
CS39002 OPERATING SYSTEMS LABORATORY

SPRING 2025

LAB ASSIGNMENT: 6
DATE: 05–MARCH–2025

________________________________________________________________________________

 Shared memory and semaphores 

Barrackpore Food Bar (BarFooBar) is an upscale dine-in restaurant that accepts lunch customers 
from 11:00am to 3:00pm. It has two cooks C and D who prepare food in parallel. The restaurant has 
only ten tables, each capable of accommodating a customer party (henceforth abbreviated just as a 
customer) consisting of one to four individuals. No table is shared by multiple customers at any 
time. Only after one customer finishes and leaves, another new customer can occupy that table. The  
restaurant has five waiters U, V, W, X, and Y who serve the customers in a circular fashion, that is, 
U serves the first customer, V the second customer, W the third customer, X the fourth customer, Y 
the fifth customer, and then again U serves the sixth customer, V serves the seventh customer, and 
so on. Each customer, upon arrival to BarFooBar, checks whether there is any empty table. If not, it 
leaves. Otherwise, it uses an empty table, seeks help from the next serving waiter, gives order, and 
waits until food is served. A waiter, upon receiving the order from a customer, queues a cooking 
request. The two cooks C and D read requests from the queue, prepare food in the orders, and notify 
the waiters from whom the orders came. The waiters serve the prepared food to the corresponding 
customers. After a customer eats, it leaves, releasing the table it occupies.

In this assignment, you simulate a lunch session using multiple processes that share information 
using a shared array of integers, and synchronize using semaphores. All times are given in minutes 
relative to the beginning of the session at  11:00am. However,  unlike the discrete-event  system 
simulation of Assignment 3, you make a timed simulation. Your simulation must not run for four-
plus hours (11:00am to 3:00pm+). Scale down each minute to a small time like 100 ms, so that the  
simulation finishes within a minute. For today’s computers, 100 ms is a lot of time, and should be  
sufficient for a few operations to be done in a minute by the processes in this assignment.

The processes

Each entity in the simulation is to be implemented by a process. The behaviors of these processes 
are now elaborated.

 Cooks C and D 

Each cook is a process. These processes are launched first (before any waiter or customer process).  
A cook runs the following loop.

Repeat until no more cooking requests can come on the day (see End of session below):
{

Wait until woken up by a waiter submitting a cooking request.
Read a cooking request (waiter no, customer ID, count of persons for that customer).
Prepare food for the order (five minutes needed for each person).
Notify the waiter in the order that food is ready.

}



Write a program cook.c to implement this behavior. The program launches a wrapper process. This 
is the first program that you run from a terminal. The wrapper creates two cook processes C and D, 
each of which jumps to the function cmain() that implements the above pseudocode for each cook. 
Note that  cmain() does not return to the  main() function of the wrapper process (the parent of 
cooks). Do not use exec. The parent should wait for C and D to terminate.

The cook program must be the first to run, and it is the duty of the wrapper (parent) to create the  
IPC resources (shared memory and semaphores) explained later. All other processes (including the 
cooks  C and  D)  will  only  use  these  resources.  Use  ftok()  with  appropriate  parameters  so  that 
unrelated processes can share the shmid and the semid’s.

 Waiters U, V, W, X, and Y 

The pseudocode for each waiter is given below.

Repeat until there are no more customers to serve on the day (see End of session below):
{

Wait until woken up by a cook or a new customer.
If a signal from a cook is pending, then do: {

Serve food to the customer of that order (wake up the waiting customer).
} else if a signal from a new customer is pending, then do: {

Read details of the customer (number and count) from the waiter’s queue.
Take order from the customer:

This involves no real operations.
Assume that each order collection takes one minute.
The waiter simulates order collection by waiting for one minute.

Write the order (waiter_id, customer_id, customer_cnt) to the cooks’ queue.
}

}

Write a program  waiter.c for the waiters. This program again launches a wrapper process which 
creates five child processes  U,  V,  W,  X, and  Y, each of which jumps to a function  wmain() that 
implements the above pseudocode for a waiter. The function wmain() does not return to the main() 
function of the wrapper process (parent of the five waiters). Do not use exec. The parent waits until 
all the five child processes terminate.

This is the second program to run. Recall that cook runs in one terminal. Launch waiter in a second 
terminal.

 The customers 

Each customer runs the following pseudocode.

If the time is after 3:00pm, leave.
If no table is empty, leave.
Otherwise, do the following: {

Use an empty table.
Find the waiter to serve.
Write (customer_ID, customer_cnt) to that waiter’s queue.
Signal the waiter to take the order.



Wait for the waiter to attend (signal from the waiter).
Place order (no real operation).
Wait for food to be served (signal from that waiter).
Eat food (this takes 30 minutes irrespective of the count of individuals).
Free the table for future customers (if any).
Leave.

} 

Write  a  file  customer.c.  This  program launches  a  wrapper  process  which  is  the  parent  of  all  
customer processes. The parent reads the information of all customers from a text file customers.txt. 
This file lists all customers chronologically with respect to their arrival times. Each line consists of  
the following information about a customer (party).

• Customer_ID (a positive integer in the sequence 1, 2, 3, . . . in the order of arrival time)
• Arrival time (a non-negative integer, minutes after 11:00am)
• Count (an integer in the range 1 – 4 standing for the number of individuals in the party)

The file is terminated by a line starting with –1 (an invalid Customer_ID). A random customer 
generator will be provided to you in the file gencustomers.c.

The parent of all customer processes reads the file line by line, and forks a child process for each 
customer.  Each child (a  customer)  jumps to  the function  cmain()  which implements  the above 
pseudocode for a customer, and does not return to the main() function of the parent. The three items 
about the customer (ID, arrival time, and count) as read from the input file are passed as arguments  
of  cmain(). The parent process must maintain the time (in the simulated sense with one minute 
scaled down to 100 ms). That is, if the arrival times of two consecutive customers are different, then 
the parent should wait for the interval standing for the difference of these two arrival times.

This is the last program to start running (cooks and waiters must be ready beforehand to serve 
customers). Do it in a third terminal. Note also that the last process to terminate is a customer that is  
the last to finish eating. The parent of the customer processes must wait until all the forked child 
processes terminate. The parent then removes the IPC resources (shared memory and semaphores) 
from the system, before it exits.

 End of session 

For customers, the input file customers.txt is an indication of when the customers arrive and leave 
(with or without the service of the restaurant). But the cooks and the waiters must know when to  
stop. The first criterion is that the (simulated) time must be at least 3:00pm.

A cook can leave when it is after 3:00pm and the cook queue is empty. Additionally, the last cook  
sees that there are no orders to be served. It then wakes up all the five waiters.

For a waiter,  the termination criterion consists of time later than 3:00pm and no new-customer 
requests pending in that waiter’s queue. The waiter can check that either after serving food to the 
last of its customers or when it is woken up by the last terminating cook.

The above termination criterion does not handle the situation when the restaurant has no customers 
at 3:00pm. Assume that BarFooBar is a very busy restaurant, and this situation will not happen in 
practice.



 Simulation of time 

In this assignment, time is simulated by time (not by an event queue). Each minute is to be scaled 
down to a small interval like 100 ms. Every event should happen using that scaled-down definition 
of a minute. The simulated time (an integer, number of minutes after 11:00am) is maintained in a  
shared variable time. This variable is initialized to 0 (by the parent of the cooks), indicating that the 
restaurant opens for customers at 11:00am. A new customer sets time to its arrival time. Waits on 
mutexes and semaphores do not change time. The waits that simulate some delay changes time. This 
includes the following three delays.

• The parent of customers waits between two consecutive arrivals as given in the input file.
• A waiter takes order from a customer. This takes one minute.
• A cook prepares food for c customers in an order. This takes 5c minutes.
• A customer eats after food is served to it. This takes 30 minutes.

Each such delay  is  implemented  by using  usleep()  with  an  appropriate  argument.  The  process 
calling this should record the current  time (call it  curr_time) before it goes to the sleep. When it 
wakes up (end of sleep, not a signal), it adds the delay time (in minutes) to curr_time, and stores 
that  sum in the shared variable  time.  Notice that  time may have been changed (by some other 
process) during the interval [curr_time, curr_time + delay]. So time should be read before going to 
sleep (not after waking up from the sleep).

Keep a check that no process attempts to change time to a strictly smaller value (changing time to 
the same value is possible). If so, issue a warning message that setting  time fails (and do not set 
time). In a proper simulation (assuming that the scaled-down interval for one minute is sufficient for 
all the operations done by the processes in that minute), this should never happen. If your program 
issues this warning, address the problem. If your computer (perhaps virtual) is very slow, try by 
changing 100 ms to one second (or slightly longer). If the problem persists, the source must be 
elsewhere. After all, one second is electronically a huge time for a few calculations and a few queue  
and semaphore operations, and there are not too many processes doing those in any minute.

IPC resources

 Shared-memory segment 

All  the  processes  in  this  assignment  share  information  by writing  to  and reading from shared 
memory. Use a single shared-memory segment (call it M) that should be spacious enough to store 
all  the shared data structures needed. This includes some shared int  variables along with some 
queues, as explained below. Assume that we can have no more than 200 customers per day, so each 
single waiter would handle at most 40 customers. Some customers leave owing to unavailability of 
tables without involving any waiter at all. In any case, plan for each waiter capable of handling 
about 100 customers. Organize the shared-memory segment M as follows.

M[0] time to be initialized to 0
M[1] number of empty tables to be initialized to 10
M[2] waiter number to serve the next customer to be initialized to 0
M[3] number of orders pending for the cooks to be initialized to 0
. . .

You may store, as per your need, other individual int variables at the beginning of M. Let us reserve 
the first 100 int cells of M for that purpose.



Additionally,  M should store six queues: one for the cooks, and five others for the waiters. Each 
such queue can grow to a limited size known beforehand. You may implement each queue as a 
circular queue at certain location on M (known beforehand to all the relevant processes). However, 
you may go for a simpler implementation. Again because of the limited total size, the queue may be  
allowed to move forward in M as time passes.

Each element in a waiter’s queue consists of a customer ID (positive integer) and the count of 
individuals in that customer party (an integer in the range 1 – 4). Upon arrival, a new customer puts  
these two integers at the back of the queue of its waiter (read from M[2]). We also need to maintain 
the indices of the front and back of the queue. In short, a waiter queue will look as follows.

In addition to this queue, a waiter needs to maintain two int values. A waiter is woken up by a cook 
(when food is ready) or by a new customer willing to place order. Upon waking up, the waiter needs 
to know the reason why it is woken up. The cook writes the customer ID (for which food is just  
prepared) in the cell marked as  FR. The cell  PO may be used by the customers to indicate how 
many customers are waiting to place order. After waking up, a waiter first attends FR (if available). 
If not, a single PO request is served. Since a waiter handles less than 100 customers, use a 200-int 
contiguous area of M for storing all these items, for each waiter.

A cooking request consists of three items: the waiter who supplies the order, and the customer ID 
and the customer count in that order. The cooking-request queue can be implemented by storing the 
requests in consecutive triples. Again, this can be a moving array (circular arrays may be avoided 
for simplicity). Since there are at most 200 customers, 600 int cells suffice. You need two additional  
cells for storing the front and the back indices of the queue.

To sum up, the shared-memory segment is organized as follows.

First 100 cells Global int variables (you don’t have to use all the cells)
Cells 100 – 299 For waiter U
Cells 300 – 499 For waiter V
Cells 500 – 699 For waiter W
Cells 700 – 899 For waiter X
Cells 900 – 1099 For waiter Y
Cells 1100 – 2000 For cooking queue

Decide the size of the shared-memory segment (for shmget) accordingly.

 Semaphores 

mutex a single semaphore for protecting M to be initialized to 1
cook a single semaphore for both the cooks to be initialized to 0
waiter five semaphores, one for each waiter to be initialized to 0
customer a set of semaphores, one for each customer to be initialized to 0



The wait and signal operations on these semaphores are explained in connection with the processes.

Do not use POSIX semaphores (sem_open, sem_wait, sem_post). Use legacy System V semaphores 
(semget, semctl, semop), because we (the teachers) want you to grow familiarity with these calls.

Sample makefile

all:
        gcc -Wall -o cook cook.c
        gcc -Wall -o waiter waiter.c
        gcc -Wall -o customer customer.c

db:
        gcc -Wall -o gencustomers gencustomers.c
        ./gencustomers > customers.txt

clean:
        -rm -f cook waiter customer gencustomers

Sample Output

A sample  input  file  customers.txt and  the  transcripts  in  the  three  windows  (cook,  waiter,  and 
customer) will be provided to you as a zip archive. You may also combine the three transcripts into 
a single one by running the three programs in the same terminal. First, run cook in the background. 
Then, run  waiter, again in the  background. Finally, run  customer (in foreground or background). 
The combined transcript is also supplied in the zip archive.

________________________________________________________________________________

 Submit a single tar/tgz/zip archive containing all your c/cpp sources. 


