are adaptively chosen
by the attacker.
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Part II

Symmetric cryptosystems
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Block ciphers

A block cipherf of block-sizen andkey-sizer is a function

f : Z
n
2 × Z

r
2 → Z

n
2

that maps(M,K) to C = f(M, K).

For each keyK the map

fK : Z
n
2 → Z

n
2

taking a plaintext messageM to the ciphertext messageC = fK(M) = f(M, K)
should be bijective (invertible).

n andr should be large enough to preclude successful exhaustive search.

EachfK should be a sufficiently random permutation.



"

#

!

 

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 30

Block ciphers: Examples

Name n r
DES (Data Encryption Standard) 64 56
FEAL (Fast Data Encipherment Algorithm) 64 64
SAFER (Secure And Fast Encryption Routine) 64 64
IDEA (International Data Encryption Algorithm) 64 128
Blowfish 64 6 448
Rijndael 128/192/256128/192/256

Old standard: DES

New standard: AES (adaptation of the Rijndael cipher)
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A case study: AES (Advanced Encryption Standard)

AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.

Number ofrounds Nr for AES is 10/12/14 for key-sizes 128/192/256.

AES key schedule: FromK generate round keysK0, K1, . . . , K4Nr+3.

State: AES represents a 128-bit message block as a4 × 4 array of octets:

µ0µ1 . . . µ15 ≡
µ0 µ4 µ8 µ12

µ1 µ5 µ9 µ13

µ2 µ6 µ10 µ14

µ3 µ7 µ11 µ15

Each octet in the state is identified as an element ofF28 = F2[x]/〈x8 +x4 +x3 +x+1〉.

Each column in the state is identified as an element ofF28[y]/〈y4 + 1〉.
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AES encryption

Generate the key scheduleK0, K1, . . . , K4Nr+3 from the keyK.

Convert the plaintext blockM to a stateS.

S = AddKey(S,K0, K1, K2,K3). [bitwise XOR]

for i = 1, 2, . . . , Nr do the following:

S = SubState(S). [a non-linear transformation involving inverses inF28]
S = ShiftRows(S). [cyclic shift of octets in each row]
If i 6= Nr, S = MixCols(S). [a column-wise operation inF28[y]/〈y4 + 1〉]
S = AddKey(S,K4i,K4i+1,K4i+2, K4i+3). [bitwise XOR]

Convert the stateS to the ciphertext blockC.
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AES decryption

Generate the key scheduleK0, K1, . . . , K4Nr+3 from the keyK.

Convert the ciphertext blockC to a stateS.

S = AddKey(S,K4Nr, K4Nr+1,K4Nr+2,K4Nr+3).

for i = Nr − 1, Nr − 2, . . . , 1, 0 do the following:

S = ShiftRows−1(S).
S = SubState−1(S).
S = AddKey(S,K4i,K4i+1,K4i+2, K4i+3).
If i 6= 0, S = MixCols−1(S).

Convert the stateS to the plaintext blockM .



"

#

!

 

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 34

Multiple encryption

K K K

x y

1 2 3

K1 K2

x

h h

g g

h
1 2

1 2

3

m c

cm

(a)  Double encryption

(b) Triple encryption
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Modes of operation

Break the messageM = M1M2 . . . Ml into blocks each of bit-lengthn′ 6 n.

ECB (Electronic Code-Book) mode:Heren′ = n.
Ci = fK(Mi).

CBC (Cipher-Block Chaining) mode: Heren′ = n.
Ci = fK(Mi ⊕ Ci−1).

CFB (Cipher FeedBack) Mode:Heren′ 6 n. Initialize k0 = IV.
Ci = Mi ⊕ msbn′(fK(ki−1)). [Mask the key and the plaintext block]
ki = lsbn−n′(ki−1) || Ci. [Generate the next key in the stream]

OFB (Output FeedBack) Mode:Heren′ 6 n. Initialize k0 = IV.
ki = fK(ki−1). [Generate the next key in the stream]
Ci = Mi ⊕ msbn′(ki). [Mask the plaintext block]
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Attacks on block ciphers

Exhaustive key search: If the key space is small, all possibilities for an unknown
key can be matched against known plaintext-ciphertext pairs. Many DES challenges
are cracked by exhaustive key search. DES has a small key-size (56 bits). Only two
plaintext-ciphertext pairs usually suffice to determine a key uniquely.

Linear and differential cryptanalysis: By far the most sophisticated attacks on block
ciphers. Impractical if sufficiently many rounds are used. AES is robust against these
attacks.

Specific attacks on AES:

Square attack
Collision attack
Algebraic attacks (like XSL)

Meet-in-the-middle attack: Applies to multiple encryption schemes. Withm stages
we get the equivalent security of⌈m/2⌉ keys only.
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Stream ciphers

Stream ciphers encrypt bit-by-bit.

Plaintext stream:M = m1m2 . . . ml.
Key stream:K = k1k2 . . . kl.
Ciphertext stream:C = c1c2 . . . cl.

Encryption: ci = mi ⊕ ki.

Decryption: mi = ci ⊕ ki.

Source of security: unpredictability in the key-stream.

Vernam’s one-time pad: If the key stream is truly random, then

Pr(ci = 0) = Pr(ci = 1) = 1
2

for eachi, irrespective of the probabilities of the values assumed bymi. This leads to
unconditional security, i.e., the knowledge of any number of plaintext-ciphertextbit
pairs, does not help in decrypting a new ciphertext bit.
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Stream ciphers: drawbacks

Key stream should be as long as the message stream. Management of long key streams
is difficult.

It is difficult to generate truly random (and reproducible) key streams.

Pseudorandom bit streams provide practical solution, but do not guarantee uncondi-
tional security.

Pseudorandom bit generators are vulnerable to compromise of seeds.

Repeated use of the same key stream degrades security.
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Linear Feedback Shift Registers (LFSR)

d d 012D D −2−1 D D D

aaaa a 2 1 0−2dd−1

s s s s012d−1 sd−2

fe
ed

ba
ck

output
sd
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LFSR: Example

D D D D0123 output

Time D3 D2 D1 D0

0 1 1 0 1
1 1 1 1 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 1
6 1 0 0 0
7 0 1 0 0
8 0 0 1 0
9 1 0 0 1
10 1 1 0 0
11 0 1 1 0
12 1 0 1 1
13 0 1 0 1
14 1 0 1 0
15 1 1 0 1
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LFSR: State transition

Control bits: a0, a1, . . . , ad−1.
State: s= (s0, s1, . . . , sd−1).
Each clock pulse changes the state as follows:

t0 = s1

t1 = s2
...

td−2 = sd−1

td−1 = a0s0 + a1s1 + a2s2 + · · · + ad−1sd−1 (mod 2).

In the matrix notationt = ∆Ls (mod 2), where thetransition matrix is

∆L =

































0 1 0 · · · 0 0
0 0 1 · · · 0 0
... ... ... · · · ... ...
0 0 0 · · · 0 1
a0 a1 a2 · · · ad−2 ad−1

































.
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LFSR (contd)

The output bit-stream behaves like a pseudorandom sequence.

The output stream must be periodic. The period should be large.

Maximum period of a non-zero bit-stream =2d − 1.

Maximum-length LFSR has the maximum period.

Connection polynomial

CL(x) = 1 + ad−1x + ad−2x
2 + · · · + a1x

d−1 + a0x
d ∈ F2[X ].

L is a maximum-length LFSR if and only ifCL(x) is a primitive polynomial ofF2[x].
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An attack on LFSR

Because of the linear relation of the feedback bit as a function of the current state,
LFSRs are vulnerable to several attacks.

Berlekamp-Massey attack

Suppose that the bitsmi andci for 2d consecutive values ofi (say,1, 2, . . . , 2d) are
known to an attacker. Thenki = mi ⊕ ci are also known for these values ofi. Define
the statesSi = (ki, ki+1, . . . , ki+d−1) of the LFSR. We then have

Si+1 = ∆LSi (mod 2)

for i = 1, 2, . . . , d. Treat eachSi as a column vector. We then have

( S2 S3 · · · Sd+1 ) = ∆L ( S1 S2 · · · Sd ) (mod 2)

This reveals∆L and consequently the secreta0, a1, . . . , ad−1 with high probability.

Remedy: Introduce non-linearity to the LFSR output.
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Nonlinear combination generator

LFSR
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The Geffe generator

u
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Nonlinear filter generator

Feedback function

Output

F
ee

db
ac

k

Nonlinear filter function

. . .
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Hash functions

Collision resistance implies second pre-image resistance.

Second pre-image resistance does not imply collision resistance: Let S be a finite set
of size> 2 and letH be a cryptographic hash function. Then

H ′(x) =















0n+1 if x ∈ S,
1 ||H(x) otherwise,

is second pre-image resistant but not collision resistant.

Collision resistance does not imply first pre-image resistance: Let H be ann-bit cryp-
tographic hash function. Then

H ′′(x) =











0 ||x if |x| = n,
1 ||H(x) otherwise.

is collision resistant (so second pre-image resistant), but not first pre-image resistant.

First pre-image resistance does not imply second pre-imageresistance: Let m be a
product of two unknown big primes. DefineH ′′′(x) = (1 ||x)2 (mod m). H ′′′ is first
pre-image resistant, but not second pre-image resistant.
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Hash functions: Construction

Compression function: A functionF : Z
m
2 → Z

n
2 , wherem = n + r.

Merkle-Damgård’s meta method

Break the inputx = x1x2 . . . xl to blocks each of bit-lengthr.
Initialize h0 = 0r.
For i = 1, 2, . . . , l use compressionhi = F (hi−1 || xi).
OutputH(x) = hl as the hash value.

F F FF
h

x x x x. . .
1 2 3 l

0 −1h2 3h l hl. . .
h1h
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Hash functions: Construction (contd)

Properties

If F is first pre-image resistant, thenH is also first pre-image resistant.

If F is collision resistant, thenH is also collision resistant.

A concrete realization

Let f is a block cipher of block-sizen and key-sizer. Take:

F (M || K) = fK(M).

Keyed hash function

HMAC(M) = H(K ||P ||H(K ||Q ||M)), whereH is an unkeyed hash function,K
is a key andP,Q are short padding strings.
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Custom-designed hash functions

The SHA (Secure Hash Algorithm) family:
SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).

The MD family:
MD2 (128-bit), MD5 (128-bit).

The RIPEMD family:
RIPEMD-128 (128-bit), RIPEMD-160 (160-bit).
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Attacks on hash functions

The birthday attack is based on the birthday paradox. For ann-bit hash function,
one needs to compute on an average2n/2 hash values in order to detect (with high
probability) a collision for the hash function.

For cryptographic applications one requiresn > 128 (n > 160 is preferable).

Algebraic attacks may make hash functions vulnerable.

Some other attacks:

Pseudo-collision attacks
Chaining attacks
Attacks on the underlying cipher
Exhaustive key search for keyed hash functions
Long message attacks
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Part III

Public-key cryptosystems
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Intractable problems

Public-key cryptography is based ontrapdoor one-way functions. It should be easy
to encrypt a message or verify a signature, but inverting thetransform (decryption or
signature generation) should be difficult, unless some secret information (the trapdoor)
is known.

Several difficult computational problems are used to build the trapdoors. Examples:

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite fields, elliptic and

hyperelliptic curves, class group of number fields, etc.)
Finding shortest/closest vectors in a lattice
Solving the subset sum problem
Finding roots of non-linear multivariate polynomial equations
Solving the braid conjugacy problem
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Intractable problems (contd)

Many sophisticated algorithms are proposed to break the trapdoor functions. Most of
these are fully exponential.Subexponential algorithmsare sometimes known.

For suitably chosen domain parameters these algorithms take infeasible time.

No non-trivial lower bounds on the complexity of these computational problems are
known. Even existence of polynomial-time algorithms cannot be often ruled out.
However, studies over several decades (or even centuries) failed to discover practi-
cal algorithms.

Certain special cases have been discovered to be cryptographically weak. For practical
designs, it is essential to avoid these special cases.

Polynomial-time quantum algorithms are known for factoring integers and computing
discrete logarithms in finite fields.
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Introduction to number theory

Common sets

N = {1, 2, 3, . . .} (Natural numbers)
N0 = {0, 1, 2, 3, . . .} (Non-negative integers)
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (Integers)
P = {2, 3, 5, 7, 11, 13, . . .} (Primes)

Divisibility: a | b if b = ac for somec ∈ Z.

Corollary: If a | b, then|a| 6 |b|.

Theorem: There are infinitely many primes.

Euclidean division: Let a, b ∈ Z with b > 0. There exist uniqueq, r ∈ Z with
a = qb + r and0 6 r < b.

Notations: q = a quot b, r = a rem b.
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GCD (Greatest common divisor)

Let a, b ∈ Z, not both zero. Thend ∈ N is called the gcd ofa andb, if:

(1) d | a andd | b.

(2) If d′ | a andd′ | b, thend′ | d.

We denoted = gcd(a, b).

Euclidean gcd: gcd(a, b) = gcd(b, a rem b) (for b > 0).

Extended gcd:Let a, b ∈ Z, not both zero. There existu, v ∈ Z such that

gcd(a, b) = ua + vb.
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Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

gcd(899, 319) = 29

Extended gcd computation

29 = 261 − 4 × 58

= 261 − 4 × (319 − 1 × 261) = (−4) × 319 + 5 × 261

= (−4) × 319 + 5 × (899 − 2 × 319) = 5 × 899 + (−14) × 319.
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Modular arithmetic

Let n ∈ N. DefineZn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (mod n) =











a + b if a + b < n
a + b − n if a + b > n

Subtraction: a − b (mod n) =











a − b if a > b
a − b + n if a < b

Multiplication: ab (mod n) = (ab) rem n.

Inverse: a ∈ Zn is calledinvertiblemodulon if (ua) rem n = 1 for someu ∈ Zn.

Theorem: a ∈ Zn is invertible modulon if and only if gcd(a, n) = 1. In this case
extended gcd givesua+ vn = 1. We may take0 6 u < n. We haveu = a−1 (mod n).
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Example of modular arithmetic

Taken = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, soa + b (mod n) = 344 − 257 = 87.

Subtraction: a − b = −90 < 0, soa − b (mod n) = −90 + 257 = 167.

Multiplication: ab (mod n) = (127 × 217) rem 257 = 27559 rem 257 = 60.

Inverse: gcd(b, n) = 1 = (−45)b + 38n, sob−1 (mod n) = −45 + 257 = 212.

Division: a/b (mod n) = ab−1 (mod n) = (127 × 212) rem 257 = 196.
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Modular exponentiation

Let n ∈ N, a ∈ Zn ande ∈ N0. To computeae (mod n).

Slow algorithm

Computea, a2, a3, . . . , ae successively by multiplying witha modulon.

Example: n = 257, a = 127, e = 217.

a2 = a × a = 195 (mod n),

a3 = a2 × a = 195 × 127 = 93 (mod n),

a4 = a3 × a = 93 × 127 = 246 (mod n),

· · ·
a216 = a215 × a = 131 × 127 = 189 (mod n),

a217 = a216 × a = 189 × 127 = 102 (mod n).
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Modular exponentiation (contd)

Fast algorithm

Binary representation:e = (el−1el−2 . . . e1e0)2 = el−12
l−1+el−22

l−2+ · · ·+e12
1+e02

0.

ae =
(

a2l−1
)el−1

(

a2l−2
)el−2 · · ·

(

a21
)e1

(

a20
)e0

(mod n).

Computea, a2, a22
, a23

, . . . , a2l−1
and multiply thosea2i

modulon for which ei = 1.

Also for i > 1, we havea2i
=

(

a2i−1
)2

(mod n).

Example: n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. Soae = a27
a26

a24
a23

a20
(mod n).

a2 = 195 (mod n), a22
= (195)2 = 246 (mod n), a23

= (246)2 = 121 (mod n),
a24

= (121)2 = 249 (mod n), a25
= (249)2 = 64 (mod n), a26

= (64)2 = 241 (mod n)

anda27
= (241)2 = 256 (mod n).

ae = 256 × 241 × 249 × 121 × 127 = 102 (mod n).
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Euler totient function

Let n ∈ N. DefineZ
∗
n = {a ∈ Zn | gcd(a, n) = 1}. ThusZ

∗
n is the set of all elements

of Zn that are invertible modulon.

Call φ(n) = |Z∗
n|.

Example: If p is a prime, thenφ(p) = p − 1.

Example: Z6 = {0, 1, 2, 3, 4, 5}. We havegcd(0, 6) = 6, gcd(1, 6) = 1, gcd(2, 6) = 2,
gcd(3, 6) = 3, gcd(4, 6) = 2, andgcd(5, 6) = 1. SoZ

∗
6 = {1, 5}, i.e.,φ(6) = 2.

Theorem: Let n = pe1
1 · · · per

r with distinct primespi ∈ P and withei ∈ N. Then

φ(n) = n








1 − 1

p1








· · ·








1 − 1

pr








= n

∏

p | n








1 − 1

p








.

Fermat’s little theorem: Let p ∈ P anda ∈ Z with p 6 | a. Thenap−1 = 1 (mod p).

Euler’s theorem: Let n ∈ N anda ∈ Z with gcd(a, n) = 1. Thenaφ(n) = 1 (mod n).
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Multiplicative order

Let n ∈ N anda ∈ Z
∗
n. Defineordn a to be the smallest of thepositiveintegersh for

whichah = 1 (mod n).

Example: n = 17, a = 2. a1 = 2 (mod n), a2 = 4 (mod n), a3 = 8 (mod n),
a4 = 16 (mod n), a5 = 15 (mod n), a6 = 13 (mod n), a7 = 9 (mod n), and
a8 = 1 (mod n). Soord17 2 = 8.

Theorem: ak = 1 (mod n) if and only if ordn a | k.

Theorem: Let h = ordn a. Thenordn ak = h/ gcd(h, k).

Theorem: ordn a | φ(n).
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Primitive root

If ordn a = φ(n), thena is called a primitive root modulon.

Theorem (Gauss): An integer n > 1 has a primitive root if and only ifn =
2, 4, pe, 2pe, wherep is an odd prime ande ∈ N.

Example: 3 is a primitive root modulo the primen = 17:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3k (mod 17) 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Example: n = 2 × 32 = 18 has a primitive root5 with orderφ(18) = 6:

k 0 1 2 3 4 5 6
5k (mod 18) 1 5 7 17 13 11 1

Example: n = 20 = 22 × 5 does not have a primitive root. We haveφ(20) = 8,
and the orders of the elements ofZ

∗
20 areord20 1 = 1, ord20 3 = ord20 7 = ord20 13 =

ord20 17 = 4, andord20 9 = ord20 19 = 2.
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Discrete logarithm

Let p ∈ P, g a primitive root modulop, anda ∈ {1, 2, . . . , p − 1}. Then there exists a
unique integerx ∈ {0, 1, 2, . . . , p − 2} such thatgx = a (mod p). We callx the index
or discrete logarithmof a to the baseg. We denote this byx = indg a.

Indices follow arithmetic modulop − 1.

indg(ab) = indg a + indg b (mod p − 1),

indg(a
e) = e indg a (mod p − 1).

Example: Takep = 17 andg = 3.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ind3 a 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

ind3 6 = 15 and ind3 11 = 7. Since6 × 11 = 15 (mod 17), we haveind3 15 =
ind3 6 + ind3 11 = 15 + 7 = 6 (mod 16).
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The most common intractable problems of cryptography

Integer factorization problem (IFP): Given n ∈ N, compute the complete prime
factorization ofn. Suppose there is an algorithmA that computes a non-trivial factor
of n. We can useA repeatedly in order to compute the complete factorization of n. If
n = pq (with p, q ∈ P), then computing a single prime factor (p or q) of n suffices.

Example

Input: n = 85067.
Output: 85067 = 257 × 331.

Discrete logarithm problem (DLP): Let p ∈ P and g a primitive root modulop.
Givena ∈ Z

∗
p, computeindg a.

Example

Input: p = 17, g = 3, a = 11.
Output: indg a = 7.
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Intractable problems (contd)

IFP and DLP are believed to be computationally very difficult.

The best known algorithms for IFP and DLP are subexponential.

IFP is the inverse of the integer multiplication problem.

DLP is the inverse of the modular exponentiation problem.

Integer multiplication and modular exponentiation are easy computational problems.
They are believed to be one-way functions.

There is, however, no proof that IFP and DLP must be difficult.

Efficient quantum algorithms exist for solving IFP and DLP.

IFP and DLP are believed to be computationally equivalent.
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Intractable problems (contd)

Diffie-Hellman problem (DHP): Let p ∈ P andg a primitive root modulop. Given
gx andgy modulop, computegxy modulop.

Example

Input: p = 17, g = 3, gx = 11 (mod p) andgy = 13 (mod p).
Output: gxy = 4 (mod p).
(x = 7, y = 4, i.e.,xy = 28 = 12 (mod p − 1), i.e.,gxy = 312 = 4 (mod p).)

DHP is another believably difficult computational problem.

If DLP can be solved, then DHP can be solved (gxy = (gx)y).

The converse is only believed to be true.
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RSA encryption

Key generation

The recipient generates two random large primesp, q, computesn = pq andφ(n) =
(p − 1)(q − 1), finds a random integere with gcd(e, φ(n)) = 1, and determines an
integerd with ed = 1 (mod φ(n)).

Public key: (n, e).
Private key: (n, d).

Encryption

Input: Plaintext messagem ∈ Zn and the recipient’s public key(n, e).
Output: Ciphertext messagec = me (mod n).

Decryption

Input: Ciphertext messagec and the recipient’s private key(n, d).
Output: Plaintext messagem = cd (mod n).
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Example of RSA encryption

Let p = 257, q = 331, so thatn = pq = 85067 andφ(n) = (p − 1)(q − 1) = 84480.
Takee = 7, so thatd = e−1 = 60343 (mod φ(n)).

Public key: (85067, 7).
Private key: (85067, 60343).

Let m = 34152. Thenc = me = (34152)7 = 53384 (mod n).

Recoverm = cd = (53384)60343 = 34152 (mod n).

Decryption by an exponentd′ other thand does not give backm. For example, take
d′ = 38367. We havem′ = cd′ = (53384)38367 = 71303 (mod n).
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Why RSA works?

Assume thatm ∈ Z
∗
n. By Euler’s theoremmφ(n) = 1 (mod n).

Now ed = 1 (mod φ(n)), i.e.,ed = 1 + kφ(n) for some integerk. Therefore,

cd = med = m1+kφ(n) = m ×
(

mφ(n)
)k

= m × (1)k = m (mod n).

Note: The message can be recovered uniquely even whenm /∈ Z
∗
n.
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RSA signature

Key generation

The signer generates two random large primesp, q, computesn = pq andφ(n) =
(p − 1)(q − 1), finds a random integere with gcd(e, φ(n)) = 1, and determines an
integerd with ed = 1 (mod φ(n)).

Public key: (n, e).
Private key: (n, d).

Signature generation

Input: Messagem ∈ Zn to be signed and the signer’s private key(n, d).
Output: The signed message(m, s), wheres = md (mod n).

Signature verification

Input: Signed message(m, s) and the signer’s public key(n, e).
Output: “Signature verified” ifse = m (mod n),

“Signature not verified” ifse 6= m (mod n).
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Example of RSA signature

Let p = 257, q = 331, so thatm = pq = 85067 andφ(n) = (p − 1)(q − 1) = 84480.
Takee = 19823, so thatd = e−1 = 71567 (mod φ(n)).

Public key:(85067, 19823).
Private key:(85067, 71567).

Let m = 3759 be the message to be signed. Generates = md = 13728 (mod n). The
signed message is(3759, 13728).

Verification of(m, s) = (3759, 13728) involves the computation ofse = (13728)19823 =
3759 (mod n). Since this equalsm, the signature is verified.

Verification of a forged signature(m, s) = (3759, 42954) givesse = (42954)19823 =
22968 (mod n). We havese 6= m (mod n), i.e., the forged signature is not verified.
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Security of RSA

If n can be factored,φ(n) can be computed and sod can be determined frome by
extended gcd computation. Onced is known, any ciphertext can be decrypted and any
signature can be forged.

At present no method (other than factoringn) is known to decrypt RSA-encrypted
messages or forge RSA signatures.

We say that RSA derives its security from the intractabilityof the IFP.

If e, d, n are known, there exists a probabilistic polynomial-time algorithm to factorn.
So RSA key inversion is as difficult as IFP. But RSA decryptionor signature forging
without the knowledge ofd may beeasier than factoringn.

In practice, we require the size ofn to be> 1024 bits with each ofp, q having nearly
half the size ofn, in order to achieve a decent level of security.
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Diffie-Hellman key exchange

Alice and Bob decide about a primep and a primitive rootg modulop.

Alice generates a randoma ∈ {2, 3, . . . , p − 2} and sendsga (mod p) to Bob.

Bob generates a randomb ∈ {2, 3, . . . , p − 2} and sendsgb (mod p) to Alice.

Alice computesgab = (gb)a (mod p).

Bob computesgab = (ga)b (mod p).

The quantitygab (mod p) is the secret shared by Alice and Bob.
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Example of Diffie-Hellman key exchange

Alice and Bob first takep = 91573, g = 67.

Alice generatesa = 39136 and sendsga = 48745 (mod p) to Bob.

Bob generatesb = 8294 and sendsgb = 69167 (mod p) to Alice.

Alice computes(69167)39136 = 71989 (mod p).

Bob computes(48745)8294 = 71989 (mod p).

The secret shared by Alice and Bob is71989.
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Security of DH key exchange

An eavesdropper knowsp, g, ga, gb and desires to computegab (mod p), that is, the
eavesdropper has to solve the DHP.

If discrete logs can be computed inZ∗
p, thena can be computed fromga and one

subsequently obtainsgab = (gb)a (mod p). So algorithms for solving the DLP can be
used to break DH key exchange.

Breaking DH key exchangemay beeasier than solving the DLP.

At present no method other than computing discrete logs inZ
∗
p is known to break DH

key exchange.

Practically, we requirep to be of size> 1024 bits. The security does not depend on
the choice of the primitive elementg. However,a andb must be sufficiently randomly
chosen.
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ElGamal encryption

Key generation

The recipient selects a random big primep and a primitive rootg modulop, chooses a
randomd ∈ {2, 3, . . . , p − 2}, and computesy = gd (mod p).

Public key: (p, g, y).
Private key: (p, g, d).

Encryption

Input: Plaintext messagem ∈ Zp and the recipient’s public key(p, g, y).
Output: Encrypted message(s, t).
Computation:

Generate a random integerd′ ∈ {2, 3, . . . , p − 2}.
Computes = gd′ (mod p) andt = myd′ (mod p).

Decryption

Input: Encrypted message(s, t) and the recipient’s private key(p, g, d).
Output: The recovered plaintext messagem = ts−d (mod p).



"

#

!

 

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 79

Correctness of ElGamal encryption

We haves = gd′ (mod p) and t = myd′ = m(gd)d
′

= mgdd′ (mod p). Therefore,
m = tg−dd′ = t(gd′)−d = ts−d (mod p).

Example of ElGamal encryption

Takep = 91573 andg = 67. The recipient choosesd = 23632 and soy = (67)23632 =
87955 (mod p).

Let m = 29485 be the message to be encrypted. The sender choosesd′ = 1783 and
computess = gd′ = 52958 (mod p) andt = myd′ = 1597 (mod p).

The recipient retrievesm = ts−d = 1597 × (52958)−23632 = 29485 (mod p).
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Security of ElGamal encryption

An eavesdropper knowsg, p, y, s, t, wherey = gd (mod p) ands = gd′ (mod p).
Determiningm from (s, t) is equivalent to computinggdd′ (mod p), sincet = mgdd′.
(Herem is masked by the quantitygdd′ (mod p).) Butd, d′ are unknown to the attacker.
So the ability to solve the DHP lets the eavesdropper break ElGamal encryption.

Practically, we requirep to be of size> 1024 bits for achieving a good level of security.
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ElGamal signature

Key generation

Like ElGamal encryption, one choosesp, g and computes a key-pair(y, d) where
y = gd (mod p). The public key is(p, g, y), and the private key is(p, g, d).

Signature generation

Input: Messagem ∈ Zp to be signed and the signer’s private key(p, g, d).
Output: The signed message(m, s, t).
Computation:

Generate a random session keyd′ ∈ {2, 3, . . . , p − 2}.
Computes = gd′ (mod p) andt = d′−1(H(m) − dH(s)) (mod p − 1).

Signature verification

Input: A signed message(m, s, t) and the signer’s public-key(p, g, y).
Computation:

Seta1 = gH(m) (mod p) anda2 = yH(s)st (mod p).
Output “signature verified” if and only ifa1 = a2.
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Correctness of ElGamal Signature

H(m) = dH(s) + td′. Soa1 = gH(m) = (gd)H(s)(gd′)t = yH(s)st = a2 (mod p).

Example of ElGamal Signature

Takep = 104729 andg = 89. The signer chooses the private exponentd = 72135 and
soy = gd = 98771 (mod p).

Let m = 23456 be the message to be signed. The signer chooses the session expo-
nentd′ = 3951 and computess = gd′ = 14413 (mod p) and t = d′−1(m − ds) =
(3951)−1(23456 − 72135 × 14413) = 17515 (mod p − 1).

Verification involves computation ofa1 = gm = 29201 (mod p) anda2 = ysst =
(98771)14413 × (14413)17515 = 29201 (mod p). Sincea1 = a2, the signature is verified.

A forger may choose any randomd′ (say,3951 as above) and can computes = gd′ =
14413 (mod p). But computation oft involves d which is unknown to the forger.
So the forger randomly selectst = 81529. Verification of this forged signature gives
a1 = gm = 29201 (mod p) as above. Buta2 = ysst = (98771)14413 × (14413)81529 =
85885 (mod p), i.e.,a1 6= a2, and the forged signature is not verified.
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Security of ElGamal signatures

Computation ofs can be done by anybody. However, computation oft involves the
signer’s private exponentd. If the forger can solve the DLP modulop, thend can be
computed from the public-keyy, and the correct signature can be generated.

The primep should be large (of bit-size> 1024) in order to preclude this attack.
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Some other encryption algorithms

Encryption algorithm Security depends on
Rabin encryption Square-root problem
Goldwasser-Micali encryptionQuadratic residuosity problem
Blum-Goldwasser encryptionSquare-root problem
Chor-Rivest encryption Subset sum problem
XTR DLP
NTRU Closest vector problem in lattices
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Some other digital signature algorithms

Signature algorithm Security depends on
Rabin signature Square-root problem
Schnorr signature DLP
Nyberg-Rueppel signature DLP
Digital signature algorithm (DSA) DLP
Elliptic curve version of DSA (ECDSA)DLP in elliptic curves
XTR signature DLP
NTRUSign Closest vector problem in lattices
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Blind signatures

A signer Bob signs a messagem without knowingm.

Blind signatures insure anonymity in electronic payment schemes.

Chaum’s blind RSA signature

Input: A messageM generated by Alice.
Output: Bob’s blind RSA signature onM .
Steps:

Alice gets Bob’s public-key(n, e).
Alice computesm = H(M) ∈ Zn.
Alice sends to Bob the masked messagem′ = ρem (mod n) for a randomρ.
Bob sends the signatureσ = m′d (mod n) back to Alice.
Alice computes Bob’s signatures = ρ−1σ (mod n) onM .

Correctness: Assume thatρ ∈ Z
∗
n. Sinceed = 1 (mod φ(n)), we haveσ = m′d =

(ρem)d = ρedmd = ρmd (mod n). Therefore,s = ρ−1σ = md = H(M)d (mod n).
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Undeniable signatures

An active participation of the signer is necessary during signature verification.

A signer is not allowed to deny a legitimate signature made byhim.

An undeniable signature comes with adenial or disavowal protocol that generates
one of the following three outputs:

Signature verified
Signature forged
The signer is trying to deny his signature by not properly participating

in the protocol.

Examples

Chaum-van Antwerpen undeniable signature scheme
RSA-based undeniable signature scheme
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Challenge-response authentication

Alice wants to prove to Bob her knowledge of the private keyd in the key-pair(e, d).

Bob generates a random bit stringr and computesw = H(r).

Bob reads Alice’s public keye and computesc = fe(r, e).

Bob sends the challenge(w, c) to Alice.

Alice computesr′ = fd(c, d).

If H(r′) 6= w, Alice quits the protocol.

Alice sends the responser′ to Bob.

Bob accepts Alice’s identity if and only ifr′ = r.

Correctness: Bob checks whether Alice can correctly decrypt the challenge c. Bob
sendsw as awitnessof his knowledge ofr. Before sending the decrypted plaintext
r′, Alice confirms that Bob actually knows the plaintextr.
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The Guillou-Quisquater zero-knowledge protocol

Alice generates an RSA-based exponent-pair(e, d) under the modulusn.

Alice chooses a randomm ∈ Z
∗
n and computess = m−d (mod n). Alice makesm

public and keepss secret. Alice tries to prove to Bob her knowledge of the secret s.

The protocol

Alice selects a randomc ∈ Z
∗
n. [Commitment]

Alice computes and sends to Bobw = ce (mod n). [Witness]
Bob selects and sends to Alice a randomǫ ∈ {1, 2, . . . , e}. [Challenge]
Alice computes and sends to Bobr = csǫ (mod n). [Response]
Bob computesw′ = mǫre (mod n).
Bob accepts Alice’s identity if and only ifw′ 6= 0 andw′ = w.
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The Guillou-Quisquater zero-knowledge protocol (contd)

Correctness

w′ = mǫre = mǫ(csǫ)e = mǫ(cm−dǫ)e = (m1−ed)ǫce = ce = w (mod n).

Security

The quantitysǫ is blinded by the random commitmentc.

As a witness forc, Alice presents its encrypted versionw.

Bob (or an eavesdropper) cannot decryptw to computec and subsequentlysǫ.

An eavesdropper’s guess aboutǫ is successful with probability1/e.

The checkw′ 6= 0 precludes the casec = 0 which lets a claimant succeed always.
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Digital certificates: Introduction

Bind public-keys to entities.

Required to establish the authenticity of public keys.

Guard against malicious public keys.

Promote confidence in using others’ public keys.

Require aCertification Authority (CA) whom every entity over a network can be-
lieve. Typically, a government organization or a reputed company can be a CA.

In case a certificate is compromised, one requires to revoke it.

A revoked certificate cannot be used to establish the authenticity of a public key.
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Digital certificates: Contents

A digital certificate contains particulars about the entitywhose public key is to be
embedded in the certificate. It contains:

Name, address and other personal details of the entity.

The public key of the entity. The key pair may be generated by either the entity
or the CA. If the CA generates the key pair, then the private key is handed over
to the entity by trusted couriers.

The certificate is digitally signed by the private key of the CA.

If signatures cannot be forged, nobody other than the CA can generate a valid certifi-
cate for an entity.
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Digital certificates: Revocation

A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity’s private key

An invalid certificate is revoked by the CA.

Certificate Revocation List (CRL ): The CA maintains a list of revoked certificates.

If Alice wants to use Bob’s public key, she obtains the certificate for Bob’s public key.
If the CA’s signature is verified on this certificate and if thecertificate is not found in
the CRL, then Alice gains the desired confidence to use Bob’s public key.
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Part IV

Public-key cryptanalysis
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Integer factoring algorithms

Let n be the integer to be factored.

Older algorithms

• Trial division (efficient if all prime divisors ofn are small)

• Pollard’s rho method

• Pollard’sp − 1 method (efficient ifp − 1 has only small prime factors for some
prime divisorp of n)

• Williams’ p + 1 method (efficient ifp + 1 has only small prime factors for some
prime divisorp of n)

In the worst case these algorithms take exponential (inlog n) running time.
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Modern algorithms

Subexponential running time:L(n, ω, c) = exp
[

(c + o(1))(ln n)ω(ln ln n)1−ω
]

.

If w = 0, L(n, ω, c) is polynomial inln n.
If w = 1, L(n, ω, c) is exponential inln n.
For 0 < ω < 1, L(n, ω, c) is between polynomial and exponential.

Examples

Algorithm Inventor(s) Running time
Continued fraction method (CFRAC)Morrison & Brillhart (1975) L(n, 1/2, c)

Quadratic sieve method (QSM) Pomerance (1984) L(n, 1/2, 1)

Cubic sieve method (CSM) Reyneri L(n, 1/2, 0.816)

Elliptic curve method (ECM) H. W. Lenstra (1987) L(n, 1/2, c)

Number field sieve method (NFSM)A. K. Lenstra, H. W. Lenstra,L(n, 1/3, 1.923)

Manasse & Pollard (1990)
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Most modern integer factoring algorithms are based on Fermat’s idea of writing a
multiple ofn as the difference of two squares.

Examples

Taken = 899. Thenn = 900 − 1 = 302 − 12 = (30 − 1) × (30 + 1) = 29 × 31.

Then taken = 833. It is not immediate how we can writen as the difference of two
squares. But3× 833 = 2499 = 2500− 1 = 502 − 12 = (50− 1) × (50 + 1) = 49 × 51.
We havegcd(50 − 1, 833) = 49, a non-trivial factor of833.

Objective

We try to find integersx, y ∈ Zn such thatx2 = y2 (mod n). Unlessx = ±y (mod n),
gcd(x − y, n) is a non-trivial divisor ofn.

If n is composite, then for a randomly chosen pair(x, y) with x2 = y2 (mod n), the
probability thatx 6= ±y (mod n) is at least1/2.
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The quadratic sieve method (QSM)

Let n be an odd integer with no small prime factors. LetH = ⌈√n ⌉ andJ = H2 −n.
For small integersc > 0 we have(H + c)2 = J + 2Hc + c2 (mod n). We try to factor
T (c) = J + 2Hc + c2 completely over small primesp1, p2, . . . , pt. If the factorization
is successful, we get arelation:

(H + c)2 = pα1
1 pα2

2 · · · pαt
t (mod n).

The left side is already a square. The right side is also a square if eachαi is even. But
this is very rare. So we collect many relations:

Relation 1: (H + c1)
2 = pα11

1 pα12
2 · · · pα1t

t

Relation 2: (H + c2)
2 = pα21

1 pα22
2 · · · pα2t

t

· · ·
Relationr: (H + cr)

2 = pαr1
1 pαr2

2 · · · pαrt
t















































(mod n).
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Let β1, β2, . . . , βr ∈ {0, 1}. Consider the product of theβi-th powers of Relationsi.

[

(H + c1)
β1(H + c2)

β2 · · · (H + cr)
βr
]2

= pγ1
1 pγ2

2 · · · pγt
t (mod n).

Again the left side is a square. By tuningβ1, β2, . . . , βr we force eachγi to be even.
We have:

α11β1 + α21β2 + · · · + αr1βr = γ1,

α12β1 + α22β2 + · · · + αr2βr = γ2,

· · ·
α1tβ1 + α2tβ2 + · · · + αrtβr = γt.

This is a system oft linear equations inr unknown quantitiesβ1, β2, . . . , βr. Since
eachγi is required to be even, and since eachβi ∈ {0, 1}, we solve the following
system modulo2:
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























α11 α21 · · · αr1

α12 α22 · · · αr2
... ... · · · ...

α1t α2t · · · αrt

















































β1

β2
...
βt

























=

























0
0
...
0

























(mod 2).

For r > t, we hope to obtain non-zero solutions forβ1, β2, . . . , βr. For each such
solution we take

x = (H + c1)
β1(H + c2)

β2 · · · (H + cr)
βr (mod n),

y = p
γ1/2
1 p

γ2/2
2 · · · pγt/2

t (mod n).

If x 6= ±y (mod n), thengcd(x − y, n) yields a non-trivial factor ofn.

Let p be a small prime. The conditionp | T (c) implies (H + c)2 = n (mod p). That
is, if n is not a square modulop, thenp does not divideT (c) for any value ofc. So it
suffices to consider only the small primesp modulo whichn is a square.
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Example of QSM

n = 7116491.

H = ⌈√n ⌉ = 2668.

As the factor base we take all primes< 100 modulo whichn is a square. This gives:

B = {2, 5, 7, 17, 29, 31, 41, 59, 61, 67, 71, 79, 97}.

t = 13.

We also taker = 13. In practice, one takesr ≈ 2t.

The following relations are obtained.
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Relation 1: (H + 3)2 = 2 × 53 × 71
Relation 2: (H + 8)2 = 5 × 7 × 31 × 41
Relation 3: (H + 49)2 = 2 × 412 × 79
Relation 4: (H + 64)2 = 7 × 292 × 59
Relation 5: (H + 81)2 = 2 × 5 × 72 × 29 × 31
Relation 6: (H + 109)2 = 2 × 7 × 17 × 41 × 61
Relation 7: (H + 128)2 = 53 × 71 × 79
Relation 8: (H + 145)2 = 2 × 712 × 79
Relation 9: (H + 182)2 = 172 × 592

Relation 10:(H + 228)2 = 52 × 72 × 17 × 61
Relation 11:(H + 267)2 = 2 × 72 × 17 × 29 × 31
Relation 12:(H + 382)2 = 7 × 59 × 67 × 79
Relation 13:(H + 411)2 = 2 × 54 × 31 × 61







































































































































































































(mod n).
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We get the linear system:


































































































1 0 1 0 1 1 0 1 0 0 1 0 1
3 1 0 0 1 0 3 0 0 2 0 0 4
0 1 0 1 2 1 0 0 0 2 2 1 0
0 0 0 0 0 1 0 0 2 1 1 0 0
0 0 0 2 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 1
0 1 2 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 2 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 2 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0





































































































































































































β1

β2

β3

β4

β5

β6

β7

β8

β9

β10

β11

β12

β13



































































































=



































































































0
0
0
0
0
0
0
0
0
0
0
0
0



































































































(mod 2).

This system has16 solutions. These solutions and the corresponding values ofx, y
andgcd(x − y, n) are given in the next slide. We obtainn = 1847 × 3853.
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β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 x y gcd(x − y, n)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 7116491
1 0 1 0 0 0 1 0 0 0 0 0 0 1755331 560322 1847
0 0 1 0 0 0 0 1 0 0 0 0 0 526430 459938 1847
1 0 0 0 0 0 1 1 0 0 0 0 0 7045367 7045367 7116491
0 0 0 0 0 0 0 0 1 0 0 0 0 2850 1003 1847
1 0 1 0 0 0 1 0 1 0 0 0 0 6916668 6916668 7116491
0 0 1 0 0 0 0 1 1 0 0 0 0 5862390 5862390 7116491
1 0 0 0 0 0 1 1 1 0 0 0 0 3674839 6944029 1847
0 1 0 0 1 1 0 0 0 0 1 0 1 1079130 3965027 3853
1 1 1 0 1 1 1 0 0 0 1 0 1 5466596 1649895 1
0 1 1 0 1 1 0 1 0 0 1 0 1 5395334 1721157 1
1 1 0 0 1 1 1 1 0 0 1 0 1 6429806 3725000 3853
0 1 0 0 1 1 0 0 1 0 1 0 1 1196388 5920103 1
1 1 1 0 1 1 1 0 1 0 1 0 1 1799801 3818773 3853
0 1 1 0 1 1 0 1 1 0 1 0 1 5081340 4129649 3853
1 1 0 0 1 1 1 1 1 0 1 0 1 7099266 17225 1
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Algorithms for computing discrete logarithms

Suppose that we want to compute the discrete logarithm ofa in Z
∗
p with respect to the

primitive rootg.

Older algorithms

• Brute-force search

• Shanks’ Baby-step-giant-step method

• Pollard’s rho method

• Pollard’s lambda method

• Pohlig-Hellman method (Efficient ifp − 1 has only small prime divisors)

In the worst case, these algorithms are exponential inlog p.



"

#

!

 

Computer Science & Engineering, IIT Kharagpur

Dr. Abhijit Das Introduction to cryptography Slide 106

Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:L(p, ω, c) = exp
[

(c + o(1))(ln p)ω(ln ln p)1−ω
]

.

Examples

Algorithm Inventor(s) Running time
Basic ICM Western & Miller (1968) L(p, 1/2, c)
Linear sieve method (LSM) Coppersmith, Odlyzko
Residue list sieve method & Schroeppel (1986) L(p, 1/2, 1)
Gaussian integer method
Cubic sieve method (CSM) Reyneri L(p, 1/2, 0.816)
Number field sieve method (NFSM) Gordon (1993) L(p, 1/3, 1.923)
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The basic index calculus method

Suppose we want to computeindg a in Z
∗
p.

Precomputation stage

Let B = {p1, p2, . . . , pt} comprise the firstt primes.B is called thefactor base.

In this stage, we compute the discrete logsdi = indg pi for i = 1, 2, . . . , t.

Generate randomj ∈ {1, 2, . . . , p − 2} and computegj (mod p). If this quantity
factors completely overB, we get arelation:

gj = pα1
1 pα2

2 · · · pαt
t (mod p).

Taking discrete logarithm we get:

j = α1d1 + α2d2 + · · · + αtdt (mod p − 1).

This is a linear equation (modulop − 1) in t unknown quantitiesd1, d2, . . . , dt.
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Generater > t relations for different values ofj:

Relation 1: j1 = α11d1 + α12d2 + · · · + α1tdt

Relation 2: j2 = α21d1 + α22d2 + · · · + α2tdt

· · ·
Relationr: jr = αr1d1 + αr2d2 + · · · + αrtdt















































(mod p − 1).

Solve the system modulop − 1 to determine the unknown indicesd1, d2, . . . , dt.

The second stage

Again we choose randomj and try to factoragj (mod p) completely overB. If the
factorization is successful, we have:

agj = pβ1
1 pβ2

2 · · · pβt
t (mod p), i.e.,

indg a = −j + β1d1 + β2d2 + · · · + βtdt (mod p − 1).

Substituting the values ofd1, d2, . . . , dt givesindg a.
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Example of the basic ICM

We takep = 839, g = 31, andB = {2, 3, 5, 7, 11}, i.e., t = 5. In order to obtain a
matrix with rankt, we usually requirer > 2t. So taker = 10.

The following relations are generated:

Relation 1: g118 = 23 × 52

Relation 2: g574 = 27 × 5
Relation 3: g318 = 22 × 33

Relation 4: g46 = 27

Relation 5: g786 = 22 × 33 × 7
Relation 6: g323 = 2 × 3 × 11
Relation 7: g606 = 34

Relation 8: g252 = 23 × 32 × 7
Relation 9: g160 = 3 × 52

Relation 10:g600 = 2 × 33 × 5



















































































































































(mod p).

This leads to the linear system given in the next slide.
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









































































3 0 2 0 0
7 0 1 0 0
2 3 0 0 0
7 0 0 0 0
2 3 0 1 0
1 1 0 0 1
0 4 0 0 0
3 2 0 1 0
0 1 2 0 0
1 3 1 0 0











































































































d1

d2

d3

d4

d5

































=











































































118
574
318
46
786
323
606
252
160
600











































































(mod p − 1).

The coefficient matrix is of rank5 modulo838, and the system has the solution:

d1 = ind31 2 = 246
d2 = ind31 3 = 780
d3 = ind31 5 = 528
d4 = ind31 7 = 468
d5 = ind31 11 = 135































































(mod p − 1).
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Let us now compute individual logarithms:

Fora = 561, we have:

ag312 = 600 = 23 × 3 × 52 (mod p), i.e.,
ind31 561 = −312 + 3 × 246 + 780 + 2 × 528 = 586 (mod p − 1).

Fora = 89, we have:

ag342 = 99 = 32 × 11 (mod p), i.e.,
ind31 89 = −342 + 2 × 780 + 135 = 515 (mod p − 1).

Fora = 625, we have:

ag806 = 70 = 2 × 5 × 7 (mod p), i.e.,
ind31 625 = −806 + 246 + 528 + 468 = 436 (mod p − 1).
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Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.

Relevant for smart-card based implementations.

Reveal secret information (key) by observing the decrypting/signing device.

Timing attack: utilizes reasonably accurate measurement of several private-key op-
erations under the same key.

Power attack: analyzes power consumption patterns of the decrypting device during
one or more private-key operations.

Fault attack: Random hardware faults during the private-key operation may reveal
the key to an attacker. Even a single faulty computation may suffice.

Remedies:Shielding the decrypting device from external measurements, rechecking
computations, adding random delays, etc.
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Backdoor attacks

Suggested mostly for public-key cryptosystems.

The designer supplies a malicious key generation routine, so that published public
keys reveal the private keys to the designer.

A good backdoor allows nobody other than the designer to steal keys.

Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent

Backdoor attacks on ElGamal and Diffie-Hellman cryptosystems are also known.

Remedy: Use of trustworthy software (like open-source products).
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Proving security of a cryptosystem

With our current knowledge, wecannot prove a practical system to be secure.

A standard security review, even by competent cryptographers, can only prove
insecurity; it can never prove security. By following the pack you can leverage
the cryptanalytic expertise of the worldwide community, not just a handful of
hours of a consultant’s time.

– Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for astrongcryptosystem:

Use of good non-linearity (diffusion)
Resilience against known attacks
Computational equivalence with difficult mathematical problems
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