
CS39002 Operating Systems Laboratory
Spring 2025

Lab Assignment: 3
Date of submission: 22–Jan –2025

__

Performance Comparison of Some Scheduling Algorithms

In this assignment, you compare the performance of FCFS (First-Come-First-Serve) scheduling with that of
RR (Round-Robin) scheduling, and also the effect of the time quantum q on the performance of RR
scheduling. You deal with the case of a single CPU. FCFS scheduling can be considered as a special case of
RR scheduling with q = ∞, so you only work on RR scheduling, and specify q as a parameter. You do not
deal with real processes, but simulate the behavior of the CPU on processes with random behavior.

The details of the processes are stored in a text file proc.txt. The file starts with the number n of processes
that you are going to deal with. Each of the remaining n lines in the file stores the following information
about a process. The lines may appear in any sequence (not necessarily sorted by IDs or arrival times).

ID ARRIVAL_TIME CPU1 IO1 CPU2 IO2 . . . CPUb –1

Each process is given a unique integer ID (you may think of this as the PID of the process). This is followed
by the time when the process arrives (a non-negative integer). This is followed by a sequence of alternate
CPU- and IO-burst times (positive integers). The list ends with –1 as an IO-burst time indicating the end of
the process. Assume that all times are in milliseconds. In reality, the burst times are not known beforehand,
but you deal with the performance of the scheduling algorithms on the given processes, so assume that these
burst times are exact. You are not required to implement SJF scheduling, so whether or not you can estimate
burst times is not a concern to this assignment.

A process-generator program is supplied to you as genproc.c. Compile and run the code with n (number of
processes) as an optional command-line argument. Without this argument, n = 100 is taken. This generates
data for n processes with the following randomly chosen parameters.

Process type Probability CPU burst time IO burst time # CPU bursts # IO burst

IO-bound 90% 1 – 15 50 – 200 4 – 10 3 – 9

CPU-bound 10% 100 – 300 50 – 200 3 – 7 2 – 6

Each process is assumed to start and end with CPU bursts, so the number of IO bursts is one less than the
number of CPU bursts. You may use these statistics to determine your array sizes.

Part 1: Read the input file

Define a structure to store the information about the processes. Each process requires storage for the ID, the
arrival time, the number of bursts, and the burst times. In addition, you store additional information (like
state of the process, which burst it is in, and so on) as needed by the simulation. It is your choice whatever
you need to store in each process record. Read proc.txt, and populate an array of process-info structures. The
queues to be used in the simulation will consist only of indices in this array (and nothing else). In essence,
each entry in the process-info array behaves like the PCB of a process.

Part 2: Data structure for the Ready Queue

For both FCFS and RR scheduling, the ready queue is implemented as a FIFO queue. Design a data structure
to perform the init, front, enqueue, dequeue (and other operations) on a FIFO queue. Each element in the
queue will be an index identifying the process in the process-info table. So it will be a queue of integers.
Make your own queue implementation.

Part 3: Handling the events [Discrete-event system simulation]

Your simulation neither creates any of the n processes nor runs the process on any CPU. On the contrary,
your program assumes that the processes behave as stored in the process-info array, and schedules the
processes on an imaginary CPU. In order to do so, you need to handle events chronologically starting at time
0. An event in the simulation is an incident that occurs at a particular time and that changes the configuration
of the simulated system. In particular, you need to handle the following events.

• Arrival of a new process
• End of a process
• End of the use of CPU (after timeout or CPU-burst end)
• Rearrival of a process after IO completion

These events must be handled in a non-decreasing order of the times when they happen. A min-priority
queue is used for that purpose, and is called the event queue. Like the ready queue, the elements of the queue
are integers which are indices in the process-info table. At the beginning of the simulation, only the n arrival
times of the processes are known. The event queue should be initialized by these n arrivals. Later, when the
simulation proceeds, the exact times of the other types of events will be calculated, and inserted in the event
queue. The first ordering parameter for the even queue is the times of occurrences of the events. For multiple
events happening at the same time (like two processes complete IO and a new process arrives at the same
time), some tie-breaking policies are to be used. In respect of the joining of a process to the ready queue, the
following ordering is to be maintained:

Arrival (for the first time or after IO completion) < CPU timeout

Ties are possible even with this ordering. Give precedence to smaller IDs to break the ties. For example,
suppose that a process with ID j arrives at the same time when a process with ID i completes an IO burst. If
we have i < j, then the IO-completion event will appear earlier in the event queue than the new-arrival event.

In order to handle the next event, extract the first element from the event queue. Set the current time to the
time of the event. Depending on the type of the event, do the following.

Arrival of a process for the first time or after IO completion: Put the process at the back of the
ready queue.

CPU burst ends: Check whether this was the last CPU burst of the process. If so, print that the
process exits, and also the following performance measures pertaining to that process.

• Turnaround time
• Turnaround time as a percentage of running time (total CPU + IO burst times)
• Wait time (turnaround time – running time)

Otherwise (that is, the process has more bursts to do), the next burst of the process will be an IO
burst. Add the time of that IO burst to the current time. Insert the (re)arrival event of that process
after IO completion, to the event queue.

CPU timeout: The current CPU burst is preempted, that is, more time is needed to complete the
current CPU burst, so insert the process at the back of the ready queue.

After handling each event, check whether the CPU is free. If so, and if the ready queue is not empty,
schedule the process at the front of the ready queue for the next time quantum q or for the rest of the next
CPU burst time (whichever is smaller).

Eventually, all the n processes completes all the bursts, and the event queue becomes empty. Stop the
simulation at that point.

Make your own array-based implementation of the event queue as a (binary) min-heap.

Part 4: Performance figures

Print the per-process performance figures as explained in Part 3. In addition, print the following aggregate
information after the simulation stops.

• Average wait time of a process
• Total turnaround time (simulation end time – simulation start time (0))
• Total idle time of the CPU in the simulation interval (total turnaround time)
• Percentage utilization of the CPU during the simulation interval

Part 5: main() function

In your main() function, call the scheduler for q = ∞ (a large integer like 109) to simulate FCFS scheduling.
Then make two other calls of the scheduler to simulate RR scheduling with q = 10 and q = 5.

Part 6: Verbose/Concise output

The default behavior of your code would be to print only the per-process and aggregate performance figures.
Enable verbose output by a compile-time flag VERBOSE. In the verbose mode, print all individual events
(arrival/rearrival, departure, CPU end, scheduling decision). The printing format will be specified at the end.

Makefile

You may use the following makefile.

compile: schedule.c
 gcc -Wall -o schedule schedule.c

run: compile
 ./schedule

vcompile: schedule.c
 gcc -Wall -o schedule -DVERBOSE schedule.c

vrun: vcompile
 ./schedule

db: genproc.c
 gcc -Wall -o genproc genproc.c

clean:
 -rm -f genproc schedule proc.txt

Submit a single file schedule.c.

Sample Input

20
 1 0 11 115 8 144 10 111 3 109 12 76 5 170 9 -1
 2 91 14 129 8 84 2 131 8 186 15 67 4 -1
 3 493 13 138 1 60 1 134 9 64 9 176 5 50 6 144 5 198 14 -1
 4 796 4 91 12 134 13 51 7 118 3 72 11 80 5 174 3 190 13 -1
 5 978 170 90 227 72 165 179 207 98 113 141 140 -1
 6 1116 14 53 4 65 7 80 8 108 12 196 12 145 2 136 2 185 7 181 1 -1
 7 1347 15 69 5 86 6 160 4 139 11 134 10 -1
 8 1683 12 185 5 100 10 147 6 162 3 -1
 9 1774 14 166 8 75 11 75 8 69 15 52 2 128 10 -1
 10 2172 11 157 13 92 14 155 14 118 9 136 10 130 2 -1
 11 2249 12 164 3 105 15 119 15 98 14 102 7 57 12 184 15 89 7 -1
 12 2674 5 72 8 124 15 175 7 135 11 137 3 81 7 161 14 86 13 -1
 13 2884 5 106 2 97 10 186 8 -1
 14 2998 5 130 1 150 3 190 5 51 1 68 15 56 14 186 14 185 12 -1
 15 3222 15 100 11 85 6 92 15 79 2 124 9 70 8 124 2 53 1 92 14 -1
 16 3587 3 156 7 150 7 147 11 127 3 77 11 102 14 -1
 17 3724 6 161 11 186 9 53 15 149 3 -1
 18 3761 14 96 10 133 8 75 8 136 1 173 5 64 13 188 8 107 15 -1
 19 3958 14 186 4 145 14 92 9 195 9 81 10 154 7 -1
 20 4335 280 116 221 142 147 70 175 81 134 69 190 111 237 -1

Sample Output (without the VERBOSE flag)

**** FCFS Scheduling ****
739 : Process 2 exits. Turnaround time = 648 (100%), Wait time = 0
783 : Process 1 exits. Turnaround time = 783 (100%), Wait time = 0
1752 : Process 3 exits. Turnaround time = 1259 (123%), Wait time = 232
2363 : Process 4 exits. Turnaround time = 1567 (160%), Wait time = 586
2588 : Process 5 exits. Turnaround time = 1610 (100%), Wait time = 8
2598 : Process 7 exits. Turnaround time = 1251 (196%), Wait time = 612
2760 : Process 9 exits. Turnaround time = 986 (156%), Wait time = 353
2771 : Process 8 exits. Turnaround time = 1088 (173%), Wait time = 458
2994 : Process 6 exits. Turnaround time = 1878 (154%), Wait time = 660
3194 : Process 10 exits. Turnaround time = 1022 (119%), Wait time = 161
3304 : Process 13 exits. Turnaround time = 420 (101%), Wait time = 6
3464 : Process 11 exits. Turnaround time = 1215 (119%), Wait time = 197
3750 : Process 12 exits. Turnaround time = 1076 (102%), Wait time = 22
4097 : Process 14 exits. Turnaround time = 1099 (101%), Wait time = 13
4134 : Process 15 exits. Turnaround time = 912 (101%), Wait time = 10
4329 : Process 17 exits. Turnaround time = 605 (102%), Wait time = 12
4629 : Process 16 exits. Turnaround time = 1042 (128%), Wait time = 227
5091 : Process 18 exits. Turnaround time = 1330 (126%), Wait time = 276
5248 : Process 19 exits. Turnaround time = 1290 (140%), Wait time = 370
6308 : Process 20 exits. Turnaround time = 1973 (100%), Wait time = 0

Average wait time = 210.15
Total turnaround time = 6308
CPU idle time = 2752
CPU utilization = 56.37%

**** RR Scheduling with q = 10 ****
739 : Process 2 exits. Turnaround time = 648 (100%), Wait time = 0
783 : Process 1 exits. Turnaround time = 783 (100%), Wait time = 0
1548 : Process 3 exits. Turnaround time = 1055 (103%), Wait time = 28
1838 : Process 4 exits. Turnaround time = 1042 (106%), Wait time = 61
2040 : Process 7 exits. Turnaround time = 693 (108%), Wait time = 54
2336 : Process 8 exits. Turnaround time = 653 (104%), Wait time = 23
2426 : Process 6 exits. Turnaround time = 1310 (108%), Wait time = 92
2461 : Process 9 exits. Turnaround time = 687 (109%), Wait time = 54
2918 : Process 5 exits. Turnaround time = 1940 (121%), Wait time = 338
3077 : Process 10 exits. Turnaround time = 905 (105%), Wait time = 44
3317 : Process 13 exits. Turnaround time = 433 (105%), Wait time = 19
3336 : Process 11 exits. Turnaround time = 1087 (107%), Wait time = 69
3765 : Process 12 exits. Turnaround time = 1091 (104%), Wait time = 37
4132 : Process 14 exits. Turnaround time = 1134 (104%), Wait time = 48
4146 : Process 15 exits. Turnaround time = 924 (102%), Wait time = 22
4358 : Process 17 exits. Turnaround time = 634 (107%), Wait time = 41
4441 : Process 16 exits. Turnaround time = 854 (105%), Wait time = 39
4879 : Process 18 exits. Turnaround time = 1118 (106%), Wait time = 64
4906 : Process 19 exits. Turnaround time = 948 (103%), Wait time = 28
6383 : Process 20 exits. Turnaround time = 2048 (104%), Wait time = 75

Average wait time = 56.80
Total turnaround time = 6383
CPU idle time = 2827
CPU utilization = 55.71%

**** RR Scheduling with q = 5 ****
739 : Process 2 exits. Turnaround time = 648 (100%), Wait time = 0
783 : Process 1 exits. Turnaround time = 783 (100%), Wait time = 0
1543 : Process 3 exits. Turnaround time = 1050 (102%), Wait time = 23
1828 : Process 4 exits. Turnaround time = 1032 (105%), Wait time = 51
2037 : Process 7 exits. Turnaround time = 690 (108%), Wait time = 51
2334 : Process 8 exits. Turnaround time = 651 (103%), Wait time = 21
2419 : Process 6 exits. Turnaround time = 1303 (107%), Wait time = 85
2444 : Process 9 exits. Turnaround time = 670 (106%), Wait time = 37
2916 : Process 5 exits. Turnaround time = 1938 (121%), Wait time = 336
3065 : Process 10 exits. Turnaround time = 893 (104%), Wait time = 32
3307 : Process 13 exits. Turnaround time = 423 (102%), Wait time = 9
3314 : Process 11 exits. Turnaround time = 1065 (105%), Wait time = 47
3780 : Process 12 exits. Turnaround time = 1106 (105%), Wait time = 52
4092 : Process 14 exits. Turnaround time = 1094 (101%), Wait time = 8
4143 : Process 15 exits. Turnaround time = 921 (102%), Wait time = 19
4331 : Process 17 exits. Turnaround time = 607 (102%), Wait time = 14
4429 : Process 16 exits. Turnaround time = 842 (103%), Wait time = 27
4866 : Process 18 exits. Turnaround time = 1105 (105%), Wait time = 51
4908 : Process 19 exits. Turnaround time = 950 (103%), Wait time = 30
6380 : Process 20 exits. Turnaround time = 2045 (104%), Wait time = 72

Average wait time = 48.25
Total turnaround time = 6380
CPU idle time = 2824
CPU utilization = 55.74%

Sample Output (with the VERBOSE flag)

. . .

**** RR Scheduling with q = 10 ****
0 : Starting
0 : Process 1 joins ready queue upon arrival
0 : Process 1 is scheduled to run for time 10
10 : Process 1 joins ready queue after timeout
10 : Process 1 is scheduled to run for time 1
11 : CPU goes idle
91 : Process 2 joins ready queue upon arrival
91 : Process 2 is scheduled to run for time 10
101 : Process 2 joins ready queue after timeout
101 : Process 2 is scheduled to run for time 4
105 : CPU goes idle
126 : Process 1 joins ready queue after IO completion
126 : Process 1 is scheduled to run for time 8
134 : CPU goes idle
234 : Process 2 joins ready queue after IO completion
234 : Process 2 is scheduled to run for time 8
242 : CPU goes idle
278 : Process 1 joins ready queue after IO completion
278 : Process 1 is scheduled to run for time 10
288 : CPU goes idle
326 : Process 2 joins ready queue after IO completion
326 : Process 2 is scheduled to run for time 2
328 : CPU goes idle
399 : Process 1 joins ready queue after IO completion
399 : Process 1 is scheduled to run for time 3
402 : CPU goes idle
459 : Process 2 joins ready queue after IO completion
459 : Process 2 is scheduled to run for time 8
467 : CPU goes idle
493 : Process 3 joins ready queue upon arrival
493 : Process 3 is scheduled to run for time 10
503 : Process 3 joins ready queue after timeout
503 : Process 3 is scheduled to run for time 3
506 : CPU goes idle
511 : Process 1 joins ready queue after IO completion
511 : Process 1 is scheduled to run for time 10
521 : Process 1 joins ready queue after timeout
521 : Process 1 is scheduled to run for time 2
523 : CPU goes idle
599 : Process 1 joins ready queue after IO completion
599 : Process 1 is scheduled to run for time 5
604 : CPU goes idle
644 : Process 3 joins ready queue after IO completion
644 : Process 3 is scheduled to run for time 1
645 : CPU goes idle
653 : Process 2 joins ready queue after IO completion
653 : Process 2 is scheduled to run for time 10
663 : Process 2 joins ready queue after timeout
663 : Process 2 is scheduled to run for time 5
668 : CPU goes idle
705 : Process 3 joins ready queue after IO completion
705 : Process 3 is scheduled to run for time 1
706 : CPU goes idle
735 : Process 2 joins ready queue after IO completion
735 : Process 2 is scheduled to run for time 4
739 : Process 2 exits. Turnaround time = 648 (100%), Wait time = 0
739 : CPU goes idle
774 : Process 1 joins ready queue after IO completion
774 : Process 1 is scheduled to run for time 9
783 : Process 1 exits. Turnaround time = 783 (100%), Wait time = 0
783 : CPU goes idle

. . .

6296 : Process 20 is scheduled to run for time 10
6306 : Process 20 joins ready queue after timeout
6306 : Process 20 is scheduled to run for time 10
6316 : Process 20 joins ready queue after timeout
6316 : Process 20 is scheduled to run for time 10
6326 : Process 20 joins ready queue after timeout
6326 : Process 20 is scheduled to run for time 10
6336 : Process 20 joins ready queue after timeout
6336 : Process 20 is scheduled to run for time 10
6346 : Process 20 joins ready queue after timeout
6346 : Process 20 is scheduled to run for time 10
6356 : Process 20 joins ready queue after timeout
6356 : Process 20 is scheduled to run for time 10
6366 : Process 20 joins ready queue after timeout
6366 : Process 20 is scheduled to run for time 10
6376 : Process 20 joins ready queue after timeout
6376 : Process 20 is scheduled to run for time 7
6383 : Process 20 exits. Turnaround time = 2048 (104%), Wait time = 75
6383 : CPU goes idle

Average wait time = 56.80
Total turnaround time = 6383
CPU idle time = 2827
CPU utilization = 55.71%

. . .

