Normal Forms of CFGs

• Normal forms: Productions are of a special form.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Normal forms: Productions are of a special form.
- Chomsky Normal Form: $A \rightarrow BC$ or $A \rightarrow a$, $A, B, C \in N, a \in \Sigma$.

- Normal forms: Productions are of a special form.
- Chomsky Normal Form: $A \rightarrow BC$ or $A \rightarrow a$, $A, B, C \in N, a \in \Sigma$.
- Greibach Normal Form: $A \to aB_1B_2...B_k$ for some $k \ge 0$, $A, B_1, ..., B_k \in N, a \in \Sigma$. $k = 0 \implies A \to a$ kind of productions.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Normal forms: Productions are of a special form.
- Chomsky Normal Form: $A \rightarrow BC$ or $A \rightarrow a$, $A, B, C \in N, a \in \Sigma$.
- Greibach Normal Form: $A \to aB_1B_2...B_k$ for some $k \ge 0$, $A, B_1, ..., B_k \in N, a \in \Sigma$. $k = 0 \implies A \to a$ kind of productions.
- Note: No A → e kind of productions. So e as a string cannot be generated!

For any CFC G, there is a CFG G' in Chomsky Normal Form (and a CFG G'' in Greibach Normal Form) such that $L(G) - \{\epsilon\} = L(G') (= L(G''))$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

• ϵ -production of the form $A \rightarrow \epsilon$, $A \in N$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ϵ -production of the form $A \rightarrow \epsilon$, $A \in N$.
- Unit production of the form $A \rightarrow B$, $A, B \in N$.

- ϵ -production of the form $A \rightarrow \epsilon$, $A \in N$.
- Unit production of the form $A \rightarrow B$, $A, B \in N$.
- Normal forms: These productions have to be removed without changing L(G) \ {€}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let P̂ be the smallest set of productions containing P and closed under two rules:
(a) if A → αBβ, B → ε ∈ P̂, then A → αβ ∈ P̂,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(b) if $A \to B, B \to \gamma \in \hat{P}$, then $A \to \gamma \in \hat{P}$.

- Let \hat{P} be the smallest set of productions containing P and closed under two rules:
 - (a) if $A \to \alpha B\beta$, $B \to \epsilon \in \hat{P}$, then $A \to \alpha\beta \in \hat{P}$, (b) if $A \to B$, $B \to \gamma \in \hat{P}$, then $A \to \gamma \in \hat{P}$.
- \hat{P} : Keep adding new productions using the above rules on top of P.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let \hat{P} be the smallest set of productions containing P and closed under two rules:
 - (a) if $A \to \alpha B\beta$, $B \to \epsilon \in \hat{P}$, then $A \to \alpha \beta \in \hat{P}$, (b) if $A \to B$, $B \to \gamma \in \hat{P}$, then $A \to \gamma \in \hat{P}$.
- \hat{P} : Keep adding new productions using the above rules on top of P.
- Each new RHS is a substring of an old RHS. *P* is finite: So \hat{P} is finite.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$\hat{G} = (N, \Sigma, \hat{P}, S).$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

- $\hat{G} = (N, \Sigma, \hat{P}, S).$
- As $P \subseteq \hat{P}$, $L(G) \subseteq L(\hat{G})$.
- $L(\hat{G}) = L(G)$: simulate each new production in two steps by the two old productions that created the new production.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Claim: Minimum length derivation of x ∈ Σ* - {ε} such that S →^{*}_G x does not use any ε- or unit productions. Implication: They can be deleted from Ĝ to get Ĝ!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Claim: Minimum length derivation of x ∈ Σ* {ε} such that
 S →^{*}_Ĝ x does not use any ε- or unit productions.
 Implication: They can be deleted from Ĝ to get Ĝ!
- (i) Suppose for contradiction that an ϵ -production $B \to \epsilon$ is used in the minimum length derivation:

 $S \to_{\widehat{G}}^* \gamma B \delta \to_{\widehat{G}}^* \gamma \delta \to_{\widehat{G}}^* x \ (\gamma \text{ or } \delta \text{ must be non-null if } x \neq \epsilon).$

(日)(1)(1

- Claim: Minimum length derivation of x ∈ Σ* {ε} such that
 S →^{*}_Ĝ x does not use any ε- or unit productions.
 Implication: They can be deleted from Ĝ to get G
- (i) Suppose for contradiction that an ε-production B → ε is used in the minimum length derivation: S →_G^{*} γBδ →_G^{*} γδ →_G^{*} x (γ or δ must be non-null if x ≠ ε).
 This implies, there is A → αBβ such that S →_G^m ηAθ →_G¹ ηαBβθ →_Gⁿ γBδ →_G¹ γδ →_G^k x.

- Claim: Minimum length derivation of x ∈ Σ* {ε} such that
 S →^{*}_Ĝ x does not use any ε- or unit productions.
 Implication: They can be deleted from Ĝ to get Ĝ!
- (i) Suppose for contradiction that an ε-production B → ε is used in the minimum length derivation:
 S →^{*}_c γBδ →^{*}_c γδ →^{*}_c x (γ or δ must be non-null if x ≠ ε).
- This implies, there is $A \to \alpha B\beta$ such that $S \to_{\hat{G}}^{m} \eta A\theta \to_{\hat{G}}^{1} \eta \alpha B\beta\theta \to_{\hat{G}}^{n} \gamma B\delta \to_{\hat{G}}^{1} \gamma\delta \to_{\hat{G}}^{k} x.$
- But by rule (a), $A \to \alpha\beta \in \hat{P}$: $S \to_{\hat{G}}^{m} \eta A\theta \to_{\hat{G}}^{1} \eta \alpha \beta\theta \to_{\hat{G}}^{n} \gamma \delta \to_{\hat{G}}^{k} x$ is a shorter derivation $(\to \leftarrow)$.

(日)(1)(1

 (ii) Suppose for contradiction that a unit-production A → B is used in the minimum length derivation of x:

 $S \to_{\hat{G}}^* \gamma A \delta \to_{\hat{G}}^1 \gamma B \delta \to_{\hat{G}}^* x \ (\gamma \text{ or } \delta \text{ must be non-null if } x \neq \epsilon).$

(ii) Suppose for contradiction that a unit-production A → B is used in the minimum length derivation of x:
 S →^{*}_c γAδ →¹_c γBδ →^{*}_c x (γ or δ must be non-null if x ≠ ε).

A D N A 目 N A E N A E N A B N A C N

• This implies, there is a $B \to \alpha$ such that $S \to_{\hat{G}}^{m} \gamma A \delta \to_{\hat{G}}^{1} \gamma B \delta \to_{\hat{G}}^{n} \eta B \theta \to_{\hat{G}}^{1} \eta \alpha \theta \to_{\hat{G}}^{k} x.$

• (ii) Suppose for contradiction that a unit-production $A \rightarrow B$ is used in the minimum length derivation of x:

 $S \to_{\hat{G}}^* \gamma A \delta \to_{\hat{G}}^1 \gamma B \delta \to_{\hat{G}}^* x \ (\gamma \text{ or } \delta \text{ must be non-null if } x \neq \epsilon).$

- This implies, there is a $B \to \alpha$ such that $S \to_{\hat{G}}^{m} \gamma A \delta \to_{\hat{G}}^{1} \gamma B \delta \to_{\hat{G}}^{n} \eta B \theta \to_{\hat{G}}^{1} \eta \alpha \theta \to_{\hat{G}}^{k} x.$
- But by rule (b), $A \to \alpha \in \hat{P}$: $S \to_{\hat{G}}^{m} \gamma A \delta \to_{\hat{G}}^{1} \gamma \alpha \delta \to_{\hat{G}}^{n} \eta \alpha \theta \to_{\hat{G}}^{k} x$ is a shorter derivation $(\to \leftarrow)$.

• (ii) Suppose for contradiction that a unit-production $A \rightarrow B$ is used in the minimum length derivation of x:

 $S \to_{\hat{G}}^* \gamma A \delta \to_{\hat{G}}^1 \gamma B \delta \to_{\hat{G}}^* x \ (\gamma \text{ or } \delta \text{ must be non-null if } x \neq \epsilon).$

- This implies, there is a $B \to \alpha$ such that $S \to_{\hat{G}}^{m} \gamma A \delta \to_{\hat{G}}^{1} \gamma B \delta \to_{\hat{G}}^{n} \eta B \theta \to_{\hat{G}}^{1} \eta \alpha \theta \to_{\hat{G}}^{k} x.$
- But by rule (b), $A \to \alpha \in \hat{P}$: $S \to_{\hat{G}}^{m} \gamma A \delta \to_{\hat{G}}^{1} \gamma \alpha \delta \to_{\hat{G}}^{n} \eta \alpha \theta \to_{\hat{G}}^{k} x$ is a shorter derivation $(\to \leftarrow)$.
- \tilde{G} : after throwing away ϵ and unit productions from \hat{G} .

- Start with \tilde{G} .
- For each terminal a ∈ Σ, introduce a new nonterminal A_α and production A_α → a.
 Replace with A_α all RHS occurrences of a except in productions of form B → a.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Start with G̃.
- For each terminal a ∈ Σ, introduce a new nonterminal A_α and production A_α → a.
 Replace with A_α all RHS occurrences of a except in productions of form B → a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• After this, all productions are of the form $A \rightarrow a$ or $A \rightarrow B_1 B_2 \dots B_k$, $k \ge 2$ and $B_i \in N$.

- Start with G
 G
- For each terminal a ∈ Σ, introduce a new nonterminal A_α and production A_α → a.
 Replace with A_α all RHS occurrences of a except in productions of form B → a.
- After this, all productions are of the form $A \rightarrow a$ or $A \rightarrow B_1 B_2 \dots B_k$, $k \ge 2$ and $B_i \in N$.
- Take an A → B₁B₂...B_k with k ≥ 3 and introduce a new nonterminal C;
 Replace with A → B₁C and C → B₂B₃...B_k.
 Keep doing this till all RHS's are of length at most 2.

Example 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Balanced Parentheses Start with $S \rightarrow [S]|SS|\epsilon$. CNF for non-empty Balanced Parentheses: $S \rightarrow AB|AC|SS, C \rightarrow SB, A \rightarrow [, B \rightarrow].$

Example 2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\{a^n b^n | n \ge 0\}.$ Start with $S \to aSb | \epsilon.$ CNF for $\{a^n b^n | n \ge 0\} - \{\epsilon\} = \{a^n b^n | n \ge 1\}:$ $S \to AB | AC, C \to SB, A \to a, B \to b.$