Balanced Parentheses

The Problem

- An expression over $\{[]$,$\} such that$
(i) every left parenthesis has a matching right parenthesis, (ii) the matched pairs are well nested.

The Problem

- An expression over $\{[]$,$\} such that$
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.
- Examples: [[[]]], [][[[]]]][], [][][[][]].

The Problem

- An expression over $\{[]$,$\} such that$
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.
- Examples: [[[]]], [][[[]]][], [][][[][]].
- Unbalanced: [[[]], []][

The Problem

- An expression over $\{[]$,$\} such that$
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.
- Examples: [[[]]], [][[[]]][], [][][[][]].
- Unbalanced: [[[]], []][
- Grammar: $S \rightarrow[S]|S S| \epsilon$.

The Problem

- An expression over $\{[]$,$\} such that$
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.
- Examples: [[[]]], [][[[]]][], [][][[][]].
- Unbalanced: [[[]], []][
- Grammar: $S \rightarrow[S]|S S| \epsilon$.
- Derive [][]: $S \rightarrow S S \rightarrow[S] S \rightarrow[] S \rightarrow[][S] \rightarrow[][]$.

The Problem

- An expression over $\{[]$,$\} such that$
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.
- Examples: [[[]]], [][[[]]][], [][][[][]].
- Unbalanced: [[[]], []][
- Grammar: $S \rightarrow[S]|S S| \epsilon$.
- Derive [][]: $S \rightarrow S S \rightarrow[S] S \rightarrow[] S \rightarrow[][S] \rightarrow[][]$.
- Derive [[]]: $S \rightarrow[S] \rightarrow[[S]] \rightarrow[[]]$.

Necessary Conditions for Balance

- $L(x):=\#[(x)=$ the number of left parentheses in x.

Necessary Conditions for Balance

- $L(x):=\#[(x)=$ the number of left parentheses in x.
- $R(x):=\#](x)=$ the number of right parentheses in x.

Necessary Conditions for Balance

- $L(x):=\#[(x)=$ the number of left parentheses in x.
- $R(x):=\#](x)=$ the number of right parentheses in x.
- Necessary conditions: A string x of parentheses is balanced iff:
(i) $L(x)=R(x)$,
(ii) for all prefixes y of $x, L(y) \geq R(y)$. - A right parenthesis can only match to a left parenthesis to its left.

Sufficient Conditions for Balance

- The above conditions are sufficient: Look at the graph of $L(x)-R(x) \vee x$.

x

Production $S \rightarrow[S]|S S| \epsilon$

- Need to show that the given grammar $S \rightarrow[S]|S S| \epsilon$ generates exactly the set of strings satisfying the 2 balanced parantheses conditions.

Production $S \rightarrow[S]|S S| \epsilon$

- Need to show that the given grammar $S \rightarrow[S]|S S| \epsilon$ generates exactly the set of strings satisfying the 2 balanced parantheses conditions.
- Proof:
(\Rightarrow) If $S \rightarrow{ }_{G}^{*} x$ then x satisfies (i) and (ii).

Production $S \rightarrow[S]|S S| \epsilon$

- Need to show that the given grammar $S \rightarrow[S]|S S| \epsilon$ generates exactly the set of strings satisfying the 2 balanced parantheses conditions.
- Proof:
(\Rightarrow) If $S \rightarrow_{G}^{*} \times$ then x satisfies (i) and (ii).
- Induction on length of the derivation of x.

In fact, we show that for any $\alpha \in(N \cup \Sigma)^{*}$, if $S \rightarrow{ }_{G}^{*} \alpha$, then
α satisfies (i) and (ii).
In fact, induction on length of derivation of α.

- Base case: $S \rightarrow{ }_{G}^{0} \alpha$, so $\alpha=S$ and the two conditions are trivially satisfied.
- Base case: $S \rightarrow{ }_{G}^{0} \alpha$, so $\alpha=S$ and the two conditions are trivially satisfied.
- Induction step: $S \rightarrow{ }_{G}^{n} \beta \rightarrow{ }_{G}^{1} \alpha$.
- Base case: $S \rightarrow{ }_{G}^{0} \alpha$, so $\alpha=S$ and the two conditions are trivially satisfied.
- Induction step: $S \rightarrow{ }_{G}^{n} \beta \rightarrow{ }_{G}^{1} \alpha$.
- By IH, β satisfies (i) and (ii).
- $\beta \rightarrow{ }_{G}^{1} \alpha$ can happen due to three types of productions:
- $\beta \rightarrow{ }_{G}^{1} \alpha$ can happen due to three types of productions:
- $S \rightarrow \epsilon$. So $\beta=\beta_{1} S \beta_{2}$ and $\alpha=\beta_{1} \beta_{2}$: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.
- $\beta \rightarrow{ }_{G}^{1} \alpha$ can happen due to three types of productions:
- $S \rightarrow \epsilon$. So $\beta=\beta_{1} S \beta_{2}$ and $\alpha=\beta_{1} \beta_{2}$: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.
- Similar argument for $S \rightarrow S S$.
- $\beta \rightarrow{ }_{G}^{1} \alpha$ can happen due to three types of productions:
- $S \rightarrow \epsilon$. So $\beta=\beta_{1} S \beta_{2}$ and $\alpha=\beta_{1} \beta_{2}$: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.
- Similar argument for $S \rightarrow$ SS.
- $S \rightarrow[S]:$ Then $\beta=\beta_{1} S \beta_{2}$ and $\alpha=\beta_{1}[S] \beta_{2}$.
- $\beta \rightarrow{ }_{G}^{1} \alpha$ can happen due to three types of productions:
- $S \rightarrow \epsilon$. So $\beta=\beta_{1} S \beta_{2}$ and $\alpha=\beta_{1} \beta_{2}$: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.
- Similar argument for $S \rightarrow$ SS.
- $S \rightarrow[S]:$ Then $\beta=\beta_{1} S \beta_{2}$ and $\alpha=\beta_{1}[S] \beta_{2}$.
- Condition (i): $L(\alpha)=L(\beta)+1$
$=R(\beta)+1$ (IH on β and (i))
$=R(\alpha)$
- Condition (ii): Want to show that for any prefix γ of $\alpha=\beta_{1}[S] \beta_{2}, L(\gamma) \geq R(\gamma)$.
- Condition (ii): Want to show that for any prefix γ of $\alpha=\beta_{1}[S] \beta_{2}, L(\gamma) \geq R(\gamma)$.
- If γ is a prefix of β_{1}, then it is a prefix of β - so done by IH .
- Condition (ii): Want to show that for any prefix γ of $\alpha=\beta_{1}[S] \beta_{2}, L(\gamma) \geq R(\gamma)$.
- If γ is a prefix of β_{1}, then it is a prefix of β - so done by IH .
- If γ is a prefix of $\beta_{1}\left[S\right.$ but not β_{1}, then
$L(\gamma)=L\left(\beta_{1}\right)+1$
$\geq R\left(\beta_{1}\right)+1$ (IH as β_{1} is a prefix of β)
$\geq R\left(\beta_{1}\right)$
$=R(\gamma)$.
- Condition (ii): Want to show that for any prefix γ of $\alpha=\beta_{1}[S] \beta_{2}, L(\gamma) \geq R(\gamma)$.
- If γ is a prefix of β_{1}, then it is a prefix of β - so done by IH .
- If γ is a prefix of $\beta_{1}\left[S\right.$ but not β_{1}, then
$L(\gamma)=L\left(\beta_{1}\right)+1$
$\geq R\left(\beta_{1}\right)+1$ (IH as β_{1} is a prefix of β)
$\geq R\left(\beta_{1}\right)$
$=R(\gamma)$.
- If $\gamma=\beta_{1}[S] \delta$ where δ is a prefix of β_{2}, then
$L(\gamma)=L\left(\beta_{1} S \delta\right)+1$
$\geq R\left(\beta_{1} S \delta\right)+1$ (IH and definition) $=R(\gamma)$
- Condition (ii): Want to show that for any prefix γ of $\alpha=\beta_{1}[S] \beta_{2}, L(\gamma) \geq R(\gamma)$.
- If γ is a prefix of β_{1}, then it is a prefix of β - so done by IH .
- If γ is a prefix of $\beta_{1}\left[S\right.$ but not β_{1}, then
$L(\gamma)=L\left(\beta_{1}\right)+1$
$\geq R\left(\beta_{1}\right)+1$ (IH as β_{1} is a prefix of β)
$\geq R\left(\beta_{1}\right)$
$=R(\gamma)$.
- If $\gamma=\beta_{1}[S] \delta$ where δ is a prefix of β_{2}, then
$L(\gamma)=L\left(\beta_{1} S \delta\right)+1$
$\geq R\left(\beta_{1} S \delta\right)+1$ (IH and definition) $=R(\gamma)$
- Thus (ii) also holds for α and this concludes the proof of (\Rightarrow) : If $S \rightarrow{ }_{G}^{*} \alpha$, then α is balanced [In particular, when α is a sentence $x]$.
- (\Leftarrow) If x is balanced, then $S \rightarrow{ }_{G}^{*} x$.
- (\Leftarrow) If x is balanced, then $S \rightarrow{ }_{G}^{*} x$.
- Induction on $|x|$. By assumption, x satisfies (i) and (ii).
- (\Leftarrow) If x is balanced, then $S \rightarrow{ }_{G}^{*} x$.
- Induction on $|x|$. By assumption, x satisfies (i) and (ii).
- Base case: If $|x|=0$, then $x=\epsilon$. Then $S \rightarrow \epsilon$ is already a production.
- (\Leftarrow) If x is balanced, then $S \rightarrow_{G}^{*} x$.
- Induction on $|x|$. By assumption, x satisfies (i) and (ii).
- Base case: If $|x|=0$, then $x=\epsilon$. Then $S \rightarrow \epsilon$ is already a production.
- IH: If $|x|>0$, then
(a) Either there exists a proper prefix y of x satisfying (i), (ii)
(b) Or no such prefix exists.
- (\Leftarrow) If x is balanced, then $S \rightarrow_{G}^{*} x$.
- Induction on $|x|$. By assumption, x satisfies (i) and (ii).
- Base case: If $|x|=0$, then $x=\epsilon$. Then $S \rightarrow \epsilon$ is already a production.
- IH: If $|x|>0$, then
(a) Either there exists a proper prefix y of x satisfying (i), (ii)
(b) Or no such prefix exists.
- Case (a): $x=y z$ where $z \neq \epsilon$.

If y and x satisfy (i) and (ii), then so does z. (Check for yourself)

- (\Leftarrow) If x is balanced, then $S \rightarrow_{G}^{*} x$.
- Induction on $|x|$. By assumption, x satisfies (i) and (ii).
- Base case: If $|x|=0$, then $x=\epsilon$. Then $S \rightarrow \epsilon$ is already a production.
- IH: If $|x|>0$, then
(a) Either there exists a proper prefix y of x satisfying (i), (ii)
(b) Or no such prefix exists.
- Case (a): $x=y z$ where $z \neq \epsilon$.

If y and x satisfy (i) and (ii), then so does z. (Check for yourself)

- By IH $S \rightarrow{ }_{G}^{*} y$ and $S \rightarrow{ }_{G}^{*} z$. Then $S \rightarrow{ }_{G}^{1} S S \rightarrow{ }_{G}^{*} y S \rightarrow{ }_{G}^{*} y z=x$.
- Case (b): No such y exists. Then it must be that $x=[z]$.
- Case (b): No such y exists. Then it must be that $x=[z]$.
- If x satisfies (i) and (ii), then so does z : z satisfies (i) from its definition (Check for yourself).
- Case (b): No such y exists. Then it must be that $x=[z]$.
- If x satisfies (i) and (ii), then so does z : z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u)-R(u)=L([u)-1-R([u) \geq 0$. (Case (b): $L([u)-R([u) \geq 1, o / w[u$ is a proper prefix of x satisfying (i) and (ii).)
- Case (b): No such y exists. Then it must be that $x=[z]$.
- If x satisfies (i) and (ii), then so does z : z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u)-R(u)=L([u)-1-R([u) \geq 0$.
(Case (b): $L([u)-R([u) \geq 1, o / w[u$ is a proper prefix of x satisfying (i) and (ii).)
- By IH $S \rightarrow{ }_{G}^{*} z$. Then

$$
S \rightarrow{ }_{G}^{1}[S] \rightarrow_{G}^{*}[z]=x .
$$

- Case (b): No such y exists. Then it must be that $x=[z]$.
- If x satisfies (i) and (ii), then so does z : z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u)-R(u)=L([u)-1-R([u) \geq 0$.
(Case (b): $L([u)-R([u) \geq 1$, o/w $[u$ is a proper prefix of x satisfying (i) and (ii).)
- By IH $S \rightarrow{ }_{G}^{*} z$. Then $S \rightarrow{ }_{G}^{1}[S] \rightarrow_{G}^{*}[z]=x$.
- Thus (\Leftarrow) is done: Every string satisfying (i) and (ii) can be derived.
- Case (b): No such y exists. Then it must be that $x=[z]$.
- If x satisfies (i) and (ii), then so does z : z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u)-R(u)=L([u)-1-R([u) \geq 0$.
(Case (b): $L([u)-R([u) \geq 1, o / w[u$ is a proper prefix of x satisfying (i) and (ii).)
- By IH $S \rightarrow{ }_{G}^{*} z$. Then $S \rightarrow{ }_{G}^{1}[S] \rightarrow_{G}^{*}[z]=x$.
- Thus (\Leftarrow) is done: Every string satisfying (i) and (ii) can be derived.
- Thus, grammar $S \rightarrow[S]|S S| \epsilon$ generates exactly the set of strings satisfying the 2 balanced parentheses conditions.

