CS39002 Operating Systems Laboratory
Spring 2025

Lab Assignment: 3
Date of submission: 22—Jan —2025

Performance Comparison of Some Scheduling Algorithms

In this assignment, you compare the performance of FCFS (First-Come-First-Serve) scheduling with that of
RR (Round-Robin) scheduling, and also the effect of the time quantum ¢ on the performance of RR
scheduling. You deal with the case of a single CPU. FCFS scheduling can be considered as a special case of
RR scheduling with ¢ = oo, so you only work on RR scheduling, and specify ¢ as a parameter. You do not
deal with real processes, but simulate the behavior of the CPU on processes with random behavior.

The details of the processes are stored in a text file proc.txt. The file starts with the number n of processes
that you are going to deal with. Each of the remaining » lines in the file stores the following information
about a process. The lines may appear in any sequence (not necessarily sorted by IDs or arrival times).

ID ARRIVAL TIME CpPU, 10, CPU, 10, ... CPU, -1

Each process is given a unique integer ID (you may think of this as the PID of the process). This is followed
by the time when the process arrives (a non-negative integer). This is followed by a sequence of alternate
CPU- and IO-burst times (positive integers). The list ends with —1 as an IO-burst time indicating the end of
the process. Assume that all times are in milliseconds. In reality, the burst times are not known beforehand,
but you deal with the performance of the scheduling algorithms on the given processes, so assume that these
burst times are exact. You are not required to implement SJF scheduling, so whether or not you can estimate
burst times is not a concern to this assignment.

A process-generator program is supplied to you as genproc.c. Compile and run the code with n (number of
processes) as an optional command-line argument. Without this argument, n = 100 is taken. This generates
data for n processes with the following randomly chosen parameters.

Process type Probability CPU burst time 10 burst time # CPU bursts # 10 burst
10-bound 90% 1-15 50-200 4-10 3-9
CPU-bound 10% 100 —300 50 -200 3-7 2-6

Each process is assumed to start and end with CPU bursts, so the number of 10 bursts is one less than the
number of CPU bursts. You may use these statistics to determine your array sizes.

Part 1: Read the input file

Define a structure to store the information about the processes. Each process requires storage for the ID, the
arrival time, the number of bursts, and the burst times. In addition, you store additional information (like
state of the process, which burst it is in, and so on) as needed by the simulation. It is your choice whatever
you need to store in each process record. Read proc.txt, and populate an array of process-info structures. The
queues to be used in the simulation will consist only of indices in this array (and nothing else). In essence,
each entry in the process-info array behaves like the PCB of a process.

Part 2: Data structure for the Ready Queue

For both FCFS and RR scheduling, the ready queue is implemented as a FIFO queue. Design a data structure
to perform the init, front, enqueue, dequeue (and other operations) on a FIFO queue. Each element in the
queue will be an index identifying the process in the process-info table. So it will be a queue of integers.
Make your own queue implementation.

Part 3: Handling the events [Discrete-event system simulation]

Your simulation neither creates any of the n processes nor runs the process on any CPU. On the contrary,
your program assumes that the processes behave as stored in the process-info array, and schedules the
processes on an imaginary CPU. In order to do so, you need to handle events chronologically starting at time
0. An event in the simulation is an incident that occurs at a particular time and that changes the configuration
of the simulated system. In particular, you need to handle the following events.

* Arrival of a new process

* End of a process

* End of the use of CPU (after timeout or CPU-burst end)
* Rearrival of a process after IO completion

These events must be handled in a non-decreasing order of the times when they happen. A min-priority
queue is used for that purpose, and is called the event queue. Like the ready queue, the elements of the queue
are integers which are indices in the process-info table. At the beginning of the simulation, only the # arrival
times of the processes are known. The event queue should be initialized by these » arrivals. Later, when the
simulation proceeds, the exact times of the other types of events will be calculated, and inserted in the event
queue. The first ordering parameter for the even queue is the times of occurrences of the events. For multiple
events happening at the same time (like two processes complete IO and a new process arrives at the same
time), some tie-breaking policies are to be used. In respect of the joining of a process to the ready queue, the
following ordering is to be maintained:

Arrival (for the first time or after IO completion) < CPU timeout

Ties are possible even with this ordering. Give precedence to smaller IDs to break the ties. For example,
suppose that a process with ID j arrives at the same time when a process with ID i completes an 10 burst. If
we have i <j, then the IO-completion event will appear earlier in the event queue than the new-arrival event.

In order to handle the next event, extract the first element from the event queue. Set the current time to the
time of the event. Depending on the type of the event, do the following.

Arrival of a process for the first time or after IO completion: Put the process at the back of the
ready queue.

CPU burst ends: Check whether this was the last CPU burst of the process. If so, print that the
process exits, and also the following performance measures pertaining to that process.

* Turnaround time
* Turnaround time as a percentage of running time (total CPU + 10O burst times)
* Wait time (turnaround time — running time)

Otherwise (that is, the process has more bursts to do), the next burst of the process will be an 10
burst. Add the time of that 10 burst to the current time. Insert the (re)arrival event of that process
after IO completion, to the event queue.

CPU timeout: The current CPU burst is preempted, that is, more time is needed to complete the
current CPU burst, so insert the process at the back of the ready queue.

After handling each event, check whether the CPU is free. If so, and if the ready queue is not empty,
schedule the process at the front of the ready queue for the next time quantum ¢ or for the rest of the next
CPU burst time (whichever is smaller).

Eventually, all the n processes completes all the bursts, and the event queue becomes empty. Stop the
simulation at that point.

Make your own array-based implementation of the event queue as a (binary) min-heap.

Part 4: Performance figures

Print the per-process performance figures as explained in Part 3. In addition, print the following aggregate
information after the simulation stops.

e Average wait time of a process

* Total turnaround time (simulation end time — simulation start time (0))

* Total idle time of the CPU in the simulation interval (total turnaround time)
* Percentage utilization of the CPU during the simulation interval

Part 5: main() function

In your main() function, call the scheduler for ¢ = o (a large integer like 10°) to simulate FCFS scheduling.
Then make two other calls of the scheduler to simulate RR scheduling with ¢ = 10 and g = 5.

Part 6: Verbose/Concise output

The default behavior of your code would be to print only the per-process and aggregate performance figures.
Enable verbose output by a compile-time flag VERBOSE. In the verbose mode, print all individual events
(arrival/rearrival, departure, CPU end, scheduling decision). The printing format will be specified at the end.

Makefile

You may use the following makefile.

compile: schedule.c
gcc -Wall -o schedule schedule.c

run: compile
./schedule

vcompile: schedule.c
gcc -Wall -o schedule -DVERBOSE schedule.c

vrun: vcompile
./schedule

db: genproc.c
gcc -Wall -o genproc genproc.c

clean:
-rm -f genproc schedule proc.txt

Submit a single file schedule.c.

Sample Input

20

VONOUVTAWN

N i
VXNV AWN RO

0o 11

91 14
493 13
796 4
978 170
1116 14
1347 15
1683 12
1774 14
2172 11
2249 12
2674 5
2884 5
2998 5
3222 15
3587 3
3724 6
3761 14
3958 14
4335 280

115
129
138
91
90
53

185
166
157
164

72
106
130
100
156
161

186
116

N
N =
NP P NOWWOULUTA NN W

iy

[N

iy
[

10

221

144

60
134
72
65

100
75
92

105

124
97

150

150
186
133
145
142

10 111
2 131
1 134
13 51
165 179

147 70

N
(o]
NN RO R~ OWW

o

o e
VU n

175

109
186
64
118
98
108
139
162
69
118
98
135
-1
51
79
127
149
136
195
81

12 76
15 67
9 176
3 72
113 141
12 196
11 134
3 -1
15 52
9 136
14 102
11 137

68
124
7

173
81
69

PORrWWN R
[

11
140
12
10

190

Sample Output (without the VERBOSE flag)

*%%% FCFS Scheduling *¥**

739

783

1752
2363
2588
2598
2760
2771
2994
3194
3304
3464
3750
4097
4134
4329
4629
5091
5248
6308

: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process

OOV NAWRLN

10
13
11
12
14
15
17
16
18
19
20

Average wait time = 210.15
Total turnaround time = 6308

CPU idle time = 2752

CPU utilization = 56.37%

exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.

Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround

*%%% RR Scheduling with q = 10 ****
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.

739

783

1548
1838
2040
2336
2426
2461
2918
3077
3317
3336
3765
4132
4146
4358
4441
4879
4906
6383

: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process

NOONRWEN

10
13
11
12
14
15
17
16
18
19
20

Average wait time = 56.80
Total turnaround time = 6383

CPU idle time = 2827

CPU utilization = 55.71%

%% RR Scheduling with q = 5 *%
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.
exits.

739

783

1543
1828
2037
2334
2419
2444
2916
3065
3307
3314
3780
4092
4143
4331
4429
4866
4908
6380

: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process
: Process

OO NRAWREN

10
13
11
12
14
15
17
16
18
19
20

Average wait time = 48.25
Total turnaround time = 6380

CPU idle time = 2824

CPU utilization = 55.74%

Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround

Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround
Turnaround

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

648

783
1259
1567
1610
1251

986
1088
1878
1022

420
1215
1076
1099

912

605
1042
1330
1290
1973

648
783
1055
1042
693
653
1310
687
1940
905
433
1087
1091
1134
924
634
854
1118
948
2048

648
783
1050
1032
690
651
1303
670
1938
893
423
1065
1106
1094
921
607
842
11605
950
2045

(100%),
(100%),
(123%),
(160%),
(100%),
(196%),
(156%),
(173%),
(154%),
(119%),
(101%),
(119%),
(102%),
(101%),
(101%),
(102%),
(128%),
(126%),
(140%),
(100%),

(100%) ,
(100%) ,
(103%),
(106%) ,
(108%),
(104%) ,
(108%),
(109%) ,
(121%),
(105%),
(105%) ,
(107%) ,
(104%) ,
(104%) ,
(102%),
(107%),
(105%),
(106%) ,
(103%),
(104%) ,

(100%),
(100%),
(102%),
(105%),
(108%),
(103%),
(107%),
(106%),
(121%),
(104%),
(102%),
(105%),
(105%),
(101%),
(102%),
(102%),
(103%),
(105%),
(103%),
(104%),

Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt

Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wait
Wait
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wait
Wait
Wailt
Wailt
Wailt
Wait

Wailt
Wailt
Wailt
Wait
Wait
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wait
Wait
Wailt
Wailt
Wailt
Wailt
Wailt
Wailt
Wait

170

50

80
-1
145

128
130
57
81

56
1602

64
154
111

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

10

12

14
14

13
7
237

232
586

612
353
458
660
161

197
22
13
10
12
227
276
370

28
61
54

92
54
338
44
19
69
37

22
41
39
64
28
75

23
51
51
21
85

336
32

47
52

19
14
27
51
30
72

184
161

186
124
-1

188
-1

15
14

198
190

89
86

185
53

107

15

-1

-1
92

14

-1

Sample Output (with the VERBOSE flag)

%% RR Scheduling with q = 10 **

0

0

0
10
10
11
91
91
101
101
105
126
126
134
234
234
242
278
278
288
326
326
328
399
399
402
459
459
467
493
493
503
503
506
511
511
521
521
523
599
599
604
644
644
645
653
653
663
663
668
705
705
706
735
735
739
739
774
774
783
783

6296
6306
6306
6316
6316
6326
6326
6336
6336
6346
6346
6356
6356
6366
6366
6376
6376
6383
6383

: Starting

: Process 1 joins ready queue upon arrival

: Process 1 is scheduled to run for time 10

: Process 1 joins ready queue after timeout

: Process 1 is scheduled to run for time 1

: CPU goes idle

: Process 2 joins ready queue upon arrival

: Process 2 is scheduled to run for time 10

: Process 2 joins ready queue after timeout

: Process 2 is scheduled to run for time 4

: CPU goes idle

: Process 1 joins ready queue after IO completion
: Process 1 is scheduled to run for time 8

: CPU goes idle

: Process 2 joins ready queue after IO completion
: Process 2 is scheduled to run for time 8

: CPU goes idle

: Process 1 joins ready queue after IO completion
: Process 1 is scheduled to run for time 10

: CPU goes idle

: Process 2 joins ready queue after IO completion
: Process 2 is scheduled to run for time 2

: CPU goes idle

: Process 1 joins ready queue after IO completion
: Process 1 is scheduled to run for time 3

: CPU goes idle

: Process 2 joins ready queue after IO completion
: Process 2 is scheduled to run for time 8

: CPU goes idle

: Process 3 joins ready queue upon arrival

: Process 3 is scheduled to run for time 10

: Process 3 joins ready queue after timeout

: Process 3 is scheduled to run for time 3

: CPU goes idle

: Process 1 joins ready queue after IO completion
: Process 1 is scheduled to run for time 10

: Process 1 joins ready queue after timeout

: Process 1 is scheduled to run for time 2

: CPU goes idle

: Process 1 joins ready queue after I0 completion
: Process 1 is scheduled to run for time 5

: CPU goes idle

: Process 3 joins ready queue after IO completion
: Process 3 is scheduled to run for time 1

: CPU goes idle

: Process 2 joins ready queue after IO completion
: Process 2 is scheduled to run for time 10

: Process 2 joins ready queue after timeout

: Process 2 is scheduled to run for time 5

: CPU goes idle

: Process 3 joins ready queue after IO completion
: Process 3 is scheduled to run for time 1

: CPU goes idle

: Process 2 joins ready queue after IO completion
: Process 2 is scheduled to run for time 4

: Process 2 exits. Turnaround time = 648 (100%), Wailt time = 0
: CPU goes idle

: Process 1 joins ready queue after IO completion
: Process 1 is scheduled to run for time 9

: Process 1 exits. Turnaround time = 783 (100%), Wait time = 0
: CPU goes idle

: Process 20 is scheduled to run for time 10
: Process 20 joilns ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joilns ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joins ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joins ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joilns ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joilns ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joins ready queue after timeout
: Process 20 is scheduled to run for time 10
: Process 20 joins ready queue after timeout
: Process 20 is scheduled to run for time 7
: Process 20 exits. Turnaround time = 2048 (104%), Wailt time = 75
: CPU goes idle

Average wait time = 56.80
Total turnaround time = 6383
CPU idle time = 2827

CPU utilization = 55.71%

