CS39002 Operating Systems Laboratory
Spring 2026

Lab Assignment: 1
Date posted: 09-Jan-2026

System Calls Fork, Wait, and Exec

Let G = (V, E) be a directed graph with |V] = n. A Hamiltonian cycle in G is a (simple) directed cycle in G of length
n. We know that determining a Hamilotonian cycle in graphs is an NP-complete problem. We can nonetheless run an
exhaustive search for Hamiltonian cycles in small graphs. One step of the search algorithm is given below. We
assume that the vertices of G are numbered 1, 2, . . ., n.

Letvy, v, ..., Vc be a partially computed path discovered so far in G. We always take v; = 1.

If ¢ = n, check if v; is in the neighbor list of v,. Return success or failure accordingly.

If c =0, then take vy = 1.

Otherwise, for each neighbor v. .1 of v¢, that is not on the partially constructed path, extend the current path to
Vi, Vo, ...y Ve, Vo1, @nd continue the search. If any of these searches discovers a Hamiltonian cycle, then
return success.

If all these neighbors (if any) fail to locate a Hamiltonian cycle, return failure.

In this assignment, you write a single multi-process application to carry out the above search. Each process P handles
the search (except the continuation part) of the above pseudocode. The process P receives the partially constructed
path vy, v, . . ., v, via its command-line parameters. You run the program (the root process in the application) without
any command-line argument (this corresponds to ¢ = 0).

If P finds ¢ = n, then it searches for v, in the neighborhood of v,, and terminates with an appropriate exit status
indicating success or failure (see below). Before the termination, O prints this Hamiltonian cycle.

If ¢ = 0 (the root process), P forks a child process, and waits for the child process Q to terminate. If the exit status of
O is success, P also terminates with exit status indicating success. If the exit status of Q is failure, P prints “No
Hamiltonian cycle found”, and terminates with exit status indicating failure.

In the case 0 < ¢ < n, P carries out a search for the unvisited neighbors v. . of v.. For each such neighbor, P forks a
child process R, and waits for R to terminate. If R returns success, P also returns success, and terminates. If R returns
failure, P continues the search with the next unvisited neighbor v, ;. If the child processes corresponding to all these
neighbors return failure, P terminates after returning failure.

P extends the current path by v, . for each unvisited neighbor in the adjacency list for v.. This is done by creating an
argv array for the child process (Q or R). The child process exec’s the same program by passing the augmented argv
array as the command-line arguments.

Exit status: Follow the convention: exit(0) means return success, and exit(1) means return failure.

Input graph G: This is stored in a text file graph.txt. The first line stores the number n of vertices in G. This is
followed by n lines storing the neighbors of the vertices. Recall that we number the vertices as 1, 2, . . ., n. The
neighbors of vertex u are specified as follows.

Uu->n: N2 ... Nk

A random graph generator gengraph.c is provided to you. Compile and run the program with two arguments: 7 (the
number of vertices in G), and p (the probability with which each edge (u, v) exists in E).

Submit a single C/C++ source file.

Page 1 of 2

Sample Output

A Hamiltonian graph

A non-Hamiltonian graph

w
EN

~N oo

NV A WN B
VVVVVVVYVY
(=)

HFOUNNN NN
POO~NWWL

e}

o o

NI AWN -

VVVVVVVYVY

VWwRrUubhwhb
ADNOO DGO

*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
**% Process
*** Process
**% Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
*** Process
*** Process

Hamiltonian

6129:
6130:
6131:
6132:
6133:
6134:
6135:
6136:
6137:
6138:
6139:
6140:
6141:
6142:
6143:
6144:
6145:
6146:
6147:
6148:
6149:
6150:
6151:
6152:
6153:
6154:
6155:
6156:
6157:
6158:
6159:
6160:
6161:
6162:
6163:
6164:
6165:
6166:
6167:
6168:
6169:
6170:
6171:
6172:
6173:
6174:
6175:
6176:
6177:
6178:
6179:
6180:
6181:
6182:
6183:
6184:
6185:
6186:
6187:
6188:
6189:
6190:
6191:
6192:
6193:
6194:
6195:
6196:
6197:
6198:
6199:
6200:
6201:
6202:

PR RRPRRRPRRRRERRRERRPRRERRPERERRRERRERRERRERERRERERLRRERRRERERRERRERRPRERRERERRERRERRERRPRRERERERERRRE R
ARAARARARALWLWWWWWWWWWWWWWWWRWWWWWWRWWWWWRWWWRWWWWWWWWRWWWWWWWWWWRNNRNRNNNRNNNRNNN NN

NN NN
ENIENENENEN]
Ao

NN NN N NNNNN NN NN
00 00 00000
(SRR RV L RV V)
0 0000 W W W
ENE N X

ENFNFNENES
wwww
w

ENENIENENENENEN]
©

o
v

N~~~
© © o

0 00 0 O

00000 NNNNNNNNNN
ENEN

ENFNFNEN
N
~~

~~~
© ©

0000000~ ~N~N~NNNNN
0 00 0
B

ENIFNIEN

NNNNOnnnnununuununun
NN

0 00 0

[ec)e e NeNeo NN e e e e e e e e e e le e e Ne Ne N N WO U U R RV RV RV RV RV RV, RV NV, NV, NV, NV NV, N NN SN NN NENE NE NN
B

ENENFNENES
NN NN
~N~~
=N

5
53
538

cycle found: 142765381

*** Process
*** Process
**% Process
**% Process
*** Process
**% Process
**% Process
*** Process
*** Process
*** Process
**% Process
**% Process
*** Process
**% Process
**% Process
*** Process
*** Process
*** Process
**% Process
**% Process
*** Process
**% Process
**% Process
*** Process
*** Process
**% Process
**% Process
**% Process
*** Process
**% Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**%* Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**%* Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
**%* Process
**% Process
*** Process
*** Process
*** Process
**% Process
*** Process
*** Process
**% Process
**% Process
*** Process
*** Process
*** Process
**% Process
**% Process
*** Process
**% Process
**% Process
*** Process

8812:
8813:
8814:
8815:
8816:
8817:
8818:
8819:
8820:
8821:
8822:
8823:
8824:
8825:
8826:
8827:
8828:
8829:
8830:
8831:
8832:
8833:
8834:
8835:
8836:
8837:
8838:
8839:
8840:
8841:
8842:
8843:
8844:
8845:
8846:
8847:
8848:
8849:
8850:
8851:
8852:
8853:
8854:
8855:
8856:
8857:
8858:
8859:
8860:
8861:
8862:
8863:
8864:
8865:
8866:
8867:
8868:
8869:
8870:
8871:
8872:
8873:
8874:
8875:
8876:
8877:
8878:
8879:
8880:
8881:
8882:
8883:
8884:
8885:
8886:
8887:
8888:
8889:
8890:
8891:
8892:
8893:
8894:
8895:
8896:
8897:
8898:
8899:

1

14

145

1452
14523
145236
1452367
14528
1456
14563
14567
145673
1457
14573
145736
148

1485
14852
148523
1485236
14852367
14856
148563
148567
1485673
14857
148573
1485736
15

152

1523
15234
152348
15236
152364
1523648
152367
1523674
15236748
1524
15248
1528

156

1563
15634
156348
1564
15648
1567
15673
156734
1567348
15674
156748
157

1573
15734
157348
15736
157364
1573648
1574
15748

18

185

1852
18523
185234
185236
1852364
1852367
18523674
18524
1856
18563
185634
18564
18567
185673
1856734
185674
1857
18573
185734
185736
1857364
18574

No Hamiltonian cycle found

Page 2 of 2




