
CS39002 Operating Systems Laboratory
Spring 2025

Lab Assignment: 1
Date: 08–Jan –2025

__

Multi-process applications

FooBar Inc. manufactures fooware utilities. These utilities consist of n fooware modules (called
foodules). Call them foo1, foo2, foo3, . . . , foon. Each foodule is managed by a separate group. The
foodules have dependencies among them. In order to rebuild a foodule, all its dependencies need to
be rebuilt. Each of these dependencies has its own dependencies that also need to be rebuilt, and so
on. Assume that there are no cyclic dependencies, that is, the dependencies can be represented as a
DAG. The situation is similar to make except that the rebuilding happens in the reverse direction. In
other words, when a component changes, make rebuilds that component and all other components
that directly or indirectly depend on that component. On the contrary, when a foodule needs to be
rebuilt, that foodule and all other foodules on which that foodule directly or indirectly depends need
to be rebuilt.

The FooBar dependency graph is supplied to you as a text file foodep.txt. The first line contains the
number n of foodules. This is followed by n lines storing the dependencies of the n foodules. Each
dependency line is of the following format.

u: v1 v2 . . . vk

This means that foou depends on foov1, foov2, . . . , and foovk. A code gendep.c will be supplied to
you. Compile and run it with n as the command-line argument, to get a random DAG on n nodes.
Without the command-line argument, the program takes n = 10.

The FooBar testing team checks for problems with foodules. Any problematic foodule needs to be
rebuilt. Suppose that Foodule u needs to be rebuilt. The group handling that foodule is contacted.
Upon receiving the request, the group for Foodule u checks the dependencies; let these be v1,
v2, . . . , vk. The group for each vi is then contacted with rebuilding requests. This procedure
continues recursively. Because the dependency graph is a DAG, each dependency vi of u will be
eventually rebuilt. Foodule u is then rebuilt.

In this assignment, you emulate the Foobar Inc.’s work flow by a set of processes. You need to write
a program rebuild.c(pp), and compile it to the binary rebuild. A call of rebuild u initiates the
rebuilding procedure. The process launched by the call emulates the working of the group handling
the u-th foodule. Whenever needed, it spawns child processes to emulate the working of the groups
handling the foodules v1, v2, . . . , vk. The process for each vi checks its dependencies, and spawns
further processes as needed. Because the dependency graph is a DAG, this creation of new
processes will eventually stop.

In this context, note the following.

1. All the dependencies of a foodule have to be rebuilt before that foodule is rebuilt.

2. No foodule is rebuilt multiple times. For example, if Foodule u depends on Foodules v and
w, and Foodule w also depends on Foodule v, then Foodule v is rebuilt only once, and is
used for the rebuilding of both Foodule u and Foodule w.

In essence, you run a recursive DFS traversal in the dependency graph starting at the node u.
However, each recursive call is replaced by forking a child process that exec’s the same code
rebuild with a new foodule number that is passed as a command-line argument by the parent
process. The parent wait’s until the child exit’s, and then fork’s another child (if needed).

A DFS traversal needs a visited array so that a node is not visited multiple times. This array needs to
be read and modified by multiple processes. At this moment, you do not know sophisticated inter-
process communication mechanisms. Use a file done.txt to store the visited array. The topmost
process launched by your shell command initializes the array to all 0’s. When a foodule is rebuilt,
the corresponding entry is set to 1. When rebuild is called by a parent process, the child must know
that the initialization of visited is not warranted. This information can be passed from the parent to
the child by a second command-line argument (the first argument is the foodule number). What
exactly you pass as this second argument does not matter. If rebuild sees that it is called with a
single command-line argument, it understands that it is the root process, so the onus of initializing
visited is on it. On the other hand, if rebuild is called with two command-line arguments, it skips the
initialization of visited because it knows that it is not the root process.

Every time a decision is taken to fork a child, the visited array is to be read from the file done.txt,
because recursive rebuilding of dependencies may make invalid the old visited array read by the
parent earlier.

To sum up, the working of rebuild u is as follows.

Read n and the dependencies of u from foodep.txt (do not store the entire graph).
If this is the root process, initialize the visited array to all 0’s in the file done.txt.
For each dependency v of u, do:

Read the visited array from done.txt.
If v is not yet rebuilt, do:

Fork a child process, and wait until the child process exits.
The child process execs rebuild with v as the first command-line argument.

Read the visited array from done.txt.
Set visited[u] = 1.
Write the updated visited array back to done.txt.

__

Submit a single file rebuild.c(pp).

Sample

Input Output
$ gcc -Wall -o gendep gendep.c
$./gendep
$ cat foodep.txt
16
1: 2
2: 15
3: 2 7 10 11 12 13 15 16
4: 15
5: 2 7 8 11 13 15
6: 2 4 7 12 13 15
7: 2
8: 7 14
9: 1 3 4 8 10 12 16
10: 14
11: 1 2 12 13
12:
13: 1 14
14: 1 2
15:
16:
$

$ gcc -Wall -o rebuild rebuild.c
$./rebuild 9
foo15 rebuilt
foo2 rebuilt from foo15
foo1 rebuilt from foo2
foo7 rebuilt from foo2
foo14 rebuilt from foo1, foo2
foo10 rebuilt from foo14
foo12 rebuilt
foo13 rebuilt from foo1, foo14
foo11 rebuilt from foo1, foo2, foo12, foo13
foo16 rebuilt
foo3 rebuilt from foo2, foo7, foo10, foo11, foo12, foo13, foo15, foo16
foo4 rebuilt from foo15
foo8 rebuilt from foo7, foo14
foo9 rebuilt from foo1, foo3, foo4, foo8, foo10, foo12, foo16
$ cat done.txt
1111001111111111
$./rebuild 10
foo15 rebuilt
foo2 rebuilt from foo15
foo1 rebuilt from foo2
foo14 rebuilt from foo1, foo2
foo10 rebuilt from foo14
$ cat done.txt
1100000001000110
$./rebuild 11
foo15 rebuilt
foo2 rebuilt from foo15
foo1 rebuilt from foo2
foo12 rebuilt
foo14 rebuilt from foo1, foo2
foo13 rebuilt from foo1, foo14
foo11 rebuilt from foo1, foo2, foo12, foo13
$ cat done.txt
1100000000111110
$./rebuild 12
foo12 rebuilt
$ cat done.txt
0000000000010000
$

