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System Calls Fork, Wait, and Exec

Let G = (V, E) be a directed graph with |V] = n. A Hamiltonian cycle in G is a (simple) directed cycle in G of length
n. We know that determining a Hamilotonian cycle in graphs is an NP-complete problem. We can nonetheless run an
exhaustive search for Hamiltonian cycles in small graphs. One step of the search algorithm is given below. We
assume that the vertices of G are numbered 1, 2, . . ., n.

Letvy, v, ..., Vc be a partially computed path discovered so far in G. We always take v; = 1.

If ¢ = n, check if v; is in the neighbor list of v,. Return success or failure accordingly.

If c =0, then take vy = 1.

Otherwise, for each neighbor v. .1 of v¢, that is not on the partially constructed path, extend the current path to
Vi, Vo, ...y Ve, Vo1, @nd continue the search. If any of these searches discovers a Hamiltonian cycle, then
return success.

If all these neighbors (if any) fail to locate a Hamiltonian cycle, return failure.

In this assignment, you write a single multi-process application to carry out the above search. Each process P handles
the search (except the continuation part) of the above pseudocode. The process P receives the partially constructed
path vy, v, . . ., v, via its command-line parameters. You run the program (the root process in the application) without
any command-line argument (this corresponds to ¢ = 0).

If P finds ¢ = n, then it searches for v, in the neighborhood of v,, and terminates with an appropriate exit status
indicating success or failure (see below). Before the termination, O prints this Hamiltonian cycle.

If ¢ = 0 (the root process), P forks a child process, and waits for the child process Q to terminate. If the exit status of
O is success, P also terminates with exit status indicating success. If the exit status of Q is failure, P prints “No
Hamiltonian cycle found”, and terminates with exit status indicating failure.

In the case 0 < ¢ < n, P carries out a search for the unvisited neighbors v. . of v.. For each such neighbor, P forks a
child process R, and waits for R to terminate. If R returns success, P also returns success, and terminates. If R returns
failure, P continues the search with the next unvisited neighbor v, ;. If the child processes corresponding to all these
neighbors return failure, P terminates after returning failure.

P extends the current path by v, . for each unvisited neighbor in the adjacency list for v.. This is done by creating an
argv array for the child process (Q or R). The child process exec’s the same program by passing the augmented argv
array as the command-line arguments.

Exit status: Follow the convention: exit(0) means return success, and exit(1) means return failure.

Input graph G: This is stored in a text file graph.txt. The first line stores the number n of vertices in G. This is
followed by n lines storing the neighbors of the vertices. Recall that we number the vertices as 1, 2, . . ., n. The
neighbors of vertex u are specified as follows.

Uu->n: N2 ... Nk

A random graph generator gengraph.c is provided to you. Compile and run the program with two arguments: 7 (the
number of vertices in G), and p (the probability with which each edge (u, v) exists in E).

Submit a single C/C++ source file.
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Sample Output

A Hamiltonian graph

A non-Hamiltonian graph
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cycle found: 142765381
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No Hamiltonian cycle found
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