UNDECIDABLE PROBLEMS

ABOUT CONTEXT-FREE LANGUAGES

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

March 14, 2021

R.E. Languages vs Context-Free Languages

- R.E. languages are specified by Turing machines M or unrestricted grammars.
- We have seen that the following problems are undecidable.
- whether $\mathscr{L}(M)=\emptyset$.
- whether $\mathscr{L}(M)$ is finite.
- whether $\mathscr{L}(M)=\Sigma^{*}$.
- whether $\mathscr{L}(M)$ is recursive.
- CFLs are specified by PDA or CFGs. We ask similar questions for a CFG G.
- whether $\mathscr{L}(G)=\emptyset$.
- whether $\mathscr{L}(G)$ is finite.
- whether $\mathscr{L}(G)=\Sigma^{*}$.
- whether $\mathscr{L}(G)$ is a DCFL.
- Some of these CFL problems are decidable, some are not.

CFL Emptiness is Decidable

Theorem
It is decidable whether a context-free grammar G generates (or a PDA N accepts) any strings at all, that is, whether $\mathscr{L}(G)=\emptyset($ or $\mathscr{L}(N)=\emptyset)$ or not.

Proof by Pumping Lemma

- Let $L=\mathscr{L}(G)$.
- Let n be the number of non-terminal symbols of G.
- Then $k=2^{n+1}$ is a pumping-lemma constant for L.
- The pumping lemma implies:
- If L is finite, then all strings in L are of length $<k$.
- If L is infinite, then L contains a string of length in the range $[k, 2 k)$.
- Check whether G can generate any string of length $<2 k$.
- Each such string can be tested in finite time.
- This also establishes that the finiteness problem for CFLs is decidable.

An Efficient Procedure

- Try to mark all symbols in $\Sigma \cup N$.
- Start by marking symbols in Σ.
- Look at the rules $A \rightarrow \beta$.
- If all the symbols of β are marked, mark A.
- Continue until no further markings are possible.
- $|N|$ is finite.
- The procedure halts after a finite number of steps.
- L is non-empty if and only if the start symbol S is marked.
- This procedure is very efficient.

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A B C \mid U V S \\
A & \rightarrow a A|b U| c V W \\
B & \rightarrow c a W \mid W W \\
C & \rightarrow c c \\
U & \rightarrow W|U W U| a B V \\
V & \rightarrow V C \mid W V \\
W & \rightarrow \varepsilon \mid A b c V
\end{aligned}
$$

Theorem
It is undecidable whether a context-free grammar G generates (or a PDA N accepts) all strings, that is, whether $\mathscr{L}(G)=\Sigma^{*}$ (or $\mathscr{L}(N)=\Sigma^{*}$) or not.

COMPUTATION-HISTORY METHOD

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

March 14, 2021

Theorem
It is undecidable whether a context-free grammar G generates (or a PDA N accepts) all strings, that is, whether $\mathscr{L}(G)=\Sigma^{*}$ (or $\mathscr{L}(N)=\Sigma^{*}$) or not.

- $\overline{\mathrm{HP}} \leqslant_{m}\left\{G \mid G\right.$ is a CFG over Δ with $\left.\mathscr{L}(G)=\Delta^{*}\right\}$.
- Input: A Turing machine M and an input w for M.
- Output: A context-free grammar G.
- M does not halt on $w \Rightarrow \mathscr{L}(G)=\Delta^{*}$.
- M halts on $w \Rightarrow \mathscr{L}(G) \varsubsetneqq \Delta^{*}$.
- G incorporates the computation histories of M on w.
- If M halts on w, it has one or more finite computation histories.
- If M does not halt on w, it has only infinite computation histories.
- Infinite computation histories cannot be encoded as strings.
- Only finite computation histories ending in a halting configuration are called valid.

Encoding Configurations of M

- Σ is the input alphabet for M.
- Γ is the tape alphabet for M.
- Q is the set of states of M.
- A configuration of M is encoded as a string over $\Gamma \times(Q \cup\{-\})$.
- For the configuration

$$
C=\left(p, \triangleright a u b v a \underline{a} b v w u a \square v c \square^{\omega}\right),
$$

the encoding is:

$$
\begin{array}{ccccccccccccccc}
\triangleright & a & u & b & v & a & c & b & v & w & u & a & \square & v & c \\
- & - & - & - & - & - & p & - & - & - & - & - & - & - & -
\end{array}
$$

- The initial configuration C_{0} on input $w=a_{1} a_{2} a_{3} \ldots a_{n}$ is

\triangleright	a_{1}	a_{2}	a_{3}	\cdots	a_{n}
s	-	-	-	\cdots	-

Encoding Computation Histories

- A computation history is a sequence of configurations $C_{0}, C_{1}, C_{2}, \ldots, C_{N}$.
- Each $C_{i} \in(\Gamma \times(Q \cup\{-\}))^{*}$.
- Each C_{i} must contain only one state.
- C_{0} should be the initial configuration.
- Two consecutive configurations must be consistent with the transition function of M.
- The last configuration should have the accept state t or the reject state r.
- We encode this history as

$$
\# C_{0} \# C_{1} \# C_{2} \# C_{3} \# \cdots \# C_{N} \# .
$$

- We allow t or r to appear in C_{i} for $i<N$. If so, the states in $C_{i}, C_{i+1}, C_{i+2}, \ldots, C_{N}$ must be the same.
- Let $\Delta=(\Gamma \times(Q \cup\{-\})) \cup\{\#\}$.
- Define
$\operatorname{VALCOMP}(M, w)=\left\{\alpha \in \Delta^{*} \mid \alpha\right.$ is a valid computation history of M on input $\left.w\right\}$.
- Let $L=\overline{\operatorname{VALCOMP}(M, w)}=\Delta^{*} \backslash \operatorname{VALCOMP}(M, w)$.

Theorem

L is a context-free language.

- A total Turing machine R, given M and w, can prepare a CFG for L.
- R does not have to simulate M on w.

If M halts on w

- M has one or more valid computation histories.
- $\operatorname{VALCOMP}(M, w) \neq \emptyset$.
- $L=\overline{\operatorname{VALCOMP}(M, w)} \neq \Delta^{*}$.

If M does not halt on w

- M has only infinite (so invalid) computation histories.
- $\operatorname{VALCOMP}(M, w)=0$.
- $L=\overline{\operatorname{VALCOMP}(M, w)}=\Delta^{*}$.

This is a valid reduction $\overline{\mathrm{HP}} \leqslant m\left\{G \mid G\right.$ is a CFG with $\left.\mathscr{L}(G)=\Delta^{*}\right\}$.

- A string $\alpha \in \Delta^{*}$ is in $\operatorname{VALCOMP}(M, w)$ if and only if the following five conditions hold:

1. α is of the form $\# C_{0} \# C_{1} \# C_{2} \# \cdots \# C_{N} \#$ with each $C_{i} \in(\Gamma \times(Q \cup\{-\}))^{*}$.
2. Each C_{i} must contain only one state.
3. C_{0} must be the start configuration.
4. C_{N} is a halting configuration (in state t or r).
5. Each C_{i+1} follows from C_{i} by the transition rules of M.

- Let $A=\left\{\alpha \in \Delta^{*} \mid \alpha\right.$ satisfies Conditions 1-4 $\}$.
- Let $B=\left\{\alpha \in \Delta^{*} \mid \alpha\right.$ satisfies Condition 5 $\}$.
- We have $\operatorname{VALCOMP}(M, w)=A \cap B$.
- So $L=\overline{\operatorname{VALCOMP}(M, w)}=\bar{A} \cup \bar{B}=\bar{A} \cup(A \cap \bar{B})$.
- To show: \bar{A} and $A \cap \bar{B}$ (or \bar{B}) are context-free.
- Let $w=a_{1} a_{2} \ldots a_{n}$.
- Notations:

$$
\Delta_{-}=\Gamma \times\{-\}, \Delta_{Q}=\Gamma \times Q, \Delta_{t}=\Gamma \times\{t\}, \text { and } \Delta_{r}=\Gamma \times\{r\} .
$$

- Regular subexpressions:
- $\beta_{0}=\begin{array}{ccccc}\triangleright & a_{1} & a_{2} & \cdots & a_{n} \\ s & - & - & \cdots & -\end{array}$.
- $\beta_{i}=\Delta_{-}^{*} \Delta_{Q} \Delta_{-}^{*}$.
- $\beta_{t}=\Delta_{-}^{*} \Delta_{t} \Delta_{-}^{*}$.
- $\beta_{r}=\Delta_{-}^{*} \Delta_{r} \Delta_{-}^{*}$.
- A is generated by the regular expression $\# \beta_{0}\left(\# \beta_{i}\right)^{*} \#\left(\beta_{t}+\beta_{r}\right) \#$.
- So A is regular, and \bar{A} is regular too.
- \bar{A} can be specified by a right-linear grammar.

$A \cap \bar{B}$ is Context-Free

- C_{i} and C_{i+1} are two consecutive configurations.
- We need to check C_{i+1} does not follow from C_{i}.
- Two positions in C_{i} and C_{i+1} are corresponding if they are equidistant from their preceding hashes.
- Change in configuration is only local.
- Changes in corresponding positions consistent with the transitions of M.
- No change: $\begin{array}{ccc}a & b & c \\ - & - & -\end{array}$ remains as $\begin{array}{ccc}a & b & c \\ - & - & -\end{array}$.
- State enters: $\begin{array}{ccc}a & b & c \\ - & - & -\end{array}$ changes to $\begin{array}{ccccccc}a & b & c & \text { or } & a & b & c \\ q & - & - & & - & - & q\end{array}$.
- $\delta(p, b)=(q, d, L): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & d & c \\ q & - & -\end{array}$.
- $\delta(p, b)=(q, d, R): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & d & c \\ - & - & q\end{array}$.
- Changes in corresponding positions not consistent with the transitions of M.
- $\delta(p, b)=(q, d, L): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & d & c \\ q^{\prime} & - & -\end{array}$.
- $\delta(p, b)=(q, d, L): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & e & c \\ q & - & -\end{array}$.
- $\begin{aligned} & \delta(p, b)=(q, d, L): \begin{array}{ccc}a & b & c \\ - & p & -\end{array} \text { changes to } \begin{array}{ccc}a & d & c \\ - & - & q\end{array} .\end{aligned}$
- $\delta(p, b)=(q, d, R): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & d & c \\ - & - & q^{\prime}\end{array}$.
- $\delta(p, b)=(q, d, R): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & e & c \\ - & - & q\end{array}$.
- $\delta(p, b)=(q, d, R): \begin{array}{ccc}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{ccc}a & d & c \\ q & - & -\end{array}$.
- The state in C_{i} is t or r, but that in C_{i+1} is not the same.

An NPDA to Detect an Inconsistent Change

- The NPDA non-deterministically chooses:
- Two consecutive configurations, and
- The corresponding positions.

- After reading the hash before C_{i}, the NPDA does these:
- Push l symbols to its stack.
- Read the three elements of Δ in its finite control.
- Skip the rest of C_{i} and the next hash.
- Move ahead exactly l positions in C_{i+1} by popping from its stack until the stack becomes empty (or some marker is exposed).
- Read the next three symbols, and confirm inconsistency.
- $L=\overline{\operatorname{VALCOMP}(M, w)}=\bar{A} \cup \bar{B}=\bar{A} \cup(A \cap \bar{B})$.
- If $\alpha \in \Delta^{*}$ is in $A \cap \bar{B}$, there is at least one inconsistency.
- The NPDA can nondeterministically find that, and accept α.
- \bar{A} has a right-linear grammar.
- Convert the NPDA for $A \cap \bar{B}$ to a CFG.
- CFLs are closed under union.

1. You are given two CFGs G and G^{\prime}. Prove that the following problems are undecidable.
(a) whether $\mathscr{L}(G)=\mathscr{L}\left(G^{\prime}\right)$,
(b) whether $\mathscr{L}(G) \subseteq \mathscr{L}\left(G^{\prime}\right)$,
(c) whether $\mathscr{L}(G)=\mathscr{L}(G) \mathscr{L}(G)$.
2. Prove that the following problems are undecidable.
(a) whether a CFL is a DCFL.
(b) whether the intersection of two CFLs is a CFL.
(c) whether the complement of a CFL is a CFL.
3. Prove that the finiteness problem for regular and context-free languages is decidable.
