Computer Science & Engineering

IIT Kharagpur

CS31202 Operating System

3" year CSE: 6" Semester (Class Test 1)

Time limit: 1hour 15 minutes, Date: 2™ Feb, 2026
Max Marks: 20

Roll No:

Name:

1. A shared variable Balance represents the balance of a bank account, and is initially set to 100. Two processes P1 and
P2 run concurrently, and access this shared variable Balance without any form of synchronization. Each process
performs both a debit and a credit operation, guarded by a conditional check on the current value of Balance.

The code executed by P1 is:

if (Balance = 70)
{
Balance
Balance

Balance - 70;
Balance + 40;

}

The code executed by P2 is:

if (Balance = 50)
{

Balance
Balance

}

Balance + 60;
Balance - 30;

Each process runs exactly once, and the update operations on Balance are not atomic. Is it possible for the final value
of Balance (after completion of P1 and P2) to become 130? If yes, show a valid interleaved execution of P1 and P2,
that leads to this value. Below, clearly show the interleaving of the execution of the statements of P1 and P2. [4]

Step Statements executed by P1

1 if (Balance > 70) — true
2

3

4 Balance = Balance — 70

5 Balance = Balance + 40

6

7

Statements executed by P2

if (Balance > 50) — true

Read Balance = 100
(to execute balance + 60)

Add and Write Balance = 160

Balance = Balance — 30

Balance value

100

100

100

30

70

160

130

2. Consider a Multi-level Queue Scheduling algorithm with three ready queues Q1, Q2, and Q3. Each process is
permanently assigned to one queue, and is not allowed to migrate between queues. A distinct scheduling policy is
implemented for each ready queue. Precisely, Q1 uses Round Robin scheduling with a time quantum of 2 ms, Q2 uses
Preemptive Shortest Remaining Time First (SRTF) scheduling (assume that the CPU burst times of processes in Q2
are known beforehand), and Q3 uses First-Come-First-Served (FCFS) scheduling. To prevent starvation, the OS
implements a separate Round Robin mechanism across the three ready queues, referred to as Queue Round Robin
(QRR) scheduling. In QRR, each queue (say, Q) is assigned a fixed CPU time, say, qx. All processes in Qy are
allowed to execute for a total duration of at most qx ms, following the scheduling policy of Q. If the allocated CPU
time gy expires while a process is running, the process is preempted and inserted to its corresponding ready queue Qx.
For Q1, insertion is at the back; for Q3, insertion is at the front; and for Q2, insertion is with respect to the remaining
burst time of the preempted process. In one round of QRR scheduling, (processes in) queue Q1 first receive 5 ms of
CPU time, then (processes in) queue Q2 receive 3 ms of CPU time, and finally (processes in) Q3 receive 2 ms CPU
time. If a queue becomes empty before its allocated CPU time expires, the CPU is immediately reassigned to the next
queue in the scheduling order.

Consider the following table with seven processes, their arrival times, CPU burst times, and queue allocations. Draw
the Gantt chart for the execution of the above processes, clearly indicating the queue (Q1, Q2, or Q3) of the executing
process, and termination of each process. Calculate the waiting time for each process, and the average waiting time.

[4+2]
Process Arrival Time (ms) CPU Burst Time (ms) Queue
P1 0 6 Ql
P2 1 5 Q1
P3 2 7 Q2
P4 3 9 Q2
P5 4 10 Q3
P6 6 4 Ql
P7 7 6 Q3
P, P
Q, Q, Q Q, Q3 Q, Q, Q Q, Qs Q,/Q,f Q
[Pnlr[m] » [P]e R[] ®» [P [n[R] P
0 2 4 5 8 10 12 14 15 18 20: 21 22 24
Ps Py P;

Ps P,
Q, sz f Q, Q; Q, Q3 Q, Qs [Q, f Q3 Q; Q3
| P | p| P, | Ps | B, | Ps | P, Ps P4| P,] P, | P,

24 25 26 28 30 33 35 38 40 41 43 45 47

Two cooperative processes Py and P, are running concurrently, and share a buffer capable of storing only one item.
P, keeps on producing items, but multiple items cannot be stored in the buffer. So the other process P; must read each
item from the buffer before P, writes the next item to the buffer. Writing an item to the buffer by P, and reading an
item from the buffer by P, should be mutually exclusive. In order to guard their critical sections and to alternate their
turns, the processes use a variant of Peterson’s algorithm, shown below. The algorithm is given for P; (i =0 or 1). The
other process is called P; , where j = 1 — i. Assume that the compiler or the hardware makes no instruction swaps.
Determine whether this algorithm satisfies all the requirements of the critical-section problem. Justify your answer.

[5]

Process P; :

do {

flag[i] = true;

turn = j;

if (flag[il)

while (turn == j);

/* critical section */

flag[i] = false;

/* remainder section */
} while (true);

Doesn’t satisfy progress. Assume process is inside the CS. For process i, flag[/] is checked only once, and then process i sits
in a tight loop inside while. Once process j comes out from CS, still process i won’t be allowed to enter CS.

4. Consider a uni-processor system running four processes T1, T2, T3, and T4. Each process starts with a CPU burst,
followed by an I/O burst, and then followed by a second CPU burst. Each process is assigned a priority (lower number
indicates higher priority). Assume that the system implements preemptive priority scheduling combined with round
robin scheduling. That is, the CPU scheduler uses priority scheduling, where processes with the same priority run
round robin with a time quantum of 8ms. Consider the processes, their CPU and I/O bursts, and priorities as follows.

Process Arrival Time First CPU Burst (ms) 1/O burst (ms) Second CPU burst (ms) Priority

T1 0 10 30 11 1
T2 6 20 19 17 3
T3 14 20 10 19 3
T4 32 40 20 10 2

Draw the Gantt chart depicting the execution of each process, and show the interval(s) where CPU remains idle. In the

Gantt chart, clearly indicate the completion of the first and second CPU burst of each process. Finally, compute the

average turnaround time. [4+1]

T11/0 i il T41/0 T21/0
T T2 I T3 I T2 |T1 T4 | Tl T4 T2
0 10 14 22 3032 40 51 83 91
T3 1/0 T4 T2 T3
T3 T4 T2 I T3 I T2 I T3 '|' T3
91 1019103 113 121 129 137 145 146 149

CPU idle

