CS39002 Operating Systems Laboratory
Spring 2025

Lab Assignment: 2
Date of submission: 15-Jan —2025

Inter-process communication using signals

Think of n children C,, C,, Cs, . . ., C, standing in a circle, and playing a game with the parent P standing at
the center of the circle. P throws a ball to the children in a circular sequence. If the child (say, C;) to which
the ball is thrown can catch the ball, then C; continues to play. If C; misses the ball, then C; goes out of the
game. After each throw, the ball comes back to P who then throws the ball to the next (in the circular order)
child who is not yet out of the game. Eventually, n — 1 children miss and go out of the game. The remaining
child wins the game.

You need to implement this game as a multi-process application, where the processes can communicate with
one another by sending signals. You write two programs parent.c and child.c to simulate the working of the
parent and each child process. Suppose that these two programs are compiled to the executable files parent
and child. The program parent (which simulates P) is run with one command-line argument #» (the number of
child processes). P creates n child processes C; which exec child i fori=1, 2,3, ..., n. P also writes, in a
text file childpid.txt, the child count n and the PIDs of the 7 child processes created by P. Each child waits
for some time (like one second) for P to finish writing to childpid.txt. After this wait, each child reads » and
the n PIDs from the text file childpid.txt. After the child creation, P waits for some time (like two seconds) so
that each child process gets time to read this text file. These waits may be implemented by sleep() or
usleep(), but after this, no waiting based on these functions will be allowed.

The parent P starts the game by sending STGUSR?2 to C,. P then enters a loop which continues until only one
child is left as the player. Each child C;, on the other hand, enters an infinite loop. The body of each loop
should contain the single system call pause() which lets the calling process wait until it receives a signal
(avoid busy waits). The game of throwing balls and catching/missing throws will be implemented by sending
and handling signals. In this assignment, we use the three signals STGUSR1, STGUSR2, and SIGINT only.

For a child process C;, receiving SIGUSR2 implies that a throw is made to it. It then randomly decides
whether it catches the ball (with probability 0.8) or misses the ball (with probability 0.2). If C; can catch the
ball, it sends STGUSR1 to P. If C; fails to catch the ball, it sends STGUSR2 to P. Depending on the type of the
signal received from the child C; (to which the throw is made), the parent knows whether that child continues
to play the game or is out of the game. P records this information.

After the outcome of a throw is recorded as explained above, P initiates a printing of the current status of all
the n players. Since P has all the necessary information, it can do that printing itself. However, as a part of
this assignment, this printing should be done by the child processes. This is achieved by sending STGUSR1 to
the child processes in turn. Recall that to a child process, STGUSR2 means that a throw is made to it. On the
other hand, the reception of SIGUSR1 initiates that child to print its current status. The possible status of a
child are PLAYING (written as), CATCHMADE (written as CATCH), CATCHMISSED (written as
MISS), and OUTOFGAME (written as blank). See the sample at the end to know the format of printing.

P initiates the printing process by sending SIGUSR1 to C. For each i <, C; prints its status, and then sends
SIGUSR1 to the next child C;+ ;. The last child C, prints its status, but does not send SIGUSR1 to any other
process. However, C, takes part in the synchronization activity in a different manner. Until all the child
processes finish writing their status, the parent P must wait before it can make the throw to the next playing
child. But you do not know many synchronization primitives at this moment, so let this wait be accomplished
by waitpid(). Before sending STGUSR1 to C,, P forks a dummy child process D and writes the PID of D in a
text file dummycpid.txt. P then waits until D exits. When C, is done printing its status, it reads the PID of D
from the file dummycpid.txt, and sends SIGINT to D. Write dummy.c (the code for D) that enters an infinite
loop of pause() at the beginning of its main().

When D exits, P wakes up, and works out the next playing child process C,.. to which the throw is to be
made. Note that P maintains the information of the status of all child processes. P should also keep track of
the child process to which the last throw is made. So P can determine C,.., easily. P then sends STGUSR2 to
C.ext, and the game continues as explained above.

After n — 1 child processes miss throws, the parent sends SIGINT to all the n child processes. Only the last
playing child process prints a happy message, and exits (see the format in the sample). The other processes
exit without printing anything.

Notice that the sequencing of the throw-and-print cycle must be implemented only by signals (and by the
waitpid() in one case). No other synchronization mechanism is allowed. You may use fflush(stdout); to avoid
garbled output. But do not use any sleep or usleep calls (except only at the very beginning, that is, before the
game starts).

You may use the following makefile.

all:
gcc -Wall -o parent parent.c
gcc -Wall -o child child.c
gcc -Wall -o dummy dummy.c
run: all
./parent 10
clean:

-rm -f parent child dummy childpid.txt dummycpid.txt

Submit a zip/tar/tgz archive containing the files parent.c, child.c, dummy.c, and makefile.

Sample Output

$ make run

gcc -Wall -o parent parent.c

gcc -Wall -o child child.c

gcc -Wall -o dummy dummy.c

./parent 10

Parent: 10 child processes created

Parent: Wailting for child processes to read child database

+++ Child 3: Yay! I am the winner!

