Grammars for Regular Sets

 Right Linear Grammar: All productions of the form A → wB or A → w where A, B ∈ N, w ∈ Σ*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Right Linear Grammar: All productions of the form A → wB or A → w where A, B ∈ N, w ∈ Σ*
- Left Linear Grammar: All productions of the form $A \rightarrow Bw$ or $A \rightarrow w$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Right Linear Grammar: All productions of the form A → wB or A → w where A, B ∈ N, w ∈ Σ*
- Left Linear Grammar: All productions of the form $A \to Bw$ or $A \to w$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• If a grammar is right linear or left linear, then it is called a **regular grammar**.

- Right Linear Grammar: All productions of the form A → wB or A → w where A, B ∈ N, w ∈ Σ*
- Left Linear Grammar: All productions of the form $A \rightarrow Bw$ or $A \rightarrow w$.
- If a grammar is right linear or left linear, then it is called a regular grammar.
- Note: Suppose $G = (N, \Sigma, P, S)$ is a right linear grammar. $G' = (N, \Sigma, P', S)$ such that $P' = \{A \to \alpha | A \to \alpha^{rev} \in P\}$. Then G' is a left linear grammar.

If L = L(G) such that G is a regular grammar, then L is a regular set.

• Assume $G = (N, \Sigma, P, S)$ is right linear. (Argue similarly for left linear).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If L = L(G) such that G is a regular grammar, then L is a regular set.

- Assume $G = (N, \Sigma, P, S)$ is right linear. (Argue similarly for left linear).
- We construct an NFA with ϵ -transitions $M = (Q, \Sigma, \delta, [S], \{[\epsilon]\})$ that simulates the derivations of G.

If L = L(G) such that G is a regular grammar, then L is a regular set.

- Assume $G = (N, \Sigma, P, S)$ is right linear. (Argue similarly for left linear).
- We construct an NFA with ϵ -transitions $M = (Q, \Sigma, \delta, [S], \{[\epsilon]\})$ that simulates the derivations of G.
- States of Q denoted by [α] such that α = S or α is a (not necessarily proper) suffix of an RHS of a production in P.

If L = L(G) such that G is a regular grammar, then L is a regular set.

• Definition of δ :

1. If A is a nonterminal, $\delta([A], \epsilon) = \{[\alpha] | A \to \alpha \in P\}$ 2. If $a \in \Sigma, \alpha \in \Sigma^* \cup \Sigma^* N$, $\delta(a\alpha, a) = \{[\alpha]\}$ (regular grammar)

If L = L(G) such that G is a regular grammar, then L is a regular set.

- Definition of δ :
 - 1. If A is a nonterminal, $\delta([A], \epsilon) = \{[\alpha] | A \to \alpha \in P\}$ 2. If $a \in \Sigma, \alpha \in \Sigma^* \cup \Sigma^* N$, $\delta(a\alpha, a) = \{[\alpha]\}$ (regular grammar)
- $[\alpha] \in \delta([S], w)$ iff either $\alpha = S, w = \epsilon$ (Type 1 transition), or $S \rightarrow_G^* xA \rightarrow_G^1 xy\alpha$ such that $A \rightarrow y\alpha \in P$ and xy = w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If L = L(G) such that G is a regular grammar, then L is a regular set.

- Definition of δ :
 - 1. If A is a nonterminal, $\delta([A], \epsilon) = \{[\alpha] | A \to \alpha \in P\}$ 2. If $a \in \Sigma, \alpha \in \Sigma^* \cup \Sigma^* N$, $\delta(a\alpha, a) = \{[\alpha]\}$ (regular grammar)
- $[\alpha] \in \delta([S], w)$ iff either $\alpha = S, w = \epsilon$ (Type 1 transition), or $S \rightarrow_G^* xA \rightarrow_G^1 xy\alpha$ such that $A \rightarrow y\alpha \in P$ and xy = w.
- Proof by induction on length of derivation (Try out formal proof).

Intuition: In order to simulate S →^{*}_G α, suppose the first step is S → wA, where A ∈ {N ∪ ε}, w ∈ Σ*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Intuition: In order to simulate S →^{*}_G α, suppose the first step is S → wA, where A ∈ {N ∪ ε}, w ∈ Σ*.
- In the NFA, this is simulated by making an ε-transition from
 [S] to [wA].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Intuition: In order to simulate S →^{*}_G α, suppose the first step is S → wA, where A ∈ {N ∪ ε}, w ∈ Σ*.
- In the NFA, this is simulated by making an ε-transition from
 [S] to [wA].
- Let $w = w_1 w_2 \dots w_n$. Second step of simulation is going from $[w_1 w_2 \dots w_n A]$ to $[w_2 \dots w_n A]$ on reading w_1 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Intuition: In order to simulate S →^{*}_G α, suppose the first step is S → wA, where A ∈ {N ∪ ε}, w ∈ Σ*.
- In the NFA, this is simulated by making an ε-transition from
 [S] to [wA].
- Let $w = w_1 w_2 \dots w_n$. Second step of simulation is going from $[w_1 w_2 \dots w_n A]$ to $[w_2 \dots w_n A]$ on reading w_1 .
- Suppose $A = \epsilon$, then at the $n 1^{\text{th}}$ step, we reach state $[w_n \epsilon]$ and since $\delta([w_n \epsilon], w_n) = [\epsilon]$ we reach the unique final state $[\epsilon]$ and have generated w.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Intuition: In order to simulate S →^{*}_G α, suppose the first step is S → wA, where A ∈ {N ∪ ε}, w ∈ Σ*.
- In the NFA, this is simulated by making an ε-transition from
 [S] to [wA].
- Let $w = w_1 w_2 \dots w_n$. Second step of simulation is going from $[w_1 w_2 \dots w_n A]$ to $[w_2 \dots w_n A]$ on reading w_1 .
- Suppose $A = \epsilon$, then at the $n 1^{\text{th}}$ step, we reach state $[w_n \epsilon]$ and since $\delta([w_n \epsilon], w_n) = [\epsilon]$ we reach the unique final state $[\epsilon]$ and have generated w.
- If A ∈ N, then after n steps we are at state [A]. Now by *ϵ*-transition, we reach states corresponding to all possible RHS of productions with A as LHS. And the simulation continues in a similar manner.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If L is a regular set, then L is generated by some left linear grammar and by some right linear grammar.

• L = L(M) where $M = (Q, \Sigma, \delta, s, F)$ is a DFA.

If L is a regular set, then L is generated by some left linear grammar and by some right linear grammar.

- L = L(M) where $M = (Q, \Sigma, \delta, s, F)$ is a DFA.
- First, suppose s ∉ F. Construct right linear grammar G = (Q, Σ, P, s) where P contains: p → aq when δ(p, a) = q, and also p → a if δ(p, a) ∈ F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If L is a regular set, then L is generated by some left linear grammar and by some right linear grammar.

- L = L(M) where $M = (Q, \Sigma, \delta, s, F)$ is a DFA.
- First, suppose s ∉ F. Construct right linear grammar
 G = (Q, Σ, P, s) where P contains:
 p → aq when δ(p, a) = q,
 and also p → a if δ(p, a) ∈ F.
- δ̂(p, w) = q if and only if p →^{*}_G wq (Try out formal proof).
 Note: If q ∈ F the statement says that w is accepted by M if and only if it is generated by G.

If L is a regular set, then L is generated by some left linear grammar and by some right linear grammar.

• Suppose $s \in F$. Then $\epsilon \in L$. The grammar *G* generates $L - \{\epsilon\}$.

Take G' by adding to G the extra production $s \to \epsilon$. This is still a right linear grammar.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If L is a regular set, then L is generated by some left linear grammar and by some right linear grammar.

- Suppose s ∈ F. Then e ∈ L. The grammar G generates L {e}.
 Take G' by adding to G the extra production s → e. This is still a right linear grammar.
- Left linear grammar: Use the right linear grammar for L^{rev}, which is also a regular set.