
CS39002 Operating Systems Laboratory
Spring 2026

Lab Assignment: 1
Date posted: 09-Jan-2026

__

System Calls Fork, Wait, and Exec

Let G = (V, E) be a directed graph with |V| = n. A Hamiltonian cycle in G is a (simple) directed cycle in G of length
n. We know that determining a Hamilotonian cycle in graphs is an NP-complete problem. We can nonetheless run an
exhaustive search for Hamiltonian cycles in small graphs. One step of the search algorithm is given below. We
assume that the vertices of G are numbered 1, 2, . . . , n.

Let v1, v2, . . . , vc be a partially computed path discovered so far in G. We always take v1 = 1.
If c = n, check if v1 is in the neighbor list of vn. Return success or failure accordingly.
If c = 0, then take v1 = 1.
Otherwise, for each neighbor vc + 1 of vc , that is not on the partially constructed path, extend the current path to

v1, v2, . . . , vc , vc + 1 , and continue the search. If any of these searches discovers a Hamiltonian cycle, then
return success.

If all these neighbors (if any) fail to locate a Hamiltonian cycle, return failure.

In this assignment, you write a single multi-process application to carry out the above search. Each process P handles
the search (except the continuation part) of the above pseudocode. The process P receives the partially constructed
path v1, v2, . . . , vc via its command-line parameters. You run the program (the root process in the application) without
any command-line argument (this corresponds to c = 0).

If P finds c = n, then it searches for v1 in the neighborhood of vn, and terminates with an appropriate exit status
indicating success or failure (see below). Before the termination, Q prints this Hamiltonian cycle.

If c = 0 (the root process), P forks a child process, and waits for the child process Q to terminate. If the exit status of
Q is success, P also terminates with exit status indicating success. If the exit status of Q is failure, P prints “No
Hamiltonian cycle found”, and terminates with exit status indicating failure.

In the case 0 < c < n, P carries out a search for the unvisited neighbors vc + 1 of vc. For each such neighbor, P forks a
child process R, and waits for R to terminate. If R returns success, P also returns success, and terminates. If R returns
failure, P continues the search with the next unvisited neighbor vc + 1. If the child processes corresponding to all these
neighbors return failure, P terminates after returning failure.

P extends the current path by vc + 1 for each unvisited neighbor in the adjacency list for vc . This is done by creating an
argv array for the child process (Q or R). The child process exec’s the same program by passing the augmented argv
array as the command-line arguments.

Exit status: Follow the convention: exit(0) means return success, and exit(1) means return failure.

Input graph G: This is stored in a text file graph.txt. The first line stores the number n of vertices in G. This is
followed by n lines storing the neighbors of the vertices. Recall that we number the vertices as 1, 2, . . . , n. The
neighbors of vertex u are specified as follows.

u -> n1 n2 ... nk

A random graph generator gengraph.c is provided to you. Compile and run the program with two arguments: n (the
number of vertices in G), and p (the probability with which each edge (u, v) exists in E).

__

Submit a single C/C++ source file.

Page 1 of 2

Sample Output

A Hamiltonian graph A non-Hamiltonian graph

8
1 -> 2 3 4
2 -> 7
3 -> 2 5 6 8
4 -> 2 3 8
5 -> 2 3 7 8
6 -> 5 7
7 -> 6 8
8 -> 1 4

8
1 -> 4 5 8
2 -> 3 4 8
3 -> 4 6
4 -> 5 8
5 -> 1 2 6 7
6 -> 3 4 7
7 -> 3 4
8 -> 5

*** Process 6129:
*** Process 6130: 1
*** Process 6131: 1 2
*** Process 6132: 1 2 7
*** Process 6133: 1 2 7 6
*** Process 6134: 1 2 7 6 5
*** Process 6135: 1 2 7 6 5 3
*** Process 6136: 1 2 7 6 5 3 8
*** Process 6137: 1 2 7 6 5 3 8 4
*** Process 6138: 1 2 7 6 5 8
*** Process 6139: 1 2 7 6 5 8 4
*** Process 6140: 1 2 7 6 5 8 4 3
*** Process 6141: 1 2 7 8
*** Process 6142: 1 2 7 8 4
*** Process 6143: 1 2 7 8 4 3
*** Process 6144: 1 2 7 8 4 3 5
*** Process 6145: 1 2 7 8 4 3 6
*** Process 6146: 1 2 7 8 4 3 6 5
*** Process 6147: 1 3
*** Process 6148: 1 3 2
*** Process 6149: 1 3 2 7
*** Process 6150: 1 3 2 7 6
*** Process 6151: 1 3 2 7 6 5
*** Process 6152: 1 3 2 7 6 5 8
*** Process 6153: 1 3 2 7 6 5 8 4
*** Process 6154: 1 3 2 7 8
*** Process 6155: 1 3 2 7 8 4
*** Process 6156: 1 3 5
*** Process 6157: 1 3 5 2
*** Process 6158: 1 3 5 2 7
*** Process 6159: 1 3 5 2 7 6
*** Process 6160: 1 3 5 2 7 8
*** Process 6161: 1 3 5 2 7 8 4
*** Process 6162: 1 3 5 7
*** Process 6163: 1 3 5 7 6
*** Process 6164: 1 3 5 7 8
*** Process 6165: 1 3 5 7 8 4
*** Process 6166: 1 3 5 7 8 4 2
*** Process 6167: 1 3 5 8
*** Process 6168: 1 3 5 8 4
*** Process 6169: 1 3 5 8 4 2
*** Process 6170: 1 3 5 8 4 2 7
*** Process 6171: 1 3 5 8 4 2 7 6
*** Process 6172: 1 3 6
*** Process 6173: 1 3 6 5
*** Process 6174: 1 3 6 5 2
*** Process 6175: 1 3 6 5 2 7
*** Process 6176: 1 3 6 5 2 7 8
*** Process 6177: 1 3 6 5 2 7 8 4
*** Process 6178: 1 3 6 5 7
*** Process 6179: 1 3 6 5 7 8
*** Process 6180: 1 3 6 5 7 8 4
*** Process 6181: 1 3 6 5 7 8 4 2
*** Process 6182: 1 3 6 5 8
*** Process 6183: 1 3 6 5 8 4
*** Process 6184: 1 3 6 5 8 4 2
*** Process 6185: 1 3 6 5 8 4 2 7
*** Process 6186: 1 3 6 7
*** Process 6187: 1 3 6 7 8
*** Process 6188: 1 3 6 7 8 4
*** Process 6189: 1 3 6 7 8 4 2
*** Process 6190: 1 3 8
*** Process 6191: 1 3 8 4
*** Process 6192: 1 3 8 4 2
*** Process 6193: 1 3 8 4 2 7
*** Process 6194: 1 3 8 4 2 7 6
*** Process 6195: 1 3 8 4 2 7 6 5
*** Process 6196: 1 4
*** Process 6197: 1 4 2
*** Process 6198: 1 4 2 7
*** Process 6199: 1 4 2 7 6
*** Process 6200: 1 4 2 7 6 5
*** Process 6201: 1 4 2 7 6 5 3
*** Process 6202: 1 4 2 7 6 5 3 8

Hamiltonian cycle found: 1 4 2 7 6 5 3 8 1

*** Process 8812:
*** Process 8813: 1
*** Process 8814: 1 4
*** Process 8815: 1 4 5
*** Process 8816: 1 4 5 2
*** Process 8817: 1 4 5 2 3
*** Process 8818: 1 4 5 2 3 6
*** Process 8819: 1 4 5 2 3 6 7
*** Process 8820: 1 4 5 2 8
*** Process 8821: 1 4 5 6
*** Process 8822: 1 4 5 6 3
*** Process 8823: 1 4 5 6 7
*** Process 8824: 1 4 5 6 7 3
*** Process 8825: 1 4 5 7
*** Process 8826: 1 4 5 7 3
*** Process 8827: 1 4 5 7 3 6
*** Process 8828: 1 4 8
*** Process 8829: 1 4 8 5
*** Process 8830: 1 4 8 5 2
*** Process 8831: 1 4 8 5 2 3
*** Process 8832: 1 4 8 5 2 3 6
*** Process 8833: 1 4 8 5 2 3 6 7
*** Process 8834: 1 4 8 5 6
*** Process 8835: 1 4 8 5 6 3
*** Process 8836: 1 4 8 5 6 7
*** Process 8837: 1 4 8 5 6 7 3
*** Process 8838: 1 4 8 5 7
*** Process 8839: 1 4 8 5 7 3
*** Process 8840: 1 4 8 5 7 3 6
*** Process 8841: 1 5
*** Process 8842: 1 5 2
*** Process 8843: 1 5 2 3
*** Process 8844: 1 5 2 3 4
*** Process 8845: 1 5 2 3 4 8
*** Process 8846: 1 5 2 3 6
*** Process 8847: 1 5 2 3 6 4
*** Process 8848: 1 5 2 3 6 4 8
*** Process 8849: 1 5 2 3 6 7
*** Process 8850: 1 5 2 3 6 7 4
*** Process 8851: 1 5 2 3 6 7 4 8
*** Process 8852: 1 5 2 4
*** Process 8853: 1 5 2 4 8
*** Process 8854: 1 5 2 8
*** Process 8855: 1 5 6
*** Process 8856: 1 5 6 3
*** Process 8857: 1 5 6 3 4
*** Process 8858: 1 5 6 3 4 8
*** Process 8859: 1 5 6 4
*** Process 8860: 1 5 6 4 8
*** Process 8861: 1 5 6 7
*** Process 8862: 1 5 6 7 3
*** Process 8863: 1 5 6 7 3 4
*** Process 8864: 1 5 6 7 3 4 8
*** Process 8865: 1 5 6 7 4
*** Process 8866: 1 5 6 7 4 8
*** Process 8867: 1 5 7
*** Process 8868: 1 5 7 3
*** Process 8869: 1 5 7 3 4
*** Process 8870: 1 5 7 3 4 8
*** Process 8871: 1 5 7 3 6
*** Process 8872: 1 5 7 3 6 4
*** Process 8873: 1 5 7 3 6 4 8
*** Process 8874: 1 5 7 4
*** Process 8875: 1 5 7 4 8
*** Process 8876: 1 8
*** Process 8877: 1 8 5
*** Process 8878: 1 8 5 2
*** Process 8879: 1 8 5 2 3
*** Process 8880: 1 8 5 2 3 4
*** Process 8881: 1 8 5 2 3 6
*** Process 8882: 1 8 5 2 3 6 4
*** Process 8883: 1 8 5 2 3 6 7
*** Process 8884: 1 8 5 2 3 6 7 4
*** Process 8885: 1 8 5 2 4
*** Process 8886: 1 8 5 6
*** Process 8887: 1 8 5 6 3
*** Process 8888: 1 8 5 6 3 4
*** Process 8889: 1 8 5 6 4
*** Process 8890: 1 8 5 6 7
*** Process 8891: 1 8 5 6 7 3
*** Process 8892: 1 8 5 6 7 3 4
*** Process 8893: 1 8 5 6 7 4
*** Process 8894: 1 8 5 7
*** Process 8895: 1 8 5 7 3
*** Process 8896: 1 8 5 7 3 4
*** Process 8897: 1 8 5 7 3 6
*** Process 8898: 1 8 5 7 3 6 4
*** Process 8899: 1 8 5 7 4

No Hamiltonian cycle found

Page 2 of 2

