Context Free Grammars and Languages

Grammar Rules

Consider the following set of rules:

- < assg-stmt $>::=<$ var $>:=<$ arith-expr $>$

Grammar Rules

Consider the following set of rules:

- < assg-stmt $>::=<$ var $>:=<$ arith-expr $>$
- < arith-expr $>::=<$ var $>\mid<$ const $>\mid<$ arith-expr $><$ arith-op >< arith-expr >

Grammar Rules

Consider the following set of rules:

- < assg-stmt $>::=<$ var $>:=<$ arith-expr $>$
- < arith-expr $>::=<$ var $>\mid<$ const $>\mid<$ arith-expr $><$ arith-op >< arith-expr >
- <arith-op $>::=+|-|*| /$

Grammar Rules

Consider the following set of rules:

- < assg-stmt $>::=<$ var $>:=<$ arith-expr $>$
- < arith-expr $>::=<$ var $>\mid<$ const $>\mid<$ arith-expr $><$ arith-op >< arith-expr >
- <arith-op $>::=+|-|*| /$
- $<$ const $>::=0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Grammar Rules

Consider the following set of rules:

- < assg-stmt $>::=<$ var $>:=<$ arith-expr $>$
- < arith-expr $>::=<$ var $>\mid<$ const $>\mid<$ arith-expr $><$ arith-op >< arith-expr >
- < arith-op $>::=+|-|*| /$
- < const $>::=0|1| 2|3| 4|5| 6|7| 8 \mid 9$
- < var $>::=a|b| c|\ldots| x|y| z$

Grammar Rules

- Objects of the form $<\times \times \times>$ are called nonterminal symbols.

Grammar Rules

- Objects of the form $<\times \times \times>$ are called nonterminal symbols.
- Each nonterminal symbol generates a set of strings over finite alphabet $\Sigma=\{0,1, \ldots, 9, a, b, \ldots, z,+,-, *, /\}$.

Grammar Rules

- Objects of the form $<\times \times \times>$ are called nonterminal symbols.
- Each nonterminal symbol generates a set of strings over finite alphabet $\Sigma=\{0,1, \ldots, 9, a, b, \ldots, z,+,-, *, /\}$.
- The language generated by the set of rules or the grammar: Arithmetic expressions formed by using the 4 basic arithmetic operators over the integers $0-9$ and variables. Infinitely many strings in this language represented in a finite manner using the grammar.

Grammar Rules

- Objects of the form $<\times \times \times>$ are called nonterminal symbols.
- Each nonterminal symbol generates a set of strings over finite alphabet $\Sigma=\{0,1, \ldots, 9, a, b, \ldots, z,+,-, *, /\}$.
- The language generated by the set of rules or the grammar: Arithmetic expressions formed by using the 4 basic arithmetic operators over the integers $0-9$ and variables. Infinitely many strings in this language represented in a finite manner using the grammar.
- These rules define a syntax for the language.

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?
- < asst - stmt $>\rightarrow<$ var $>:=<$ arith - expr $>$

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?
- < asst - stmt $>\rightarrow<$ var $>:=<$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr $>$

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?
- < asst - stmt $>\rightarrow<$ var $>:=<$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr $><$ arith $-o p><$ arith - expr $>$

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?
- < asst - stmt $>\rightarrow<$ var $>:=<$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr $><$ arith - op $><$ arith - expr $>$
- $\rightarrow x:=y+z-3$.

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?
- < asst - stmt $>\rightarrow<$ var $>:=<$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr $><$ arith $-o p><$ arith - expr $>$
- $\rightarrow x:=y+z-3$.
- Sentential forms: The expressions with non-terminal symbols in the intermediary derivation steps.

Derivation of Arithmetic Expressions from the Rules

- Can you derive $x=y+z-3$ using the rules?
- < asst - stmt $>\rightarrow<$ var $>:=<$ arith - expr $>$
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith - op $><$ arith - expr
- $\rightarrow<$ var $>:=<$ arith - expr $><$ arith $-o p><$ arith - expr $><$ arith $-o p><$ arith - expr $>$
- $\rightarrow x:=y+z-3$.
- Sentential forms: The expressions with non-terminal symbols in the intermediary derivation steps.
- Can you give two ways to derive $x=y+z-3$?
$x=(y+z)-3, x=y+(z-3)$

Context Free Grammar (CFG)

- A CFG is denoted as $G=(N, \Sigma, P, S)$.

Context Free Grammar (CFG)

- A CFG is denoted as $G=(N, \Sigma, P, S)$.
- N is a finite set (the nonterminal symbols),

Context Free Grammar (CFG)

- A CFG is denoted as $G=(N, \Sigma, P, S)$.
- N is a finite set (the nonterminal symbols),
- Σ is a finite set (the terminal symbols) disjoint from N,

Context Free Grammar (CFG)

- A CFG is denoted as $G=(N, \Sigma, P, S)$.
- N is a finite set (the nonterminal symbols),
- Σ is a finite set (the terminal symbols) disjoint from N,
- P is a finite subset of $N \times(N \cup \Sigma)^{*}$ (the productions)

Context Free Grammar (CFG)

- A CFG is denoted as $G=(N, \Sigma, P, S)$.
- N is a finite set (the nonterminal symbols),
- Σ is a finite set (the terminal symbols) disjoint from N,
- P is a finite subset of $N \times(N \cup \Sigma)^{*}$ (the productions)
- S is the start symbol

Context Free Grammar (CFG)

- A CFG is denoted as $G=(N, \Sigma, P, S)$.
- N is a finite set (the nonterminal symbols),
- Σ is a finite set (the terminal symbols) disjoint from N,
- P is a finite subset of $N \times(N \cup \Sigma)^{*}$ (the productions)
- S is the start symbol
- Finite representation for a set of possibly infinite strings.

Notational Conventions

- Nonterminals usually denoted by capital letter A, B, \ldots,

Notational Conventions

- Nonterminals usually denoted by capital letter A, B, \ldots,
- Terminal symbols: a, b, \ldots

Notational Conventions

- Nonterminals usually denoted by capital letter A, B, \ldots,
- Terminal symbols: a, b, \ldots
- Strings in $(N \cup \Sigma)^{*}: \alpha, \beta, \gamma, \ldots$

Notational Conventions

- Nonterminals usually denoted by capital letter A, B, \ldots,
- Terminal symbols: a, b, \ldots
- Strings in $(N \cup \Sigma)^{*}: \alpha, \beta, \gamma, \ldots$
- Productions: Usually written as $A \rightarrow \alpha$ instead of (A, α).

Notational Conventions

- Nonterminals usually denoted by capital letter A, B, \ldots,
- Terminal symbols: a, b, \ldots
- Strings in $(N \cup \Sigma)^{*}: \alpha, \beta, \gamma, \ldots$
- Productions: Usually written as $A \rightarrow \alpha$ instead of (A, α).
- Suppose there are several productions from the same nonterminal: $A \rightarrow \alpha_{1}, A \rightarrow \alpha_{2}, A \rightarrow \alpha_{3}$. Then shorten this as $A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \alpha_{3}$.

Derivations

- If $\alpha, \beta \in(N \cup \Sigma)^{*}$, then β is derivable from α in 1 step [$\alpha \rightarrow{ }_{G}^{1} \beta$] if
There exists a production $A \rightarrow \gamma$ such that $\alpha=\alpha_{1} A \alpha_{2}$, $\beta=\alpha_{1} \gamma \alpha_{2}$.

Derivations

- If $\alpha, \beta \in(N \cup \Sigma)^{*}$, then β is derivable from α in 1 step [$\alpha \rightarrow{ }_{G}^{1} \beta$] if
There exists a production $A \rightarrow \gamma$ such that $\alpha=\alpha_{1} A \alpha_{2}$, $\beta=\alpha_{1} \gamma \alpha_{2}$.
- Define \rightarrow_{G}^{*} to be the reflexive transitive closure of $\rightarrow{ }_{G}^{1}$: $\alpha \rightarrow{ }_{G}^{0} \alpha$ for all α, $\alpha \rightarrow{ }_{G}^{n+1} \beta$ if there is a γ such that $\alpha \rightarrow{ }_{G}^{n} \gamma$ and $\gamma \rightarrow{ }_{G}^{1} \beta$, $\alpha \rightarrow_{G}^{*} \beta$ if there is an $n \geq 0$ such that $\alpha \rightarrow_{G}^{n} \beta$.

Sentential Forms and Sentences

- A string derivable from start symbol S : sentential form; A sentential form with no nonterminal symbols is a sentence.

Sentential Forms and Sentences

- A string derivable from start symbol S : sentential form; A sentential form with no nonterminal symbols is a sentence.
- $L(G)=\left\{x \in \Sigma^{*} \mid S \rightarrow_{G}^{*} x\right\}$.

Sentential Forms and Sentences

- A string derivable from start symbol S : sentential form; A sentential form with no nonterminal symbols is a sentence.
- $L(G)=\left\{x \in \Sigma^{*} \mid S \rightarrow{ }_{G}^{*} x\right\}$.
- $B \subseteq \Sigma^{*}$ is a Context Free Language (CFL) if $B=L(G)$ for a CFG G.

Example 1

Set $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S b \mid \epsilon$.

Example 1

Set $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S b \mid \epsilon$.
- Can you derive $a^{3} b^{3}$?

Example 1

Set $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S b \mid \epsilon$.
- Can you derive $a^{3} b^{3}$?
- $S \rightarrow a S b \rightarrow a a S b b \rightarrow a a a S b b b \rightarrow$ aabbb.

Example 1

Set $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S b \mid \epsilon$.
- Can you derive $a^{3} b^{3}$?
- $S \rightarrow a S b \rightarrow a a S b b \rightarrow a a a S b b b \rightarrow$ aaabbb.
- Can you have multiple derivations of $a^{3} b^{3}$? Unambiguous grammar - more on this later.

Example 2

Set of palindromes over $\{a, b\}$, or $\left\{x \in\{a, b\}^{*} \mid x=x^{\text {rev }}\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S a|b S b| a|b| \epsilon$.

Example 2

Set of palindromes over $\{a, b\}$, or $\left\{x \in\{a, b\}^{*} \mid x=x^{\text {rev }}\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S a|b S b| a|b| \epsilon$.
- First 2 productions: for balancing the outer ends of the string

Example 2

Set of palindromes over $\{a, b\}$, or $\left\{x \in\{a, b\}^{*} \mid x=x^{\text {rev }}\right\}$ is a CFL (not regular!)

- Generated by the grammar $G=(N, \Sigma, P, S)$ where

$$
N=\{S\}, \Sigma=\{a, b\}, P=S \rightarrow a S a|b S b| a|b| \epsilon
$$

- First 2 productions: for balancing the outer ends of the string
- Last 3 productions: for finishing derivations.
$S \rightarrow a \mid b$ are used to finishing odd length strings, $S \rightarrow \epsilon$ is used for finishing even length strings.

