
CS39002 Operating Systems Laboratory
Spring 2026

Lab Assignment: 4
Date posted: 06-Feb-2026

__

Inter-process Communication Using Shared Memory

This assignment has to do with a multi-process implementation of the game of Snake Ludo (Snakes and Ladders).
The processes involved in the application are the following.

• A coordinator process CP to handle user inputs. This runs in the window where the application is launched.
• A process for each of the n players (call them A, B, C, …). These processes print information about their

moves in a single window (separate from the window used by CP). These processes are launched by a parent
process called the player-parent process PP.

• A board process BP that keeps on printing the current ludo board in a third window.
• Two other processes associated with the windows of the players (and their parent) and of the board. Let us

call these processes xterm processes XPP and XBP. These processes are created by CP.

The process hierarchy is described in the following figure. Each arrow → indicates a fork().

CP → XBP → BP
→ XPP → PP → A

→ B
→ C
→ …

The process tree looks as follows (use the shell command ps af, when all the processes are still running).

 16319 pts/1 Ss 0:00 -csh
 20189 pts/1 S+ 0:00 _ make run
 20205 pts/1 S+ 0:00 _ ./ludo 4
 20206 pts/1 S+ 0:00 _ xterm -T Board -fs 15 -geometry 150x24+50+100 -bg #003300 -e ./board 4 5
 20207 pts/5 Ss+ 0:00 | _ ./board 4 5
 20208 pts/1 S+ 0:00 _ xterm -T Players -fs 15 -geometry 100x24+1000+100 -bg #000033 -e ./players 4 5 20207
 20209 pts/6 Ss+ 0:00 _ ./players 4 5 20207
 20210 pts/6 S+ 0:00 _ ./players 4 5 20207
 20211 pts/6 S+ 0:00 _ ./players 4 5 20207
 20212 pts/6 S+ 0:00 _ ./players 4 5 20207
 20213 pts/6 S+ 0:00 _ ./players 4 5 20207

The rules for our version of Snake Ludo

We use the standard 10 × 10 board with the cells marked 1, 2, … , 100
in a zigzag fashion. A sample board (Source: Wikipedia) is shown to
the right. The text file ludo.txt storing this board is given below.

L 3 21 Ladder from cell 3 to cell 21
L 4 36
L 15 48
L 24 58
S 29 7 Snake from cell 29 to 7
L 30 75
L 31 70
S 38 20
S 44 14
L 49 90
S 55 11
L 60 79
S 62 40
L 63 99
L 72 91
S 73 52
L 77 97
S 82 60
S 93 43
S 96 17
S 98 48
E End of board

Page 1 of 8

The initial position of each player is an (invisible) cell 0 called home. Moves alternate among the players in the
sequence A, B, C, … Let Π be the player to make the next move. Suppose that pos is the position of Π just before the
move of Π. At the beginning pos = 0. If pos = 100, Π has already reached the destination, and is out of the game. For
0 ⩽ pos ⩽ 99, Π throws a dice. With equal probability (that is, 1/6), one of the faces 1 – 6 turns up. If that is 6, Π
throws the dice again. A face 1 – 6 again turns up (each with equal probability). If that second face is also 6, a third
throw is made by Π. Again a face 1 – 6 appears (with equal probability). If it is 6 again, the three throws are canceled,
and Π starts throwing the dice all over again. Let m be the sum of the outcomes of the throws (one, two, or three) of a
valid (not canceled) throw sequence. The next position of Π is first calculated as nextpos = pos + m. If a ladder
(lower end) or a snake (upper end) is at that cell, nextpos is updated accordingly. Following ladders and/or snakes
continues until nextpos reaches a cell with no climb/descend possibility. If nextpos > 100, the movement of Π is not
allowed. If the cell at nextpos is occupied by another player Π′, then also the movement of Π is not allowed (we
enforce that each cell can be occupied by at most one player). If the movement of Π is not allowed, Π continues to
stay at the old position pos. Otherwise its position is updated to nextpos.

Eventually, a player Π1 reaches the destination (Cell 100). Π1 is removed from the board (with rank 1), and will no
longer take part in the round robin sequence of moves. Then, a second player Π2 reaches the destination, and is
removed from the board (with rank 2). This continues until all of the n players reach the destination. At this point, the
game ends.

What is shared by the processes

Two shared-memory segments are used in this application. One segment MB is used to store the board. The other
segment MP is used to store the positions of the players.

The segment MB is prepared by the coordinator process CP from the input file ludo.txt. This is a segment capable of
storing 101 integers. The 0-th cell is left unused. For 1 ⩽ c 100, ⩽ MB[c] stores an integer. If a ladder starts at Cell c,
then MB[c] stores the top end (cell number) of the ladder minus the bottom end (c) of the ladder, so MB[c] is a
positive integer in this case. If there is a snake’s mouth at Cell c, then MB[c] stores the cell number of the tail of the
snake minus the cell number (c) of the mouth of the snake, so MB[c] is a negative integer in this case. If it is neither
of the two cases, we have MB[c] = 0. We assume that there is no ambiguity in the board (that is, two different
ladders/snakes or one ladder and one snake do not start at the same cell). However, it is allowed to have the mouth of
a snake and the top of a ladder at the same cell, and to have similar situations that do not lead to ambiguity.

After CP populates MB, this memory segment is used as a read-only segment for the rest of the game.

The second segment MP consists of n + 1 integer-valued cells. The players are called A, B, C, … , but they may be
indexed as 0, 1, 2, … The cell MP[p] stores the current position of the p-th player, so 0 ⩽ MP[p] 100. The cell ⩽ MP[n]
stores the number of players that are still in the game. This count can be computed from the first n cells (those that do
not store 100), but is recommended to quickly check the end-of-game condition.

CP initializes MP to (0, 0, … , 0, n). Subsequently, each player p updates its position MP[p]. These writes are at
mutually exclusive locations of MP, but all the players need to read the positions of the other players. A player p
reaching the destination decrements the count MP[n], that is, multiple leaving players may try to update this cell
simultaneously. As explained later, synchronization is achieved by sequentializing the moves (using blocking waits).

The source files

Write the following three files in C/C++.

ludo.c(pp) This implements the coordinator process CP.
board.c(pp) This process keeps on printing the board after every move (the process BP).
players.c(pp) This implements the player-parent process PP, and the players A, B, C, …

Page 2 of 8

Beginning of the game

You open a shell, and run ludo (the executable from ludo.c). This launches the coordinator process CP. It creates the
two shared-memory segments MB and MP in the exclusive mode. These segments are initialized by CP as explained
above. CP also creates a pipe for receiving the PID’s of ℘ BP and PP, and also acknowledgments from BP.

CP then forks two child processes XBP and XPP. Each of these processes opens an xterm for displaying relevant
information. XBP runs board (the executable from board.c) leading to the conception of the process BP. On the other
hand, XPP runs players (the executable from players.c), so the process PP is born. Notice that xterm forks a child
process that in turn runs an executable (a shell by default; board or players in our case), so the processes XPP and
XBP running the xterms are different from the processes PP and BP forked by these xterms.

At the beginning, BP sends its PID to CP via the pipe (created by ℘ CP), and sleeps for a second (so that CP can
complete the reading of the PID’s of both BP and PP). Notice that the forking by CP generates the process XBP, so
CP knows its PID. BP is the child of XBP, so CP is unaware of the PID of BP (a grandchild of CP). A
communication from BP to CP is therefore necessary. After the sleep, BP prints the initial board, and sends an
acknowledgment message to CP via the pipe . When ℘ CP reads it, the initialization of the game is complete (by this
time, PP and its children (the player processes) should be ready; they have got about one second anyway).

PP first sends its PID to CP via the pipe . ℘ PP then forks n player processes A, B, C, … After being born, each
player process jumps to a function which never returns.

Continuation of the game

After the initial work, the processes in the application are engaged in the following (non-busy) waits.

• CP waits for the user to enter the next command.
• PP waits to receive the signal SIGUSR1 or SIGUSR2 from CP.
• Each player Π waits for the signal SIGUSR1 or SIGINT from PP.
• BP waits for the signal SIGUSR1 (from a player process) or SIGUSR2 from CP.

Now, suppose that the user enters the command next to CP. This kickstarts the next move that proceeds as follows.

• CP sends SIGUSR1 to PP, and waits until it gets an acknowledgment from BP (via the pipe).℘
• PP decides who will be the next player Π to make the move.
• PP sends SIGUSR1 to Π, and itself again pauses.
• Π throws dice(s), and changes its position (or stays put in case of a move that is not permitted).
• If the move of Π leads it to the destination (Cell 100), it decrements MP[n], sends SIGUSR1 to BP, and exits.
• Otherwise, Π sends SIGUSR1 to BP, and goes to a pause again.
• BP, upon receiving SIGUSR1 from Π, prints the updated board.
• BP then sends an acknowledgment of completion to CP (via the pipe), and goes to pause.℘
• CP, upon receiving the acknowledgment, becomes ready for the next move.

If the user is tired of manually initiating the next move, (s)he can set a delay in ms (the default is 1000ms, that is, one
second), and continues the game in autoplay mode. In the autoplay mode, CP no longer waits for the user to enter the
next command, but sleeps for the specified delay, and initiates the next move itself. This delay is for the user to see
an animation of the progress of the game. The user may however specify a delay of 0, and the game should continue
as expected. As explained above, each step of the synchronization CP → PP → Π → BP → CP involves a blocking
wait (for a signal or for a communication via the pipe), so no real delays are needed for the synchronization. A℘
delay is meant only for the human observer.

End of the game

The game ends when one of the following two things happens. These two situations are handled in the same way.

• The user supplies the command quit in the interactive mode (before the game is over).
• All players have reached the destination, that is, we have MP[n] = 0 (in interactive or autoplay mode).

Page 3 of 8

CP waits for the user to hit the return key. When the user is satisfied with the proceedings of the game (actually the
correctness of the implementation), (s)he does as CP wants. After this, we have the following sequence of events.

• CP sends SIGUSR2 to PP.
• PP sends SIGUSR2 (or SIGINT or SIGKILL) to each player process that is still in the game, and waits for the

termination of all the player processes. Note that a player process may terminate normally after reaching the
destination cell, or after receiving the signal from PP. It stays in the system as a zombie process until PP
eventually waits on it.

• PP then exits, letting XPP terminate too.
• CP catches the termination of XPP (waitpid). (CP cannot wait for its grandchild PP. XPP should wait for

PP, but that is in the code of xterm, not your headache.)
• CP then sends SIGUSR2 (or SIGINT or SIGKILL) to BP.
• BP has no handler for this signal, and so it terminates. This causes XBP to terminate too.
• CP catches the termination of XBP (waitpid).
• CP removes the shared memory segments MP and BP, and exits. Notice that this removal succeeds only when

there is no process still attached to the segments. Make sure that every process that uses the shared-memory
segments detaches itself before exiting.

Signal handlers

From the above description, the processes need to catch and handle the following signals.

CP No signal handling is required. Synchronization is via the pipe .℘

PP SIGUSR1 (from CP for initiating the next move) and SIGUSR2 (from CP to end the game).

A, B, C, … SIGUSR1 (from PP for making the next move).
 SIGUSR2 from PP at the end should terminate a player, so this signal is not to be handled.

BP SIGUSR1 (from Π as a printing request).
 SIGUSR2 from CP at the end should terminate BP (so no handler for this).

XPP, XBP These are the xterm processes (precompiled). You cannot write signal handlers for them.

How to run an xterm

You may just type xterm from any shell. Then a terminal window will appear. By default, a shell (typically the user’s
log-in shell, like bash) is run in that window. However, you can run your own program in the xterm using the
command-line option –e. Give the executable name after this. The remaining arguments in the call of xterm will go
to the executable as its command-line parameters. Here is an example of exec()-ing xterm by XPP.

execlp("xterm",
 "xterm", "-T", "Players", "-fs", "15", "-geometry", "100x24+1000+100", "-bg", "#000033",
 "-e", "./players", narg, pfdarg, brdarg, NULL);

Here, –T sets the title for the xterm, –fs sets the font size, –geometry cxr+i+j configures the xterm to have c
columns, r rows, and the top-left corner at the (i, j)-th pixel on the screen, and –bg sets the background color. The
executable file ./players takes three command-line arguments (all converted to strings): the number n of players, the
descriptor for the write end of the pipe (for communication with ℘ CP), and the PID of BP (each player Π sends
SIGUSR1 to BP after completing a move).

__

Submit a single zip/tar/tgz archive storing the three source files and a makefile with compile, run, and clean targets.

Page 4 of 8

Sample Output

Screenshots are dumped below for demonstrating different stages of the game.

This is the beginning. The board is printed (see how the ladders and the snakes are shown). No player has made any
move. The launching window is waiting for the first user command. All the players are home (line below the board).

After the first six moves. Player D is still home. A, B, C have advanced. B has already encountered two ladders, C
only one, and A none.

Page 5 of 8

After a few more moves, B is almost at the destination, but its last two moves are not valid; it needs 1 to reach 100.
Also look at C’s move near the bottom. Three 6’s are canceled (shown by X), so its next move is 2 (not 20).

Look at the next move of Player A. The dice outcomes are 6 + 2, and A moves to Cell 82. At that cell, it hits a snake,
and falls to Cell 60. This new position has a ladder to Cell 79, so the ladder is taken, and A ends up at Cell 79.

Page 6 of 8

B and C are done, that is, reached the destination 100. This is shown above the board (not in the cell 100 itself). The
moves now alternate between A and D.

The user prefers to switch to the autoplay mode. A delay of 500ms is set, and then the next command entered is
autoplay. Now, the game will continue itself, making 2 moves per second. The user can see (not from this still
image) how the game unfolds.

Page 7 of 8

All the players have reached the destination. The user may have a final look at the transcripts before hitting return.

PP waits for catching the termination signal from the player processes. A wait of 1 second is added after each
waitpid, so that this creates a “slow” animation (the delay is otherwise unnecessary).

After the terminations of all the player processes, the remaining processes PP, XPP, BP, and XBP terminate, and the
two xterms (green and blue) close. Eventually, the process CP at the launch window also terminates, and the shell
prompt returns.

Page 8 of 8

