
REDUCTIONS

AND UNDECIDABILITY

Abhijit Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

March 14, 2021

Diagonalization

• Any Turing machine M can be encoded as a string over {0,1}.

• Any input w for M can also be encoded as a binary string.

• Two important problems (languages)

• MP = {M # w | M accepts input w}.

• HP = {M # w | M halts on input w}.

• A total TM (or decider) halts on all inputs.

• Both these problems are Turing-recognizable (r.e.).

• By a diagonalization argument, we have proved HP to be non-recursive.

• No decider can exist for HP, no matter how intelligent Turing machines are.

• A similar diagonalization argument can be made for MP.

Reduction

Decider

MP

for
from HP

algorithm

to MP

Reduction
N # v

Decider for HP

M # w Yes / No

• We want to prove the undecidability of the MP.

• A reduction algorithm converts an input M # w for HP to an input N # v for MP.

• The reduction algorithm is a total Turing machine (halts after each conversion).

• N accepts v if and only if M halts on w.

• If MP has a decider D, then the reduction algorithm followed by D decides HP.

• Contradiction. So a decider of MP cannot exist.

The Reduction Algorithm

Input: M and w.

Output: N and v.

Steps:

• Add a new accept state t ′ and a new reject state r ′ to M.

• Mark the old accept and reject states t and r of M as non-halting.

• Add transitions δ (t,∗) = (t ′,∗,R) and δ (r,∗) = (t ′,∗,R).

• Take v = w.

• Convince yourself that a total TM can transform (M,w) to (N,v).

• N always rejects by looping (no transition to r ′ added).

• If M halts after accepting (in state t) or rejecting (in state r), N runs one more step to

jump to t ′ and accepts.

• If M loops on w, N also loops.

• M halts on w ⇐⇒ N accepts v.

Direction of Reduction

From a problem already known to be undecidable

to a problem which we want to prove to be undecidable.

A valid reduction from MP to HP

Input: M # w for the membership problem

Output: N # v for the halting problem

• Keep the accept state t of M the same in N.

• Create a new reject state r ′ for N, and transitions δ (r,∗) = (r,∗,R) (loop in state r).

• Take v = w.

• M accepts w ⇐⇒ N halts on v (no transition lets N enter r ′).

• This is not an undecidability proof for MP. A decider for MP may not be forced to use

a (hypothetical) decider for HP.

• If MP was proved to be undecidable, this reduction proves the undecidability of HP.

Formal Definition of Reduction

A

B

Σ* Λ*

• Let A ⊆ Σ∗ and B ⊆ Λ∗ be languages.

• Consider a map σ : Σ∗ → Λ∗.

• If w ∈ A, then σ(w) ∈ B.

• If w ∈ Σ∗ \A, then σ(w) ∈ Λ∗ \B.

Formal Definition of Reduction

A

B

Σ* Λ*

• σ need not be injective.

• A Turing machine R implements σ .

• On every input w, the TM R halts after correctly computing σ(w).

• We call R a reduction algorithm.

Formal Definition of Reduction

A

B

Σ* Λ*

• σ is a reduction from A to B.

• Notation: A 6m B (many-to-one reduction).

• The membership problem for A is no more difficult than the membership problem for B.

• Example: HP 6m MP and MP 6m HP.

Notes on Reduction

• A language L can be rephrased as the membership problem:

Given w ∈ Σ∗, is w ∈ L?

• We talk about reduction of one problem to another.

• For problems P,Q, we can write P 6m Q.

• A reduction algorithm is supposed to convert an instance of P to an instance of Q.

• A reduction algorithm makes no effort to solve either P or Q.

• Two uses of reduction P 6m Q:

• Given a solver for Q, use this solver as a subroutine to solve P.

This is one way of solving P, not the only or the most efficient way.

• If no solver for P exists, then no solver for Q can exist.

Reduction Example 1

Proposition: The problem whether a given Turing machine M accepts the null string ε is

undecidable.

Proof Use reduction from HP.

M

w

M

w

M # w N

N

Reduction Example 1

• Input: M and w (an instance of HP).

• Output: A Turing machine N that accepts ε if and only if M halts on w.

• N can use M and w in any manner it likes.

• These may be embedded by the reduction algorithm in the finite control of N.

• Alternatively, the reduction algorithm may copy these to some tapes/tracks of N.

• Behavior of N on input v:

• Erase input v.

• Write the string w on the tape.

• Simulate M on w.

• If the simulation halts, accept v.

• N accepts its input v ⇐⇒ M halts on w.

• L (N) =

{

Σ∗ if M halts on w,

/0 if M does not halt on w.

• In particular, N accepts ε ⇐⇒ M halts on w.

Reduction Example 1

The same proof can be used to prove that the following problems are also undecidable.

Proposition: Let w be a fixed string over Σ. The problem whether a given Turing machine

M accepts w is undecidable.

Proposition: The problem whether a given Turing machine M accepts any string at all is

undecidable.

Proposition: The problem whether a given Turing machine M accepts all the strings over

Σ is undecidable.

Proposition: The problem whether a given Turing machine M accepts only finitely many

strings is undecidable.

Reduction Example 2

Proposition: The problem whether the language of a given Turing machine M is regular is

undecidable.

Proof Again use reduction from HP.

M

w

M

w

M # w

N

U

N

Reduction Example 2

• Input: An instance for HP (M and w)

• Output: A Turing machine N whose language is regular if and only if M halts on w.

• N has the information of M and w embedded in its finite control.

• N embeds the information of another fixed Turing machine U in its finite control.

• Take any language L that is recursively enumerable but not recursive.

• Take any TM U whose language is L.

• For example, if L = MP, then U is the Universal Turing Machine.

Reduction Example 2

N, upon the input of v, does the following.

• Store v on a separate tape/track.

• Write w on the tape, and simulate M on w.

• If the simulation halts, do:

• Simulate U on v.

• If U accepts v, accept v.

• N accepts v if and only if both the following conditions hold.

• M halts on w.

• U accepts (and halts) on v.

• L (N) =

{

L if M halts on w,

/0 if M does not halt on w.

• /0 is regular, but A is not regular.

Reduction Example 2

• Let L2 = {N | L (N) is regular}.

• We have a reduction from HP to the complement L2.

• This proves that L2 is not recursive.

• But recursive languages are closed under complementation, so L2 is not recursive too.

• Alternative argument:

• Let L2 have a decider D.

• Then L2 has a decider D that simulates D and flips the decision of D.

• The above reduction followed by D decides HP.

Reduction Example 2

The same reduction can be used to prove the following undecidability results.

Proposition: The problem whether the language of a given Turing machine M is finite is

undecidable.

Proposition: The problem whether the language of a given Turing machine M is

context-free is undecidable.

Proposition: The problem whether the language of a given Turing machine M is

context-sensitive is undecidable.

Proposition: The problem whether the language of a given Turing machine M is recursive

is undecidable.

Note: The problem whether the language of a given Turing machine M is recursively

enumerable is trivially decidable.

A Theorem about Reduction

Theorem: Let A,B be languages along with a reduction A 6m B.

If B is r.e., then A is also r.e.

Contrapositively, if A is not r.e., then B is also not r.e.

Proof

• Let σ be the reduction map from A to B.

• Let B = L (N) for a Turing machine N.

• A recognizer M for A can be designed as follows.

• On an input w, M does the following:

• Compute σ(w) from w.

• Run N on σ(w).

• Accept if and only if N accepts σ(w).

Another Theorem about Reduction

Theorem: Let A,B be languages along with a reduction A 6m B.

If B is recursive, then A is also recursive.

Contrapositively, if A is not recursive, then B is also not recursive.

Proof

• Let B be recursive.

• Let σ be the reduction map A 6m B.

• Since B is r.e., A is r.e. too (by the previous theorem).

• σ is also a reduction map for A 6m B.

• B is recursive and so r.e.

• By the previous theorem, A is r.e. too.

• Since A and A are both r.e., A is recursive.

Three Possibilities

CC

A

A

B

B

Non−R.E.

R.E.

Recursive

• If A and A are r.e., then both are recursive.

• If B is r.e. but not recursive, then B must be non-r.e. Examples: HP, MP are non-r.e.

• Both C and C can be non-r.e.

An Example of the Third Type

Proposition: Neither the language

FIN = {M | L (M) is finite}

nor its complement FIN is r.e.

• We have proved that FIN is not recursive by reduction from HP.

• This proof cannot establish that FIN is non-r.e.

• We need reduction from a non-r.e. language.

• HP = {M # w | M does not halt on w} is non-r.e.

• We now show

HP 6m FIN

and

HP 6m FIN.

HP 6m FIN

Input: A TM M and an input w for M.

Output: A TM N such that L (N) is finite if and only if M does not halt on w.

Note: N has the information of M and w in its finite control.

Behavior of N on input v

• Erase the input v.

• Write w on the tape, and simulate M on w.

• If the simulation halts, accept v.

• If M does not halt on w, L (N) = /0 which is finite.

• If M halts on w, L (N) = Σ∗ which is infinite.

Note: The reduction algorithm is not supposed to run N. It only creates a description of N.

HP 6m FIN

Input: A TM M and an input w for M.

Output: A TM N such that L (N) is infinite if and only if M does not halt on w.

Note: N has the information of M and w in its finite control.

Behavior of N on input v

• Store v on a separate tape/track.

• Write w on the tape, and simulate M on w for at most |v| steps.

• Accept if the simulation does not halt in these many steps, else reject.

• If M does not halt on w, it does not halt in |v| steps. So L (N) = Σ∗ is infinite.

• M halts on w after s steps. Let n = |v|.

• If n > s, the simulation of M on w halts within n steps, so N rejects v.

• If n < s, the simulation of M on w does not halt in n steps, so N accepts v.

So L (N) = {v ∈ Σ∗ | |v|< s} which is finite (although dependent on M and w).

Tutorial Exercises

1. Prove that the following languages are not recursive.

(a) {M # w | M writes the blank symbol at some point of time on input w}.

(b) {M # w # $ | M writes the symbol $ ∈ Γ at some point of time on input w}.

2. (a) Prove that the language {M | M halts on exactly 2021 inputs} is not r.e.

(b) Prove that the language {M | M halts on at least 2021 inputs} is r.e. but not

recursive.

3. Let nsteps(M,w) denote the number of steps of M on w. If M loops on w, take

nsteps(M,w) = ∞. If N also loops on v, take nsteps(M,w) = nsteps(N,v).
Recursive / r.e. but not recursive / non-r.e.? Prove.

(a) {M # N | nsteps(M,ε)< nsteps(N,ε)}.

(b) {M # N | nsteps(M,ε)6 nsteps(N,ε)}.

(c) {M # N | nsteps(M,w)< nsteps(N,v) for some w,v}.

(d) {M # N | nsteps(M,w)< nsteps(N,v) for all w,v}.

Tutorial Exercises

4. Prove that the following languages are not recursive.

(a) {M # N | L (M) = L (N)}.

(b) {M # N | L (M)⊆ L (N)}.

(c) {M # N | L (M)∩L (N) = /0}.

(d) {M # N | L (M)∩L (N) is finite}.

(e) {M # N | L (M)∩L (N) is regular}.

(f) {M # N | L (M)∩L (N) is context-free}.

(g) {M # N | L (M)∩L (N) is recursive}.

(h) {M # N # P | L (M)∩L (N) = L (P)}.

5. Prove that neither the language REG = {M | L (M) is regular} nor its complement is r.e.

6. R.E. or not? Prove.

(a) {M | M accepts at most 2021 inputs}.

(b) {M | M accepts at least 2021 inputs}.

(c) {M | M accepts all strings of length 6 2021}.

(d) {M | M does not accept some string of length 6 2021}.

