Balanced Parentheses

• An expression over $\{[,]\}$ such that

(i) every left parenthesis has a matching right parenthesis,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

(ii) the matched pairs are well nested.

An expression over {[,]} such that

 (i) every left parenthesis has a matching right parenthesis,
 (ii) the matched pairs are well nested.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Examples: [[[]]], [][[[]]], [][[[]]].

An expression over {[,]} such that

 (i) every left parenthesis has a matching right parenthesis,
 (ii) the matched pairs are well nested.

・ロト・西ト・山田・山田・山口・

- Examples: [[[]]], [][[]]], [][[[]]].
- Unbalanced: [[[]], []][

An expression over {[,]} such that

 (i) every left parenthesis has a matching right parenthesis,
 (ii) the matched pairs are well nested.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Examples: [[[]]], [][[]]], [][[[]]].
- Unbalanced: [[[]], []][
- Grammar: $S \rightarrow [S]|SS|\epsilon$.

An expression over {[,]} such that

 (i) every left parenthesis has a matching right parenthesis,
 (ii) the matched pairs are well nested.

- Examples: [[[]]], [][[]]], [][[[]]].
- Unbalanced: [[[]], []][
- Grammar: $S \rightarrow [S]|SS|\epsilon$.
- Derive [][]: $S \rightarrow SS \rightarrow [S]S \rightarrow []S \rightarrow [][S] \rightarrow [][]$.

An expression over {[,]} such that
 (i) every left parenthesis has a matching right parenthesis,
 (ii) the matched pairs are well nested.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Examples: [[[]]], [][[]]], [][[[]]].
- Unbalanced: [[[]], []][
- Grammar: $S \rightarrow [S]|SS|\epsilon$.
- Derive [][]: $S \rightarrow SS \rightarrow [S]S \rightarrow []S \rightarrow [][S] \rightarrow [][]$.
- Derive [[]]: $S \rightarrow [S] \rightarrow [[S]] \rightarrow [[]]$.

Necessary Conditions for Balance

• L(x) := #[(x) = the number of left parentheses in x.

Necessary Conditions for Balance

- L(x) := #[(x) = the number of left parentheses in x.
- R(x) := #](x) = the number of right parentheses in x.

Necessary Conditions for Balance

- L(x) := #[(x) = the number of left parentheses in x.
- R(x) := #](x) = the number of right parentheses in x.
- Necessary conditions: A string x of parentheses is balanced iff:
 (i) L(x) = R(x),

(ii) for all prefixes y of x, $L(y) \ge R(y)$. - A right parenthesis can only match to a left parenthesis to its left.

Sufficient Conditions for Balance

The above conditions are sufficient:
 Look at the graph of L(x) - R(x) v x.

Production $S \rightarrow [S]|SS|\epsilon$

• Need to show that the given grammar $S \rightarrow [S]|SS|\epsilon$ generates exactly the set of strings satisfying the 2 balanced parantheses conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Production $S \rightarrow [S]|SS|\epsilon$

• Need to show that the given grammar $S \rightarrow [S]|SS|\epsilon$ generates exactly the set of strings satisfying the 2 balanced parantheses conditions.

• Proof:

 (\Rightarrow) If $S \rightarrow^*_G x$ then x satisfies (i) and (ii).

Production $S \rightarrow [S]|SS|\epsilon$

- Need to show that the given grammar $S \rightarrow [S]|SS|\epsilon$ generates exactly the set of strings satisfying the 2 balanced parantheses conditions.
- Proof:

 (\Rightarrow) If $S \rightarrow^*_G x$ then x satisfies (i) and (ii).

• Induction on length of the derivation of x. In fact, we show that for any $\alpha \in (N \cup \Sigma)^*$, if $S \to_G^* \alpha$, then α satisfies (i) and (ii).

(日)(1)</p

In fact, induction on length of derivation of α .

• Base case: $S \rightarrow^{0}_{G} \alpha$, so $\alpha = S$ and the two conditions are trivially satisfied.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• Base case: $S \rightarrow_G^0 \alpha$, so $\alpha = S$ and the two conditions are trivially satisfied.

• Induction step: $S \rightarrow^n_G \beta \rightarrow^1_G \alpha$.

• Base case: $S \rightarrow_G^0 \alpha$, so $\alpha = S$ and the two conditions are trivially satisfied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Induction step: $S \rightarrow^n_G \beta \rightarrow^1_G \alpha$.
- By IH, β satisfies (i) and (ii).

• $\beta \rightarrow^{1}_{G} \alpha$ can happen due to three types of productions:

- $\beta \rightarrow^{1}_{G} \alpha$ can happen due to three types of productions:
- S → ε. So β = β₁Sβ₂ and α = β₁β₂: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\beta \rightarrow^{1}_{G} \alpha$ can happen due to three types of productions:
- S → ε. So β = β₁Sβ₂ and α = β₁β₂: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Similar argument for $S \rightarrow SS$.

- $\beta \rightarrow^{1}_{G} \alpha$ can happen due to three types of productions:
- S → ε. So β = β₁Sβ₂ and α = β₁β₂: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.

- Similar argument for $S \rightarrow SS$.
- $S \rightarrow [S]$: Then $\beta = \beta_1 S \beta_2$ and $\alpha = \beta_1 [S] \beta_2$.

- $\beta \rightarrow^{1}_{G} \alpha$ can happen due to three types of productions:
- S → ε. So β = β₁Sβ₂ and α = β₁β₂: No change in order of parentheses and α satisfies (i) and (ii) iff β satisfies them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Similar argument for $S \rightarrow SS$.
- $S \rightarrow [S]$: Then $\beta = \beta_1 S \beta_2$ and $\alpha = \beta_1 [S] \beta_2$.
- Condition (i): $L(\alpha) = L(\beta) + 1$ = $R(\beta) + 1$ (IH on β and (i)) = $R(\alpha)$

 Condition (ii): Want to show that for any prefix γ of α = β₁[S]β₂, L(γ) ≥ R(γ).

- Condition (ii): Want to show that for any prefix γ of $\alpha = \beta_1[S]\beta_2$, $L(\gamma) \ge R(\gamma)$.
- If γ is a prefix of β_1 , then it is a prefix of β so done by IH.

- Condition (ii): Want to show that for any prefix γ of $\alpha = \beta_1[S]\beta_2$, $L(\gamma) \ge R(\gamma)$.
- If γ is a prefix of β_1 , then it is a prefix of β so done by IH.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• If γ is a prefix of $\beta_1[S \text{ but not } \beta_1$, then $L(\gamma) = L(\beta_1) + 1$ $\geq R(\beta_1) + 1 \text{ (IH as } \beta_1 \text{ is a prefix of } \beta)$ $\geq R(\beta_1)$ $= R(\gamma).$

- Condition (ii): Want to show that for any prefix γ of $\alpha = \beta_1[S]\beta_2$, $L(\gamma) \ge R(\gamma)$.
- If γ is a prefix of β_1 , then it is a prefix of β so done by IH.

- If γ is a prefix of $\beta_1[S \text{ but not } \beta_1$, then $L(\gamma) = L(\beta_1) + 1$ $\geq R(\beta_1) + 1$ (IH as β_1 is a prefix of β) $\geq R(\beta_1)$ $= R(\gamma).$
- If $\gamma = \beta_1[S]\delta$ where δ is a prefix of β_2 , then $L(\gamma) = L(\beta_1S\delta) + 1$ $\geq R(\beta_1S\delta) + 1$ (IH and definition) = $R(\gamma)$

- Condition (ii): Want to show that for any prefix γ of $\alpha = \beta_1[S]\beta_2$, $L(\gamma) \ge R(\gamma)$.
- If γ is a prefix of β_1 , then it is a prefix of β so done by IH.
- If γ is a prefix of $\beta_1[S$ but not β_1 , then $L(\gamma) = L(\beta_1) + 1$ $\geq R(\beta_1) + 1$ (IH as β_1 is a prefix of β) $\geq R(\beta_1)$ $= R(\gamma).$
- If $\gamma = \beta_1[S]\delta$ where δ is a prefix of β_2 , then $L(\gamma) = L(\beta_1S\delta) + 1$ $\geq R(\beta_1S\delta) + 1$ (IH and definition) = $R(\gamma)$
- Thus (ii) also holds for α and this concludes the proof of (⇒): If S →^{*}_G α, then α is balanced [In particular, when α is a sentence x].

• (\Leftarrow) If x is balanced, then $S \rightarrow^*_G x$.

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

- (\Leftarrow) If x is balanced, then $S \rightarrow^*_G x$.
- Induction on |x|. By assumption, x satisfies (i) and (ii).

- (\Leftarrow) If x is balanced, then $S \rightarrow^*_G x$.
- Induction on |x|. By assumption, x satisfies (i) and (ii).
- Base case: If |x| = 0, then $x = \epsilon$. Then $S \to \epsilon$ is already a production.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- (\Leftarrow) If x is balanced, then $S \to_G^* x$.
- Induction on |x|. By assumption, x satisfies (i) and (ii).
- Base case: If |x| = 0, then $x = \epsilon$. Then $S \to \epsilon$ is already a production.
- IH: If |x| > 0, then
 - (a) Either there exists a proper prefix y of x satisfying (i), (ii)(b) Or no such prefix exists.

- (\Leftarrow) If x is balanced, then $S \to_G^* x$.
- Induction on |x|. By assumption, x satisfies (i) and (ii).
- Base case: If |x| = 0, then $x = \epsilon$. Then $S \to \epsilon$ is already a production.
- IH: If |x| > 0, then
 (a) Either there exists a proper prefix y of x satisfying (i), (ii)
 (b) Or no such prefix exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Case (a): x = yz where z ≠ ε.
 If y and x satisfy (i) and (ii), then so does z. (Check for yourself)

- (\Leftarrow) If x is balanced, then $S \to_G^* x$.
- Induction on |x|. By assumption, x satisfies (i) and (ii).
- Base case: If |x| = 0, then $x = \epsilon$. Then $S \to \epsilon$ is already a production.
- IH: If |x| > 0, then
 (a) Either there exists a proper prefix y of x satisfying (i), (ii)
 (b) Or no such prefix exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Case (a): x = yz where z ≠ ε.
 If y and x satisfy (i) and (ii), then so does z. (Check for yourself)
- By IH $S \to_G^* y$ and $S \to_G^* z$. Then $S \to_G^1 SS \to_G^* yS \to_G^* yz = x$.

• Case (b): No such y exists. Then it must be that x = [z].

・ロト・(型ト・(型ト・(型ト))

• Case (b): No such y exists. Then it must be that x = [z].

If x satisfies (i) and (ii), then so does z:
 z satisfies (i) from its definition (Check for yourself).

- Case (b): No such y exists. Then it must be that x = [z].
- If x satisfies (i) and (ii), then so does z:
 z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u) - R(u) = L([u) - 1 - R([u) \ge 0.$ (Case (b): $L([u) - R([u) \ge 1, o/w [u is a proper prefix of x satisfying (i) and (ii).)$

- Case (b): No such y exists. Then it must be that x = [z].
- If x satisfies (i) and (ii), then so does z:
 z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u) - R(u) = L([u) - 1 - R([u) \ge 0.$ (Case (b): $L([u) - R([u) \ge 1, o/w [u is a proper prefix of x satisfying (i) and (ii).)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• By IH $S \rightarrow^*_G z$. Then $S \rightarrow^1_G [S] \rightarrow^*_G [z] = x$.

- Case (b): No such y exists. Then it must be that x = [z].
- If x satisfies (i) and (ii), then so does z:
 z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u) - R(u) = L([u) - 1 - R([u) \ge 0.$ (Case (b): $L([u) - R([u) \ge 1, o/w [u is a proper prefix of x satisfying (i) and (ii).)$
- By IH $S \to_G^* z$. Then $S \to_G^1 [S] \to_G^* [z] = x$.
- Thus (⇐) is done: Every string satisfying (i) and (ii) can be derived.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Case (b): No such y exists. Then it must be that x = [z].
- If x satisfies (i) and (ii), then so does z:
 z satisfies (i) from its definition (Check for yourself).
- z satisfies (ii) because for all non-null prefixes u of z, $L(u) - R(u) = L([u) - 1 - R([u) \ge 0.$ (Case (b): $L([u) - R([u) \ge 1, o/w [u is a proper prefix of x satisfying (i) and (ii).)$
- By IH $S \to_G^* z$. Then $S \to_G^1 [S] \to_G^* [z] = x$.
- Thus (⇐) is done: Every string satisfying (i) and (ii) can be derived.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Thus, grammar S → [S]|SS|ε generates exactly the set of strings satisfying the 2 balanced parentheses conditions.