
Context Free Grammars and Languages



Grammar Rules

Consider the following set of rules:

< assg-stmt >::=< var >:=< arith-expr >

< arith-expr >::=< var > | < const > | < arith-expr ><
arith-op >< arith-expr >

< arith-op >::= +| − | ∗ |/
< const >::= 0|1|2|3|4|5|6|7|8|9
< var >::= a|b|c| . . . |x |y |z
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Grammar Rules

Objects of the form < ××× > are called nonterminal
symbols.

Each nonterminal symbol generates a set of strings over finite
alphabet Σ = {0, 1, . . . , 9, a, b, . . . , z ,+,−, ∗, /}.
The language generated by the set of rules or the grammar:
Arithmetic expressions formed by using the 4 basic arithmetic
operators over the integers 0− 9 and variables.
Infinitely many strings in this language represented in a finite
manner using the grammar.

These rules define a syntax for the language.
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Derivation of Arithmetic Expressions from the Rules

Can you derive x = y + z − 3 using the rules?

< asst − stmt >→< var >:=< arith − expr >

→< var >:=< arith − expr >< arith − op >< arith − expr >

→< var >:=< arith − expr >< arith − op ><
arith − expr >< arith − op >< arith − expr >

→ x := y + z − 3.

Sentential forms: The expressions with non-terminal symbols
in the intermediary derivation steps.

Can you give two ways to derive x = y + z − 3?
x = (y + z)− 3, x = y + (z − 3)
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Context Free Grammar (CFG)

A CFG is denoted as G = (N,Σ,P, S).

N is a finite set (the nonterminal symbols),

Σ is a finite set (the terminal symbols) disjoint from N,

P is a finite subset of N × (N ∪ Σ)∗ (the productions)

S is the start symbol

Finite representation for a set of possibly infinite strings.
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Notational Conventions

Nonterminals usually denoted by capital letter A,B, . . .,

Terminal symbols: a, b, . . .

Strings in (N ∪ Σ)∗: α, β, γ, . . .

Productions: Usually written as A→ α instead of (A, α).

Suppose there are several productions from the same
nonterminal: A→ α1,A→ α2,A→ α3. Then shorten this as
A→ α1|α2|α3.
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Derivations

If α, β ∈ (N ∪ Σ)∗, then β is derivable from α in 1 step
[α→1

G β] if
There exists a production A→ γ such that α = α1Aα2,
β = α1γα2.

Define →∗
G to be the reflexive transitive closure of →1

G :
α→0

G α for all α,
α→n+1

G β if there is a γ such that α→n
G γ and γ →1

G β,
α→∗

G β if there is an n ≥ 0 such that α→n
G β.
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Sentential Forms and Sentences

A string derivable from start symbol S : sentential form;
A sentential form with no nonterminal symbols is a sentence.

L(G ) = {x ∈ Σ∗|S →∗
G x}.

B ⊆ Σ∗ is a Context Free Language (CFL) if B = L(G ) for a
CFG G .
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Example 1

Set {anbn|n ≥ 0} is a CFL (not regular!)

Generated by the grammar G = (N,Σ,P,S) where
N = {S},Σ = {a, b},P = S → aSb|ε.

Can you derive a3b3?

S → aSb → aaSbb → aaaSbbb → aaabbb.

Can you have multiple derivations of a3b3? Unambiguous
grammar - more on this later.
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Example 2

Set of palindromes over {a, b}, or {x ∈ {a, b}∗|x = x rev} is a CFL
(not regular!)

Generated by the grammar G = (N,Σ,P,S) where
N = {S},Σ = {a, b},P = S → aSa|bSb|a|b|ε.

First 2 productions: for balancing the outer ends of the string

Last 3 productions: for finishing derivations.
S → a|b are used to finishing odd length strings,
S → ε is used for finishing even length strings.
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