

THEOREMS

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 14, 2021

Properties of RE Languages

- Class of all r.e. languages: $RE = \left\{ \mathscr{L}(M) \mid M \text{ is a Turing machine} \right\}.$
- Each member of RE is specified by a Turing machine.
- Unrestricted grammars can also be used to specify r.e. languages.
- A property of r.e. sets is a map $P : \text{RE} \rightarrow \{T, F\}$.
- Example: Emptiness is a property defined as $P_{EMP}(L) = \begin{cases} T & \text{if } L = \emptyset, \\ F & \text{if } L \neq \emptyset. \end{cases}$
- Properties too are specified by Turing machines.
- Example: The emptiness property is specified by any member of

$$P_{EMP} = \Big\{ M \mid \mathscr{L}(M) = \emptyset \Big\}.$$

Examples of Properties

- Finiteness property: Any member of $\{M \mid \mathscr{L}(M) \text{ is finite}\}$.
- Regularity property: Any member of $\{M \mid \mathscr{L}(M) \text{ is regular}\}$.
- Context-free property: Any member of $\{M \mid \mathscr{L}(M) \text{ is context free}\}$.
- Acceptance of a string: Any member of $\{M \mid 01011000 \in \mathscr{L}(M)\}$.
- Full-ness property: Any member of $\{M \mid \mathscr{L}(M) = \Sigma^*\}$.
- We specify a property by a *single Turing machine*, the language of which has that property.
- Properties are properties of *r.e. sets*, *not* of Turing machines.
- A property must be independent of the representative machine.

Non-Examples

- Any member of $\{M \mid M \text{ has at least } 2021 \text{ states} \}$.
 - We can design two TMs M_1 and M_2 both accepting \emptyset .
 - M_1 has less than 2021 states.
 - M_2 has 2021 or more states.
 - If \emptyset is represented by M_1 , the property is false for \emptyset .
 - If \emptyset is represented by M_2 , the property is true for \emptyset .
- Any member of $\{M \mid M \text{ is a total TM}\}$.
- Any member of $\{M \mid M \text{ rejects } 01011000 \text{ and halts} \}$.
- Any member of $\{M \mid M \text{ ever goes to the right of the input}\}$.
- Any member of

 $\{M \mid M \text{ has the least number of states among all machines accepting } \mathscr{L}(M) \}$.

- Trivial properties
 - The constant map $RE \rightarrow \{T, F\}$ taking all $L \in RE$ to T.
 - The constant map $RE \rightarrow \{T, F\}$ taking all $L \in RE$ to F.
- Any other property is called non-trivial.
- Example of trivial property: $\mathscr{L}(M)$ is recursively enumerable.
- Example of non-trivial property: $\mathscr{L}(M)$ is recursive.
- Monotone properties
 - Assume $F \leq T$.
 - Whenever $A \subseteq B$, we have $P(A) \leq P(B)$.
 - Examples of monotone properties: $\mathscr{L}(M)$ is infinite, $\mathscr{L}(M) = \Sigma^*$.
 - Examples of non-monotone properties: $\mathscr{L}(M)$ is finite, $\mathscr{L}(M) = \emptyset$.

Rice's Theorem (Part 1)

Theorem

Any non-trivial property P of r.e. languages is undecidable. In other words, the set

$$\Pi = \left\{ N \mid P(\mathscr{L}(N)) = T \right\}$$

is not recursive.

Proof

- Let *P* be a non-trivial property of r.e. languages.
- Suppose $P(\emptyset) = F$.
- Since *P* is non-trivial, there exist $L \in \text{RE}$, $L \neq \emptyset$, such that P(L) = T.
- Let *K* be a Turing machine with $\mathscr{L}(K) = L$.
- We make a reduction from HP to Π .
- If $P(\emptyset) = T$, we take K with $\mathscr{L}(K) = L \neq \emptyset$ and P(L) = F. This establishes $\overline{HP} \leq_m \Pi$.

Rice's Theorem: The Reduction $HP \leq_m \Pi$

- **Input:** *M* # *w* (an instance of HP)
- **Output:** A Turing machine N such that $P(\mathscr{L}(N)) = T$ if and only if M halts on w.
- Behavior of *N* on input *v*:
 - Copy *v* to a separate tape.
 - Write *w* to the first tape, and simulate *M* on *w*.
 - If the simulation halts:
 - Simulate K on v.
 - Accept if and only if K accepts v.
- If *M* halts on *w*, $\mathscr{L}(N) = \mathscr{L}(K) = L$.
- If *M* does not halt on *w*, $\mathscr{L}(N) = \emptyset$.
- P(L) = T and $P(\emptyset) = F$.

Theorem

No non-monotone property P of r.e. languages is semidecidable. In other words, the set

$$\Pi = \left\{ N \mid P(\mathscr{L}(N)) = T \right\}$$

is not recursively enumerable.

Proof

• *P* is non-monotone. So there exist r.e. languages L_1 and L_2 such that

 $L_1 \subseteq L_2, \qquad P(L_1) = T, \qquad P(L_2) = F.$

- Take Turing machines K_1, K_2 such that $\mathscr{L}(K_1) = L_1$ and $\mathscr{L}(K_2) = L_2$.
- We supply a reduction from $\overline{\text{HP}}$ to Π .
- The reduction algorithm embeds the information of *M*, *w*, *K*₁, and *K*₂ in the finite control of *N*.

Rice's Theorem: Part 2: The Reduction $\overline{\mathbf{HP}} \leq_m \Pi$

- **Input:** *M* # *w*.
- **Output:** A Turing machine N such that $P(\mathscr{L}(N)) = T$ if and only if M does *not* halt on w.
- Behavior of *N* on input *v*:
 - Copy *v* from the first tape to the second tape, and *w* from the finite control to the third tape.
 - Run three simulations in parallel (one step of each in round-robin fashion)

 K_1 on v on the first tape, K_2 on v on the second tape, M on w on the third tape.

- Accept if and only if one of the following conditions hold:
 - (1) K_1 accepts v,
 - (2) *M* halts on *w*, and K_2 accepts *v*.
- *M* does not halt on $w \Rightarrow N$ accepts by $(1) \Rightarrow \mathscr{L}(N) = \mathscr{L}(K_1) = L_1$.
- If *M* halts on *w*, *N* accepts if either K_1 or K_2 accepts *v*. In this case, $\mathscr{L}(N) = \mathscr{L}(K_1) \cup \mathscr{L}(K_2) = L_1 \cup L_2 = L_2$ (since $L_1 \subseteq L_2$).

- 1. Prove/Disprove: No non-trivial property of r.e. languages is semidecidable.
- 2. Use Rice's theorems to prove that neither the following languages nor their complements are r.e.
 - (a) $\operatorname{REG} = \{M \mid \mathscr{L}(M) \text{ is regular}\}.$
 - (b) CFL = { $M \mid \mathscr{L}(M)$ is context-free}.
 - (c) $\overline{\text{REC}} = \{M \mid \mathscr{L}(M) \text{ is recursive}\}.$
- 3. [*Generalization of Rice's theorem for pairs of r.e. langauges*] Consider the set of pairs of r.e. languages: $RE^2 = \{(L_1, L_2) | L_1, L_2 \in RE\}.$
 - (a) Define a property of pairs of r.e. languages.
 - (b) How do you specify a property of a pair of r.e. languages?
 - (c) Which properties of pairs of r.e. languages should be called non-trivial?
 - (d) Prove that every non-trivial property of pairs of r.e. languages is undecidable.

- **4.** Use the previous exercise to prove that the following problems about pairs of r.e. languages are undecidable.
 - (a) $\mathscr{L}(M) = \mathscr{L}(N)$.
 - (b) $\mathscr{L}(M) \subseteq \mathscr{L}(N)$.
 - (c) $\mathscr{L}(M) \cap \mathscr{L}(N) = \emptyset$.
 - (d) $\mathscr{L}(M) \cap \mathscr{L}(N)$ is finite.
 - (e) $\mathscr{L}(M) \cap \mathscr{L}(N)$ is regular.
 - (f) $\mathscr{L}(M) \cap \mathscr{L}(N)$ is context-free.
 - (g) $\mathscr{L}(M) \cap \mathscr{L}(N)$ is recursive.
 - (h) $\mathscr{L}(M) \cup \mathscr{L}(N) = \Sigma^*$.
 - (i) $\mathscr{L}(M) \cup \mathscr{L}(N) = \emptyset$.
 - (j) $\mathscr{L}(M) \cup \mathscr{L}(N)$ is finite.
 - (k) $\mathscr{L}(M) \cup \mathscr{L}(N)$ is recursive.
- 5. Generalize Rice's theorem, Part 2, for pairs of RE sets.