
CS39002 OPERATING SYSTEMS LABORATORY
SPRING 2025

LAB ASSIGNMENT: 10
DATE: 02–APRIL –2025

__

Demand Paging with Page Replacement

In this assignment, we continue with the embedded device of LA9. The specifications of this system are
reproduced below. The input is to be read from search.txt which is organized in the same format as in LA9.

Total memory = 64 MB
Page/Frame size = 4 KB
OS usage = 16 MB (higher side)
User space = 48 MB
Number of user frames = 12288 (numbered 0, 1, 2, . . . , 12287)
Number of processes = n (in the range [50, 500], PID’s are numbered 0, 1, 2, . . . , n – 1)
Number of binary searches per process = m (in the range [10, 100])
Virtual memory size = 2048 pages (this is also the page-table size of each process)
Number of essential pages = 10 (page numbers 0, 1, 2, . . . , 9)
Number of pages for storing the array A = 2038 (page numbers 10, 11, 12, . . . , 2047)
Size of each page-table entry = 16 bits (unsigned short int)
14-bit frame addresses (bits 0 – 13), Bit 15 is the valid bit, Bit 14 to be used as the reference bit

In LA9, processes are swapped out when memory is full. In this assignment, we keep all the processes in
memory. When memory is full, we replace valid pages by new pages. Approximate LRU policy is used for
page replacement.

 Global frame allocation

Maintain a list of free frames (FFLIST). Each entry in the FFLIST consists of (1) a frame number, (2) the last
owner (PID) of the frame (–1 if none), and (3) the page number of the last owner stored in the frame (–1 if
no last owner). In LA9, the FFLIST consisted only of free-frame numbers, and was implemented as a FIFO
queue. Here, you need to make passes through the FFLIST, so it is technically no longer a queue. Use an
array of triples (frame number, last owner, last owner’s page number) as the FFLIST. Also maintain a counter
NFF (number of free frames). Make your own implementation.

To start with, add all the 12288 user frames to the FFLIST. When you start the n processes, allocate 10
essential frames to each from the FFLIST. Subsequently, free frames are allocated on demand. However, we
will never allow NFF (the number of free frames) to fall below NFFMIN = 1000. So long as we have
NFF > NFFMIN, any process requesting a frame is granted a free frame. You do not need to check how
many frames are already owned by the process. In our application, processes carry out binary searches in a
round-robin fashion, so this frame-allocation strategy will ensure more or less equal distribution of frames to
the processes. Although the sizes of A for different processes vary within a factor of 2, a proportional frame-
preallocation scheme based on the sizes of A may be more appropriate, but you do not need to do this.

When NFF = NFFMIN, and a process requests a frame, a free frame in the FFLIST is no longer allocated
straightaway to the process. On the contrary, a free frame in the FFLIST is swapped with a frame currently
allocated to the process. This situation is described in detail in the next section.

When a process exits (after completing its m searches), all the frames held by that process at that time are
returned to the FFLIST. These frames join the FFLIST with no last owner, because the exiting process will
never try to use/reclaim these (or other) frames. Free frames released by an exiting process will be allocated
to the existing processes on demand.

 Local page replacement

A process i, in each iteration of its binary-search loop, makes a memory access of A[M]. Assume that this
element is stored in logical page p of the process. If the page table of process i indicates the valid bit to be 1
for the p-th page, that page is already residing in a frame, so the process proceeds to the next iteration of the
binary-search loop. In the other case, that is, the valid bit is 0, this memory access encounters a page fault. If
NFF > NFFMIN, the process gets a free frame from the FFLIST, and continues. If NFF = NFFMIN, then a
page replacement is necessary.

We use the approximate LRU replacement algorithm. The 14-th bit in each page-table entry is used as the
reference bit. Moreover, each page-table entry should additionally contain a 16-bit counter for storing the
history of accesses made in the recent past. The 10 essential pages always have 0xffff as this history, and
will never be replaced. A page q with valid bit 1 and with the minimum history will be selected from the
page table for replacement. When a new page is loaded (after a page fault or otherwise), its history is set to
0xffff (it is the most recently used page at that moment, and must not be replaced in the next iteration of the
binary-search loop).

Any access of A[M] (with or without page fault) will set the reference bit of the corresponding page. After
the end of the binary-search loop, the history of each valid page is updated by a 1-bit right shift followed by
inserting the reference bit at the MSB (15-th) position. The reference bits of the valid pages are then cleared.

Once a page q (a valid page of minimum history) is located for replacement (to accommodate page p that
caused the page fault), the following steps should be carried out in the given order. Recall again that page
replacement is done only when NFF = NFFMIN.

1. First check in the FFLIST whether there exists a free frame f with last owner i and page number p. If
that is the case, page p of process i has been replaced in the recent past. Use this frame f to store the
new page p. No reloading of the page from the hard disk is needed in this case. In your program, you
actually do not load pages, but follow this strategy to simulate a real-life situation correctly.

2. If Attempt 1 fails, check in the FFLIST whether there is a free frame with no owner. If such a frame f
is found, allocate f to page p.

3. If both Attempts 1 and 2 fail, try to locate in the FFLIST a free frame whose last owner was i (of
course, the page number stored will be different from p, otherwise Attempt 1 would have succeeded).
If such a frame f is found, allocate f to page p. If there are multiple free frames with i as the last
owner, pick any one of them.

4. If all the above three attempts fail, pick a random free frame f from FFLIST for allocating to page p.

Once a free frame f is obtained to accommodate page p of process i, you need to free the frame g storing the
victim page q of process i. Add (g, i, q) to FFLIST. Also update the page table of process i to reflect these
changes.

When a process exits, add, to the FFLIST, all the frames currently held by that process, after clearing the
ownership information in all these frames.

Use a compile-time flag VERBOSE for the type of output. In the default (non-verbose) mode, print for each
process (and also the aggregate) the number of page accesses, the number and percentage of page faults, the
number and percentage of page replacements, and the number (and percentage) of page replacements
handled by each of Attempts 1 – 4. In the verbose mode, supply more detailed paging information. See the
sample provided.

Submit a single C/C++ file LRU.c(pp).

Sample Output

We use the same search.txt as in LA9, with n = 128 process, each making m = 64 binary searches. The non-
verbose output (statistics only) is given below. An archive (storing other files) will be provided to you. The
percentages of faults and replacements are with respect to the number of memory accesses, whereas the
percentages in attempt statistics are with respect to the number of page replacements.

gcc -Wall -o runsearch LRU.c
./runsearch
+++ Page access summary
 PID Accesses Faults Replacements Attempts
 0 1339 409 (30.55%) 335 (25.02%) 6 + 5 + 324 + 0 (1.79% + 1.49% + 96.72% + 0.00%)
 1 1326 356 (26.85%) 266 (20.06%) 1 + 4 + 261 + 0 (0.38% + 1.50% + 98.12% + 0.00%)
 2 1322 379 (28.67%) 291 (22.01%) 9 + 7 + 275 + 0 (3.09% + 2.41% + 94.50% + 0.00%)
 3 1282 336 (26.21%) 266 (20.75%) 8 + 9 + 249 + 0 (3.01% + 3.38% + 93.61% + 0.00%)
 4 1280 367 (28.67%) 287 (22.42%) 13 + 11 + 263 + 0 (4.53% + 3.83% + 91.64% + 0.00%)
 5 1290 331 (25.66%) 252 (19.53%) 4 + 4 + 244 + 0 (1.59% + 1.59% + 96.83% + 0.00%)
 6 1288 373 (28.96%) 293 (22.75%) 4 + 14 + 275 + 0 (1.37% + 4.78% + 93.86% + 0.00%)
 7 1341 408 (30.43%) 314 (23.42%) 11 + 15 + 288 + 0 (3.50% + 4.78% + 91.72% + 0.00%)
 8 1328 387 (29.14%) 298 (22.44%) 3 + 13 + 282 + 0 (1.01% + 4.36% + 94.63% + 0.00%)
 9 1302 381 (29.26%) 293 (22.50%) 0 + 9 + 284 + 0 (0.00% + 3.07% + 96.93% + 0.00%)
 10 1334 403 (30.21%) 316 (23.69%) 12 + 8 + 296 + 0 (3.80% + 2.53% + 93.67% + 0.00%)
 11 1339 402 (30.02%) 319 (23.82%) 11 + 12 + 296 + 0 (3.45% + 3.76% + 92.79% + 0.00%)
 12 1342 417 (31.07%) 322 (23.99%) 15 + 15 + 292 + 0 (4.66% + 4.66% + 90.68% + 0.00%)
 13 1334 390 (29.24%) 304 (22.79%) 6 + 13 + 285 + 0 (1.97% + 4.28% + 93.75% + 0.00%)
 14 1310 371 (28.32%) 291 (22.21%) 2 + 5 + 284 + 0 (0.69% + 1.72% + 97.59% + 0.00%)
 15 1320 381 (28.86%) 300 (22.73%) 10 + 16 + 274 + 0 (3.33% + 5.33% + 91.33% + 0.00%)
 16 1337 385 (28.80%) 292 (21.84%) 4 + 12 + 276 + 0 (1.37% + 4.11% + 94.52% + 0.00%)
 17 1334 393 (29.46%) 313 (23.46%) 6 + 15 + 292 + 0 (1.92% + 4.79% + 93.29% + 0.00%)
 18 1295 362 (27.95%) 284 (21.93%) 8 + 12 + 264 + 0 (2.82% + 4.23% + 92.96% + 0.00%)
 19 1334 384 (28.79%) 298 (22.34%) 12 + 12 + 274 + 0 (4.03% + 4.03% + 91.95% + 0.00%)
 20 1335 409 (30.64%) 318 (23.82%) 7 + 12 + 299 + 0 (2.20% + 3.77% + 94.03% + 0.00%)
 21 1304 360 (27.61%) 270 (20.71%) 10 + 7 + 253 + 0 (3.70% + 2.59% + 93.70% + 0.00%)
 22 1291 367 (28.43%) 285 (22.08%) 8 + 11 + 266 + 0 (2.81% + 3.86% + 93.33% + 0.00%)
 23 1326 409 (30.84%) 325 (24.51%) 8 + 12 + 305 + 0 (2.46% + 3.69% + 93.85% + 0.00%)
 24 1318 395 (29.97%) 311 (23.60%) 1 + 16 + 294 + 0 (0.32% + 5.14% + 94.53% + 0.00%)
 25 1338 411 (30.72%) 323 (24.14%) 6 + 12 + 305 + 0 (1.86% + 3.72% + 94.43% + 0.00%)
 26 1279 339 (26.51%) 262 (20.48%) 4 + 7 + 251 + 0 (1.53% + 2.67% + 95.80% + 0.00%)
 27 1331 397 (29.83%) 306 (22.99%) 5 + 7 + 294 + 0 (1.63% + 2.29% + 96.08% + 0.00%)
 28 1312 371 (28.28%) 287 (21.88%) 15 + 13 + 259 + 0 (5.23% + 4.53% + 90.24% + 0.00%)
 29 1296 355 (27.39%) 273 (21.06%) 10 + 8 + 255 + 0 (3.66% + 2.93% + 93.41% + 0.00%)
 30 1318 384 (29.14%) 304 (23.07%) 11 + 11 + 282 + 0 (3.62% + 3.62% + 92.76% + 0.00%)
 31 1337 394 (29.47%) 305 (22.81%) 3 + 10 + 292 + 0 (0.98% + 3.28% + 95.74% + 0.00%)
 32 1301 361 (27.75%) 275 (21.14%) 9 + 12 + 254 + 0 (3.27% + 4.36% + 92.36% + 0.00%)
 33 1299 350 (26.94%) 266 (20.48%) 11 + 8 + 247 + 0 (4.14% + 3.01% + 92.86% + 0.00%)
 34 1282 349 (27.22%) 273 (21.29%) 8 + 10 + 255 + 0 (2.93% + 3.66% + 93.41% + 0.00%)
 35 1325 365 (27.55%) 280 (21.13%) 1 + 11 + 268 + 0 (0.36% + 3.93% + 95.71% + 0.00%)
 36 1339 422 (31.52%) 341 (25.47%) 10 + 13 + 318 + 0 (2.93% + 3.81% + 93.26% + 0.00%)
 37 1337 420 (31.41%) 330 (24.68%) 5 + 11 + 314 + 0 (1.52% + 3.33% + 95.15% + 0.00%)
 38 1305 367 (28.12%) 287 (21.99%) 11 + 9 + 267 + 0 (3.83% + 3.14% + 93.03% + 0.00%)
 39 1338 376 (28.10%) 290 (21.67%) 5 + 16 + 269 + 0 (1.72% + 5.52% + 92.76% + 0.00%)
 40 1306 391 (29.94%) 308 (23.58%) 8 + 12 + 288 + 0 (2.60% + 3.90% + 93.51% + 0.00%)
 41 1341 390 (29.08%) 307 (22.89%) 5 + 11 + 291 + 0 (1.63% + 3.58% + 94.79% + 0.00%)
 42 1321 388 (29.37%) 303 (22.94%) 14 + 13 + 276 + 0 (4.62% + 4.29% + 91.09% + 0.00%)
 43 1342 390 (29.06%) 304 (22.65%) 7 + 7 + 290 + 0 (2.30% + 2.30% + 95.39% + 0.00%)
 44 1294 381 (29.44%) 304 (23.49%) 6 + 13 + 285 + 0 (1.97% + 4.28% + 93.75% + 0.00%)
 45 1335 394 (29.51%) 310 (23.22%) 0 + 8 + 302 + 0 (0.00% + 2.58% + 97.42% + 0.00%)
 46 1343 422 (31.42%) 336 (25.02%) 7 + 11 + 318 + 0 (2.08% + 3.27% + 94.64% + 0.00%)
 47 1288 366 (28.42%) 280 (21.74%) 9 + 12 + 259 + 0 (3.21% + 4.29% + 92.50% + 0.00%)
 48 1316 355 (26.98%) 272 (20.67%) 8 + 12 + 252 + 0 (2.94% + 4.41% + 92.65% + 0.00%)
 49 1334 398 (29.84%) 311 (23.31%) 9 + 14 + 288 + 0 (2.89% + 4.50% + 92.60% + 0.00%)
 50 1311 379 (28.91%) 289 (22.04%) 9 + 10 + 270 + 0 (3.11% + 3.46% + 93.43% + 0.00%)
 51 1314 368 (28.01%) 281 (21.39%) 8 + 13 + 260 + 0 (2.85% + 4.63% + 92.53% + 0.00%)
 52 1335 417 (31.24%) 342 (25.62%) 7 + 12 + 323 + 0 (2.05% + 3.51% + 94.44% + 0.00%)
 53 1318 358 (27.16%) 276 (20.94%) 2 + 6 + 268 + 0 (0.72% + 2.17% + 97.10% + 0.00%)
 54 1326 391 (29.49%) 311 (23.45%) 5 + 12 + 294 + 0 (1.61% + 3.86% + 94.53% + 0.00%)
 55 1336 373 (27.92%) 286 (21.41%) 8 + 10 + 268 + 0 (2.80% + 3.50% + 93.71% + 0.00%)
 56 1317 378 (28.70%) 296 (22.48%) 6 + 10 + 280 + 0 (2.03% + 3.38% + 94.59% + 0.00%)
 57 1334 402 (30.13%) 308 (23.09%) 0 + 5 + 303 + 0 (0.00% + 1.62% + 98.38% + 0.00%)
 58 1335 396 (29.66%) 309 (23.15%) 6 + 7 + 296 + 0 (1.94% + 2.27% + 95.79% + 0.00%)
 59 1321 374 (28.31%) 287 (21.73%) 4 + 7 + 276 + 0 (1.39% + 2.44% + 96.17% + 0.00%)
 60 1338 397 (29.67%) 316 (23.62%) 1 + 3 + 312 + 0 (0.32% + 0.95% + 98.73% + 0.00%)
 61 1330 391 (29.40%) 308 (23.16%) 7 + 6 + 295 + 0 (2.27% + 1.95% + 95.78% + 0.00%)
 62 1295 374 (28.88%) 301 (23.24%) 0 + 5 + 296 + 0 (0.00% + 1.66% + 98.34% + 0.00%)
 63 1312 375 (28.58%) 290 (22.10%) 1 + 3 + 286 + 0 (0.34% + 1.03% + 98.62% + 0.00%)
 64 1339 419 (31.29%) 330 (24.65%) 3 + 7 + 320 + 0 (0.91% + 2.12% + 96.97% + 0.00%)
 65 1314 381 (29.00%) 295 (22.45%) 9 + 6 + 280 + 0 (3.05% + 2.03% + 94.92% + 0.00%)
 66 1325 404 (30.49%) 314 (23.70%) 2 + 6 + 306 + 0 (0.64% + 1.91% + 97.45% + 0.00%)
 67 1307 361 (27.62%) 282 (21.58%) 0 + 0 + 281 + 1 (0.00% + 0.00% + 99.65% + 0.35%)
 68 1311 352 (26.85%) 272 (20.75%) 6 + 6 + 260 + 0 (2.21% + 2.21% + 95.59% + 0.00%)
 69 1333 414 (31.06%) 323 (24.23%) 6 + 8 + 309 + 0 (1.86% + 2.48% + 95.67% + 0.00%)
 70 1310 389 (29.69%) 305 (23.28%) 0 + 4 + 301 + 0 (0.00% + 1.31% + 98.69% + 0.00%)
 71 1285 344 (26.77%) 274 (21.32%) 5 + 7 + 262 + 0 (1.82% + 2.55% + 95.62% + 0.00%)
 72 1333 403 (30.23%) 315 (23.63%) 3 + 5 + 307 + 0 (0.95% + 1.59% + 97.46% + 0.00%)
 73 1280 315 (24.61%) 233 (18.20%) 1 + 0 + 231 + 1 (0.43% + 0.00% + 99.14% + 0.43%)

 74 1315 367 (27.91%) 282 (21.44%) 3 + 6 + 273 + 0 (1.06% + 2.13% + 96.81% + 0.00%)
 75 1321 368 (27.86%) 278 (21.04%) 0 + 0 + 277 + 1 (0.00% + 0.00% + 99.64% + 0.36%)
 76 1305 361 (27.66%) 294 (22.53%) 2 + 7 + 285 + 0 (0.68% + 2.38% + 96.94% + 0.00%)
 77 1326 409 (30.84%) 320 (24.13%) 2 + 5 + 313 + 0 (0.62% + 1.56% + 97.81% + 0.00%)
 78 1286 345 (26.83%) 265 (20.61%) 4 + 7 + 254 + 0 (1.51% + 2.64% + 95.85% + 0.00%)
 79 1331 390 (29.30%) 306 (22.99%) 1 + 7 + 298 + 0 (0.33% + 2.29% + 97.39% + 0.00%)
 80 1313 372 (28.33%) 284 (21.63%) 4 + 6 + 274 + 0 (1.41% + 2.11% + 96.48% + 0.00%)
 81 1331 377 (28.32%) 286 (21.49%) 11 + 7 + 268 + 0 (3.85% + 2.45% + 93.71% + 0.00%)
 82 1315 379 (28.82%) 293 (22.28%) 6 + 6 + 281 + 0 (2.05% + 2.05% + 95.90% + 0.00%)
 83 1310 375 (28.63%) 290 (22.14%) 3 + 3 + 284 + 0 (1.03% + 1.03% + 97.93% + 0.00%)
 84 1315 369 (28.06%) 286 (21.75%) 0 + 3 + 283 + 0 (0.00% + 1.05% + 98.95% + 0.00%)
 85 1319 353 (26.76%) 265 (20.09%) 2 + 9 + 254 + 0 (0.75% + 3.40% + 95.85% + 0.00%)
 86 1340 407 (30.37%) 316 (23.58%) 2 + 5 + 309 + 0 (0.63% + 1.58% + 97.78% + 0.00%)
 87 1297 351 (27.06%) 263 (20.28%) 2 + 3 + 258 + 0 (0.76% + 1.14% + 98.10% + 0.00%)
 88 1289 373 (28.94%) 291 (22.58%) 0 + 0 + 290 + 1 (0.00% + 0.00% + 99.66% + 0.34%)
 89 1309 384 (29.34%) 305 (23.30%) 4 + 7 + 294 + 0 (1.31% + 2.30% + 96.39% + 0.00%)
 90 1308 361 (27.60%) 281 (21.48%) 0 + 5 + 276 + 0 (0.00% + 1.78% + 98.22% + 0.00%)
 91 1320 385 (29.17%) 302 (22.88%) 5 + 5 + 292 + 0 (1.66% + 1.66% + 96.69% + 0.00%)
 92 1280 339 (26.48%) 259 (20.23%) 0 + 5 + 254 + 0 (0.00% + 1.93% + 98.07% + 0.00%)
 93 1299 369 (28.41%) 298 (22.94%) 3 + 7 + 288 + 0 (1.01% + 2.35% + 96.64% + 0.00%)
 94 1315 382 (29.05%) 299 (22.74%) 1 + 4 + 294 + 0 (0.33% + 1.34% + 98.33% + 0.00%)
 95 1325 396 (29.89%) 313 (23.62%) 3 + 7 + 303 + 0 (0.96% + 2.24% + 96.81% + 0.00%)
 96 1334 409 (30.66%) 316 (23.69%) 1 + 3 + 312 + 0 (0.32% + 0.95% + 98.73% + 0.00%)
 97 1312 376 (28.66%) 294 (22.41%) 4 + 7 + 283 + 0 (1.36% + 2.38% + 96.26% + 0.00%)
 98 1341 392 (29.23%) 304 (22.67%) 1 + 7 + 296 + 0 (0.33% + 2.30% + 97.37% + 0.00%)
 99 1337 402 (30.07%) 316 (23.64%) 2 + 6 + 308 + 0 (0.63% + 1.90% + 97.47% + 0.00%)
 100 1328 385 (28.99%) 317 (23.87%) 7 + 8 + 302 + 0 (2.21% + 2.52% + 95.27% + 0.00%)
 101 1336 412 (30.84%) 330 (24.70%) 5 + 4 + 321 + 0 (1.52% + 1.21% + 97.27% + 0.00%)
 102 1305 345 (26.44%) 269 (20.61%) 7 + 9 + 253 + 0 (2.60% + 3.35% + 94.05% + 0.00%)
 103 1280 353 (27.58%) 275 (21.48%) 2 + 7 + 266 + 0 (0.73% + 2.55% + 96.73% + 0.00%)
 104 1337 388 (29.02%) 298 (22.29%) 1 + 6 + 291 + 0 (0.34% + 2.01% + 97.65% + 0.00%)
 105 1339 397 (29.65%) 310 (23.15%) 3 + 7 + 300 + 0 (0.97% + 2.26% + 96.77% + 0.00%)
 106 1289 370 (28.70%) 295 (22.89%) 3 + 5 + 287 + 0 (1.02% + 1.69% + 97.29% + 0.00%)
 107 1285 374 (29.11%) 300 (23.35%) 5 + 7 + 288 + 0 (1.67% + 2.33% + 96.00% + 0.00%)
 108 1339 405 (30.25%) 319 (23.82%) 6 + 7 + 306 + 0 (1.88% + 2.19% + 95.92% + 0.00%)
 109 1314 402 (30.59%) 319 (24.28%) 2 + 5 + 312 + 0 (0.63% + 1.57% + 97.81% + 0.00%)
 110 1338 406 (30.34%) 316 (23.62%) 1 + 3 + 312 + 0 (0.32% + 0.95% + 98.73% + 0.00%)
 111 1282 364 (28.39%) 283 (22.07%) 2 + 4 + 277 + 0 (0.71% + 1.41% + 97.88% + 0.00%)
 112 1339 408 (30.47%) 310 (23.15%) 1 + 6 + 303 + 0 (0.32% + 1.94% + 97.74% + 0.00%)
 113 1335 401 (30.04%) 312 (23.37%) 3 + 4 + 305 + 0 (0.96% + 1.28% + 97.76% + 0.00%)
 114 1337 406 (30.37%) 319 (23.86%) 3 + 6 + 310 + 0 (0.94% + 1.88% + 97.18% + 0.00%)
 115 1303 377 (28.93%) 303 (23.25%) 10 + 9 + 284 + 0 (3.30% + 2.97% + 93.73% + 0.00%)
 116 1311 372 (28.38%) 283 (21.59%) 3 + 5 + 275 + 0 (1.06% + 1.77% + 97.17% + 0.00%)
 117 1322 372 (28.14%) 281 (21.26%) 1 + 5 + 275 + 0 (0.36% + 1.78% + 97.86% + 0.00%)
 118 1317 347 (26.35%) 260 (19.74%) 4 + 6 + 250 + 0 (1.54% + 2.31% + 96.15% + 0.00%)
 119 1316 372 (28.27%) 288 (21.88%) 2 + 8 + 278 + 0 (0.69% + 2.78% + 96.53% + 0.00%)
 120 1314 371 (28.23%) 284 (21.61%) 2 + 3 + 279 + 0 (0.70% + 1.06% + 98.24% + 0.00%)
 121 1300 370 (28.46%) 287 (22.08%) 6 + 5 + 276 + 0 (2.09% + 1.74% + 96.17% + 0.00%)
 122 1285 352 (27.39%) 274 (21.32%) 7 + 5 + 262 + 0 (2.55% + 1.82% + 95.62% + 0.00%)
 123 1296 368 (28.40%) 281 (21.68%) 8 + 7 + 266 + 0 (2.85% + 2.49% + 94.66% + 0.00%)
 124 1321 357 (27.02%) 276 (20.89%) 8 + 7 + 261 + 0 (2.90% + 2.54% + 94.57% + 0.00%)
 125 1326 404 (30.47%) 313 (23.60%) 2 + 6 + 305 + 0 (0.64% + 1.92% + 97.44% + 0.00%)
 126 1318 389 (29.51%) 310 (23.52%) 1 + 4 + 305 + 0 (0.32% + 1.29% + 98.39% + 0.00%)
 127 1316 387 (29.41%) 302 (22.95%) 6 + 7 + 289 + 0 (1.99% + 2.32% + 95.70% + 0.00%)

 Total 168588 48691 (28.88%) 37943 (22.51%) 642 + 1000 + 36297 + 4 (1.69% + 2.64% + 95.66% + 0.01%)

You may use the following makefile.

run: LRU.c
 gcc -Wall -o runsearch LRU.c
 ./runsearch

vrun: LRU.c
 gcc -Wall -DVERBOSE -o runsearch LRU.c
 ./runsearch

db: gensearch.c
 gcc -Wall -o gensearch gensearch.c
 ./gensearch

clean:
 -rm -f runsearch gensearch
