
Balanced Parentheses



The Problem

An expression over {[, ]} such that
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.

Examples: [[[]]], [][[[]]][], [][][[][]].

Unbalanced: [[[]], []][

Grammar: S → [S ]|SS |ε.
Derive [][]: S → SS → [S ]S → []S → [][S ]→ [][].

Derive [[]]: S → [S ]→ [[S ]]→ [[]].
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Necessary Conditions for Balance

L(x) := #[(x) = the number of left parentheses in x .

R(x) := #](x) = the number of right parentheses in x .

Necessary conditions: A string x of parentheses is balanced iff:
(i) L(x) = R(x),
(ii) for all prefixes y of x , L(y) ≥ R(y). - A right parenthesis
can only match to a left parenthesis to its left.
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Production S → [S ]|SS |ε

Need to show that the given grammar S → [S ]|SS |ε generates
exactly the set of strings satisfying the 2 balanced parantheses
conditions.

Proof:
(⇒) If S →∗

G x then x satisfies (i) and (ii).

Induction on length of the derivation of x .
In fact, we show that for any α ∈ (N ∪ Σ)∗, if S →∗

G α, then
α satisfies (i) and (ii).
In fact, induction on length of derivation of α.
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Base case: S →0
G α, so α = S and the two conditions are

trivially satisfied.

Induction step: S →n
G β →1

G α.

By IH, β satisfies (i) and (ii).
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β →1
G α can happen due to three types of productions:

S → ε. So β = β1Sβ2 and α = β1β2: No change in order of
parentheses and α satisfies (i) and (ii) iff β satisfies them.

Similar argument for S → SS .

S → [S ]: Then β = β1Sβ2 and α = β1[S ]β2.

Condition (i): L(α) = L(β) + 1
= R(β) + 1 (IH on β and (i))
= R(α)
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Condition (ii): Want to show that for any prefix γ of
α = β1[S ]β2, L(γ) ≥ R(γ).

If γ is a prefix of β1, then it is a prefix of β - so done by IH.

If γ is a prefix of β1[S but not β1, then
L(γ) = L(β1) + 1
≥ R(β1) + 1 (IH as β1 is a prefix of β)
≥ R(β1)
= R(γ).

If γ = β1[S ]δ where δ is a prefix of β2, then
L(γ) = L(β1Sδ) + 1
≥ R(β1Sδ) + 1 (IH and definition) = R(γ)

Thus (ii) also holds for α and this concludes the proof of (⇒):
If S →∗

G α, then α is balanced [In particular, when α is a
sentence x ].



Condition (ii): Want to show that for any prefix γ of
α = β1[S ]β2, L(γ) ≥ R(γ).

If γ is a prefix of β1, then it is a prefix of β - so done by IH.

If γ is a prefix of β1[S but not β1, then
L(γ) = L(β1) + 1
≥ R(β1) + 1 (IH as β1 is a prefix of β)
≥ R(β1)
= R(γ).

If γ = β1[S ]δ where δ is a prefix of β2, then
L(γ) = L(β1Sδ) + 1
≥ R(β1Sδ) + 1 (IH and definition) = R(γ)

Thus (ii) also holds for α and this concludes the proof of (⇒):
If S →∗

G α, then α is balanced [In particular, when α is a
sentence x ].



Condition (ii): Want to show that for any prefix γ of
α = β1[S ]β2, L(γ) ≥ R(γ).

If γ is a prefix of β1, then it is a prefix of β - so done by IH.

If γ is a prefix of β1[S but not β1, then
L(γ) = L(β1) + 1
≥ R(β1) + 1 (IH as β1 is a prefix of β)
≥ R(β1)
= R(γ).

If γ = β1[S ]δ where δ is a prefix of β2, then
L(γ) = L(β1Sδ) + 1
≥ R(β1Sδ) + 1 (IH and definition) = R(γ)

Thus (ii) also holds for α and this concludes the proof of (⇒):
If S →∗

G α, then α is balanced [In particular, when α is a
sentence x ].



Condition (ii): Want to show that for any prefix γ of
α = β1[S ]β2, L(γ) ≥ R(γ).

If γ is a prefix of β1, then it is a prefix of β - so done by IH.

If γ is a prefix of β1[S but not β1, then
L(γ) = L(β1) + 1
≥ R(β1) + 1 (IH as β1 is a prefix of β)
≥ R(β1)
= R(γ).

If γ = β1[S ]δ where δ is a prefix of β2, then
L(γ) = L(β1Sδ) + 1
≥ R(β1Sδ) + 1 (IH and definition) = R(γ)

Thus (ii) also holds for α and this concludes the proof of (⇒):
If S →∗

G α, then α is balanced [In particular, when α is a
sentence x ].



Condition (ii): Want to show that for any prefix γ of
α = β1[S ]β2, L(γ) ≥ R(γ).

If γ is a prefix of β1, then it is a prefix of β - so done by IH.

If γ is a prefix of β1[S but not β1, then
L(γ) = L(β1) + 1
≥ R(β1) + 1 (IH as β1 is a prefix of β)
≥ R(β1)
= R(γ).

If γ = β1[S ]δ where δ is a prefix of β2, then
L(γ) = L(β1Sδ) + 1
≥ R(β1Sδ) + 1 (IH and definition) = R(γ)

Thus (ii) also holds for α and this concludes the proof of (⇒):
If S →∗

G α, then α is balanced [In particular, when α is a
sentence x ].



(⇐) If x is balanced, then S →∗
G x .

Induction on |x |. By assumption, x satisfies (i) and (ii).

Base case: If |x | = 0, then x = ε. Then S → ε is already a
production.

IH: If |x | > 0, then
(a) Either there exists a proper prefix y of x satisfying (i), (ii)
(b) Or no such prefix exists.

Case (a): x = yz where z 6= ε.
If y and x satisfy (i) and (ii), then so does z . (Check for
yourself)

By IH S →∗
G y and S →∗

G z . Then
S →1

G SS →∗
G yS →∗

G yz = x .
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Case (b): No such y exists. Then it must be that x = [z ].

If x satisfies (i) and (ii), then so does z :
z satisfies (i) from its definition (Check for yourself).

z satisfies (ii) because for all non-null prefixes u of z ,
L(u)− R(u) = L([u)− 1− R([u) ≥ 0.
(Case (b): L([u)− R([u) ≥ 1, o/w [u is a proper prefix of x
satisfying (i) and (ii).)

By IH S →∗
G z . Then

S →1
G [S ]→∗

G [z ] = x .

Thus (⇐) is done: Every string satisfying (i) and (ii) can be
derived.

Thus, grammar S → [S ]|SS |ε generates exactly the set of
strings satisfying the 2 balanced parentheses conditions.
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