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Instructions to students

• Please write in the spaces provided in the question paper itself. Be brief and precise.

• For rough work, you can use the extra blank pages provided at the end. If you need additional space for rough 
work, please ask for supplementary sheets from the invigilators.

• Do not write anything on this page. Questions start from the next page (Page 3).
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1. [Process-synchronization tools]

(a)  A barrier (not the same as a memory barrier taught in the class) is often used as a high-level primitive for  
process synchronization. Suppose that  n  2 processes want to synchronize at certain points. For example, they⩾  
may be sharing the work of a multiplication P = MN of very large shared matrices. If they write the entries of P in 
mutually distinct locations, mutual exclusion is not necessary. However, until all of the processes finish their parts  
in the multiplication task, work on the product  P cannot start (shared again by the same processes). A barrier is 
initialized to n. After finishing the assigned part in the multiplication task, each process joins the barrier. The first,  
second, . . . , (n – 1)-th processes wait on the barrier. As soon as the  n-th process joins the barrier, all of the  n 
processes leave the barrier, and start their respective post-multiplication works.

In this exercise, we make a  hardware-level implementation of a barrier  B.  It  consists of two shared atomic 
integer-valued variables  join and  leave (standing for the number of processes yet to join or yet to leave the 
barrier). Neither of these integers should ever get a value < 0. When B is not in use, both join and leave should be 
0. A barrier B supports the following two functions.

barrier_init(&B,n) is used to initialize a barrier B by a positive integer value n. If at the time of this initialization, 
either join or leave holds a value > 0, then the barrier is in use, and the initialization must fail. If not, both join 
and leave will get the value n. If multiple processes want to initialize an unused barrier simultaneously, only one 
of these processes should succeed; all others will fail.

barrier_wait(&B) is to be invoked by a process after a successful initialization of B, say, by the value n. Exactly n 
processes must call  barrier_wait(&B) for lifting the barrier. If at the time of calling the function, join does not 
store a positive value, the attempt fails (to prevent more than n processes from joining the barrier, or to prevent a 
process from joining an uninitialized barrier). Otherwise, the value of join is decremented atomically by 1. All of 
the n processes that join the barrier must wait until join becomes 0. When join becomes 0, all of these waiting 
processes can proceed forward simultaneously. But before doing so, the processes must leave the barrier one by 
one. This is done by each process atomically decrementing leave by 1. Every leaving process must see leave > 0 
before the decrement, otherwise the operation fails. Strictly after all the joined processes leave, the barrier is ready  
again for (re-)initialization.

Implement below the primitives  barrier_init() and  barrier_wait() using hardware-level  compare-and-swap 
instructions and busy waits. Your implementation must handle all error conditions mentioned above. No credit for 
an implementation based on any other software/hardware primitive. Each function should return a boolean status  
(SUCCESS or FAILURE).    [4 + 6]

typedef struct {
    atomic int join;   /* number of processes yet to join the barrier */
    atomic int leave;  /* number of processes yet to leave the barrier */
} barrier;

shared barrier B;      /* Assume that this declaration sets both join and leave in B to 0 */

boolean barrier_init ( barrier *B, int n )  /* Assume that n is not a shared variable */
{

}
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if (n <= 0) return FAILURE;

if (compare_and_swap(&(B  leave), 0, n) != 0)→
    return FAILURE;

if (compare_and_swap(&(B  join), 0, n) != 0)→
    return FAILURE;

return SUCCESS;



boolean barrier_wait ( barrier *B )
{

}

(b)  Consider the following two software solutions to solve the critical-section problem for two processes P0 and 
P1. The code for Pi is given below, where i {0, 1}. The other process is called ∈ Pj, where j = 1 – i.

shared boolean flag[2] = {0, 0}; shared boolean flag[2] = {0, 0};
shared int turn = 0; shared int turn = 0;

while (1) { while (1) {

/* critical section */ /* critical section */

/* remainder section */ /* remainder section */
} }

Assume that the compiler (or the hardware) does not modify the structure of the above codes. Prove or disprove 
with justification which of these software solutions (if any) support(s) mutual exclusion.    [5 + 5]
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Solution 2Solution 1

 /* Entry section */
 
 flag[i] = true;
 if (flag[j]) {
 if (turn == j) {
       flag[i] = false;
       while (turn == j) ;
       flag[i] = true;
    }
 }

 /* Exit section */
 
 turn = j;
 flag[i] = false;

 /* Entry section */
 
 flag[i] = true;
 while (flag[j]) {

if (turn == j) {
       flag[i] = false;
       while (turn == j) ;
       flag[i] = true;
    }
 }

 /* Exit section */
 
 turn = j;
 flag[i] = false;

int temp;

do {
    temp = B  join;→
    if (temp <= 0) return FAILURE;
} while (compare_and_swap(&(B  join), temp, temp – 1) != temp);→

while (B  join != 0) ;  /* No need to protect this read */→

do {
    temp = B  leave;→
    if (temp <= 0) return FAILURE;
} while (compare_and_swap(&(B  leave), temp, temp – 1) != temp);→

return SUCCESS;
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Solution 1: False.

Suppose that at some point of time (like at the beginning) turn stores the value 0. At that point, both P0 and P1 plan 
to enter their respective critical sections, and the following sequence of events happens.

   1.   P1 sets flag[1] = true.
   2.   Since flag[0] is still false, the condition in the outer if statement is false for P1, so P1 enters its critical section.
   3.   P0 sets flag[0] = true.
   4.   Since turn is still 0, the condition in the inner if statement is false for P0, so P0 too enters its critical section.

Solution 2: True

Suppose that both P0 and P1 plan to enter their critical sections (almost) at the same time. Consider two cases.

Case 1: One of the processes (say, P0) has set flag[0] = true, but P1 is yet to set flag[1] = true. P0 does not enter 
the outer-loop body, and goes to its critical section irrespective of the value of turn. Then, so long as P0 is not in its 
exit section, P1 sees flag[0] = true, and enters its outer loop. Now, if turn is 0, P1 is stuck in its inner while loop. If 
turn is 1, it is stuck in its outer while loop.

Case 2: The processes have both set their flags to 1, and check the condition of their outer while loops. They both 
enter the loop, because both flags are true. But turn is not modified in the entry section, and it can be either 0 or 1 
(cannot be both). But then, it is impossible for both the processes to bypass their inner while loops together. Indeed, 
the process whose turn it is will enter. The other one will be stuck in the inner while loop.



2. [Process scheduling]

Consider a dual-core symmetric multiprocessor system with a common ready queue for both the cores (call them 
Core0 and Core1). On both the cores, Round-Robin Scheduling is used, each with a time quantum of q = 5 (all 
times are in ms in this  exercise).  Suppose that  a  process  P is  at  the front  of  the common ready queue.  The 
scheduler uses the following policy.

Case 1: Both Core0 and Core1 are free, and P is a new arrival. In this case, P is scheduled to Core0.

Case 2: Both Core0 and Core1 are free, and P joined the ready queue after a CPU timeout or completion of IO. In 
this case, P will be scheduled to the core where it ran last. The reason for this is that if P migrates to the other core, 
then there is a cache re-population penalty (see Assumption 1 below for more on this).

Case 3: Only one of the cores is free. Then, the scheduler is forced to schedule P to that core. That may result in a 
process migration from one core to the other, and if so, will incur cache re-population penalty.

Case  4: Both Core0 and Core1 are busy. It is not time for scheduling.

In addition to these scheduling rules, make the following two assumptions.

Assumption 1: Each process migration from one core to the other incurs a cache re-population time of 1 ms. 
Every time this happens, the current (remaining) CPU-burst time of the process increases by 1. Assume also that 
the initial cache-population time needed when the process is scheduled for the very first time is already included in  
the first CPU burst time of that process, that is, you do not need to add 1 ms at the beginning. Later on, each  
migration of each process will call for an additional CPU overhead of 1 ms.

Assumption 2: When two or more processes want to join the ready queue at the same time, they will do so in the 
increasing sequence of their PID’s.

Suppose that the system deals with three processes P1, P2, and P3 with the following details. P1 and P2 exit after 
their fourth CPU bursts, whereas P3 exits after its third CPU burst. All times are in ms.

Process PID
Arrival
Time

CPU
Burst 1

IO
Burst 1

CPU
Burst 2

IO
Burst 2

CPU
Burst 3

IO
Burst 3

CPU
Burst 4

P1 89 0 12 20 8 15 10 18 3

P2 123 7 6 18 2 12 7 14 5

P3 345 9 4 17 18 16 2 – –

(a)  Draw the Gantt chart for both Core0 and Core1. Shade the CPU-idle durations. In the Gantt chart, show the  
different CPU bursts of the process Pi as Pi(1), Pi(2), Pi(3), . . . (for i = 1, 2, 3).  [14]
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(b)  From the Gantt chart, compute the turnaround times and wait times of the three processes P1, P2, and P3.  
Include cache re-population times in the wait time (but not in the running time). Show your calculations and 
answers in the table below.    [6]

Process Running time Turnaround Time Wait time

P1

P2

P3
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12 + 20 + 8 + 15 + 10 + 18 + 3
= 86 91 – 0 = 91 91 – 86 = 5

6 + 18 + 2 + 12 + 7 + 14 + 5
= 64 76 – 7 = 69 69 – 64 = 5

4 + 17 + 18 + 16 + 2
= 57 69 – 9 = 60 60 – 57 = 3



3. [Synchronization examples]

(a)  The deadlock-free solution of the Dining Philosophers Problem, taught in the class, uses a semaphore vector  
s[], initialized to 0, and an integer vector state[] storing THINKING, HUNGRY, or EATING. Prof. X proposes alternate 
implementations of take_forks() or take_chopsticks() (see Fig. 3(a)) and put_forks() or put_chopsticks() 
(see Fig. 3(b)), to solve the Dining Philosophers Problem. Assume that mutex is initialized to 1.

void take_forks_X (int i) void put_forks_X (int i)
{ {

wait(mutex); wait(mutex);
state[i]=HUNGRY; test(LEFT);
test(i); test(RIGHT);
wait(&s[i]); state[i]=THINKING;
signal(mutex); signal(mutex);

} }

               Fig. 3(a)   Fig. 3(b)

(i) If Prof. X only replaces the take_forks_X() in the original Dining-Philosophers-Problem solution (he uses 
the original put_forks()), explain the effect of the revised solution.    [3]

(ii) If Prof. X only replaces the put_forks_X() in the original Dining-Philosopher-Problem solution (he uses 
the original take_forks()), explain the effect of the revised solution.    [3]

(b)  Consider a set of n processes, each of which executes the following piece of code (here we show the code of 
process  Pi). We wish to ensure that all the  n processes print  "Hello OS" (in any order), before any process is 
allowed to print "Bye OS".  This solution uses two semaphore variables x and y, initialized to 1 and 0, respectively. 
Moreover, the code utilizes a shared integer variable count, which is initialized to 0. Complete the code by filling 
up the (six) blanks.    [6]

Process Pi

printf("Hello OS") ;

wait( _______________________ ) ;

count++ ;

if ( ________________________________ )
 

________________________________ ;

signal( ________________________ ) ;

wait( ________________________ ) ;

__________________________ ;

printf("Bye OS") ;
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Suppose that Philosopher 0 is eating. Philosopher 1 will be blocked without releasing mutex. Hence all other 
philosophers will be blocked too.

Even if one philosopher i returns back the fork and executes put_fork_x(i), test(LEFT) and test(RIGHT) will fail to 
wake up the neighbors.

x

count == n

y

signal(y)

signal(y)

x



(c) The  Cigarette Smokers Problem is a classic synchronization problem. In this problem, three ingredients are 
required to construct and smoke a cigarette: tobacco, paper, and matches. There are four actors, each represented 
by a process. One of the actors is the agent, and the other three are smokers. The agent has an infinite supply of all  
of the three ingredients (tobacco, paper, and matches). Each of the three smokers has an infinite supply of only one 
ingredient and nothing else. That is, the first smoker possesses only tobacco, the second smoker only paper, and  
the third smoker only matches.

The three smoker processes run a loop in an attempt to smoke, which requires that they obtain one unit of both of  
the ingredients from the table, that they do not possess. For instance, the smoker with tobacco requires to obtain 
paper and matches from the table. The agent loops repeatedly, randomly choosing a pair of ingredients (say, paper 
and matches), puts them on the table to make available to the smokers. Each time the agent does this, one of the  
three smokers should be able to acquire all the three ingredients, and smoke. For example, if the agent chooses 
paper and matches, then the tobacco-possessing smoker can acquire these two items. Combined with its own 
supply of tobacco, it can then smoke. Until one smoker starts smoking, the agent waits.

There is a possibility of deadlock, as the agent puts paper and matches on the table. The smoker with tobacco 
acquires the paper, and the smoker with paper acquires the matches. Both are blocked for the third ingredient, and 
wait. The agent also waits, since none of the smokers is able to smoke. 

In the following, we supply an incomplete solution for the agent, the smoker with tobacco, the smoker with paper, 
and the smoker with matches. Complete the solution in order to ensure that there should not be any deadlock.  [12]

The proposed solution uses the following five semaphores.

agent = 0; // Ensures only one set of ingredients is placed at a time by the agent.
tobacco_sem = 0; // Wakes up the smoker to smoke, who has tobacco (when the other two ingredients are

   supplied by the agent).
paper_sem = 0; // Wakes up the smoker to smoke, who has paper (when the other two ingredients are

   supplied by the agent).
match_sem = 0; // Wakes up the smoker to smoke, who has matches (when the other two ingredients

   are supplied by the agent).
mutex = 1; // Ensures mutual exclusion while accessing the table (to put or get the ingredients).

Process agent

{
while (true) {

    wait( __________________________ ) ; 

    choice = randomly choose one pair of ingredients (tobacco and paper), (tobacco and matches), or
 (paper and matches);

    if (choice == (tobacco and paper)) {

        ____________________________________ ;   // Wake up the smoker with matches
    } 
    else if (choice == (tobacco and matches)) {

        ____________________________________ ;   // Wake up the smoker with paper
    } 
    else if (choice == (paper and matches)) {

        ____________________________________ ;  // Wake up the smoker with tobacco
    }

signal( ___________________________ ) ;
 

wait( ___________________________ ) ;
}

}
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mutex

signal(match_sem)

signal(paper_sem)

signal(tobacco_sem)

mutex

agent



Process smoker_with_tobacco

{
while (true) {

    wait( ___________________________ ) ; // Wait until paper and matches are on the table

    wait( ___________________________ ) ;       

/* take paper and matches */

    
    ____________________________________ ;    // Notify agent that ingredients are taken

    ____________________________________ ;    

    smoke();
}

}

Process smoker_with_paper

{
while (true) {

    wait( ___________________________ ) ; // Wait until tobacco and matches are on the table

    wait( ___________________________ ) ;      
 
    /* take tobacco and matches */

    ____________________________________ ;  // Notify agent that ingredients are taken

    ____________________________________ ;   

    smoke();
}

}

Process smoker_with_matches

{
while (true) {

    wait( ___________________________ ) ;  // Wait until tobacco and paper are on the table

    wait( ___________________________ ) ;       

/* take tobacco and paper */

    ____________________________________ ;     // Notify agent that ingredients are taken

    ____________________________________ ;    

    smoke();         
}

}  
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tobacco_sem

mutex

signal(agent)

signal(mutex)

signal(agent)

signal(agent)

signal(mutex)

signal(mutex)

mutex

mutex

paper_sem

match_sem



4. [Deadlock]
 
(a)  Consider a system with two semaphores: S1 initialized to 2, and S2 initialized to 0. Three processes P1, P2, 
and P3 run as follows. 

Process P1 Process P2 Process P3

wait(S1); wait(S1); wait(S2);
wait(S2); /* Critical Section */ /* Critical Section */
/* Critical Section */ signal(S2); signal(S2);
signal(S2); 
signal(S1);

Prove or disprove each of the following two statements with arguments.

(i)  Two or three of the processes P1, P2, and P3 may enter their critical sections at the same time.    [3]

(ii)  Suppose that we change the last line of Process P2 from  signal(S2); to  signal(S1); (the rest of the 
codes, and the initialization of S1 and S2 remain the same). Then, two or three of the processes P1, P2, and P3  
may end up in a deadlock among themselves.    [3]
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False. Process P2 enters its critical section first. Since S2 is initialized to 0, both P1 and P3 (if available) wait on it. 
Since S1 is initialized to 2, the first waits of P1 and P2 are non-blocking. Once P2 signals S2 after the completion of 
its critical section, this semaphore becomes 1, allowing only one of P1 and P3 to enter its critical section. After this 
process is done with its critical section, the other can enter.

False. For a deadlock to happen, a plural number of processes must hold some resource and wait for one or more 
other resources (the Hold-and-Wait or Circular-Wait condition). In this example, only P1 can be in such a situation. 



(b)  A computer system uses the Banker’s Algorithm to avoid deadlocks. Its current state is shown in the tables 
below, where P0, P1, P2, P3, P4 are processes, and R0, R1, R2, R3 are resource types. The existing resource vector 
E shows the total number of resource instances available in the system (before any allocation). The need matrix N 
represents the additional resource requirements of different processes. 

Current Allocation (C) Need Matrix (N)

R0 R1 R2 R3 R0 R1 R2 R3

P0 3 0 1 1 P0 1 1 0 0

P1 0 1 1 0 P1 0 1 0 2

P2 1 1 1 0 P2 3 1 0 0

P3 1 1 0 1 P3 0 0 1 0

P4 0 0 0 0 P4 2 1 1 0

Existing Resource Vector (E)

R0 R1 R2 R3

6 3 4 2

(i)  Show that the system is in a safe state. Show the relevant calculations in detail.    [5]
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Initially, available vector A = [1, 0, 1, 0].

First, P3 can run, since Need[P3]  ⩽ A.
P3 runs, and returns back the resources. 
Updated A = [2, 1, 1, 1].

Now, P0 can run, since Need[P0] is  ⩽ A.
P0 runs, and returns back the resources. 
Updated A = [5, 1, 2, 2].

This continues, and we get the safe sequence  <P3, P0, P1, P2, P4>.



(ii)  What will the system do if Process P4 requests one more unit of Resource R2? Show all the matrices (if 
this request is granted), and justify.    [5]
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If P4 makes a request for R2, and we allocate it to P4, the updated available vector is A = [1, 0, 0, 0].

The Current Allocation matrix changes to:

R0 R1 R2 R3
P0 3 0 1 1
P1 0 1 1 0
P2 3 1 0 0
P3 1 1 0 1
P4 0 0 1 0

The Need matrix changes to:

R0 R1 R2 R3
P0 1 1 0 0
P1 0 1 0 2
P2 1 1 1 0
P3 0 0 1 0
P4 2 1 0 0

Now, there is no process Pi , for which Need[Pi]  ⩽ A. That is, there is no safe sequence, and the system goes into an 
unsafe state. Therefore, the request of P4 cannot be granted.
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