Normal Forms of CFGs

Normal Forms

- Normal forms: Productions are of a special form.

Normal Forms

- Normal forms: Productions are of a special form.
- Chomsky Normal Form: $A \rightarrow B C$ or $A \rightarrow a$, $A, B, C \in N, a \in \Sigma$.

Normal Forms

- Normal forms: Productions are of a special form.
- Chomsky Normal Form: $A \rightarrow B C$ or $A \rightarrow a$, $A, B, C \in N, a \in \Sigma$.
- Greibach Normal Form: $A \rightarrow a B_{1} B_{2} \ldots B_{k}$ for some $k \geq 0$, $A, B_{1}, \ldots, B_{k} \in N, a \in \Sigma$.
$k=0 \Longrightarrow A \rightarrow a$ kind of productions.

Normal Forms

- Normal forms: Productions are of a special form.
- Chomsky Normal Form: $A \rightarrow B C$ or $A \rightarrow a$, $A, B, C \in N, a \in \Sigma$.
- Greibach Normal Form: $A \rightarrow a B_{1} B_{2} \ldots B_{k}$ for some $k \geq 0$, $A, B_{1}, \ldots, B_{k} \in N, a \in \Sigma$. $k=0 \Longrightarrow A \rightarrow a$ kind of productions.
- Note: No $A \rightarrow \epsilon$ kind of productions. So ϵ as a string cannot be generated!

Normal Forms

For any CFC G, there is a CFG G^{\prime} in Chomsky Normal Form (and a CFG $G^{\prime \prime}$ in Greibach Normal Form) such that $L(G)-\{\epsilon\}=L\left(G^{\prime}\right)\left(=L\left(G^{\prime \prime}\right)\right)$

Conversion of CFGs to Normal Forms

- ϵ-production of the form $A \rightarrow \epsilon, A \in N$.

Conversion of CFGs to Normal Forms

- ϵ-production of the form $A \rightarrow \epsilon, A \in N$.
- Unit production of the form $A \rightarrow B, A, B \in N$.

Conversion of CFGs to Normal Forms

- ϵ-production of the form $A \rightarrow \epsilon, A \in N$.
- Unit production of the form $A \rightarrow B, A, B \in N$.
- Normal forms: These productions have to be removed without changing $L(G) \backslash\{\epsilon\}$.

Conversion of CFGs to Normal Forms

- Let \hat{P} be the smallest set of productions containing P and closed under two rules:
(a) if $A \rightarrow \alpha B \beta, B \rightarrow \epsilon \in \hat{P}$, then $A \rightarrow \alpha \beta \in \hat{P}$, (b) if $A \rightarrow B, B \rightarrow \gamma \in \hat{P}$, then $A \rightarrow \gamma \in \hat{P}$.

Conversion of CFGs to Normal Forms

- Let \hat{P} be the smallest set of productions containing P and closed under two rules:
(a) if $A \rightarrow \alpha B \beta, B \rightarrow \epsilon \in \hat{P}$, then $A \rightarrow \alpha \beta \in \hat{P}$, (b) if $A \rightarrow B, B \rightarrow \gamma \in \hat{P}$, then $A \rightarrow \gamma \in \hat{P}$.
- \hat{P} : Keep adding new productions using the above rules on top of P.

Conversion of CFGs to Normal Forms

- Let \hat{P} be the smallest set of productions containing P and closed under two rules:
(a) if $A \rightarrow \alpha B \beta, B \rightarrow \epsilon \in \hat{P}$, then $A \rightarrow \alpha \beta \in \hat{P}$, (b) if $A \rightarrow B, B \rightarrow \gamma \in \hat{P}$, then $A \rightarrow \gamma \in \hat{P}$.
- \hat{P} : Keep adding new productions using the above rules on top of P.
- Each new RHS is a substring of an old RHS. P is finite: So \hat{P} is finite.

Conversion of CFGs to Normal Forms

- $\hat{G}=(N, \Sigma, \hat{P}, S)$.

Conversion of CFGs to Normal Forms

- $\hat{G}=(N, \Sigma, \hat{P}, S)$.
- As $P \subseteq \hat{P}, L(G) \subseteq L(\hat{G})$.

Conversion of CFGs to Normal Forms

- $\hat{G}=(N, \Sigma, \hat{P}, S)$.
- As $P \subseteq \hat{P}, L(G) \subseteq L(\hat{G})$.
- $L(\hat{G})=L(G)$: simulate each new production in two steps by the two old productions that created the new production.

Property of \hat{G}

- Claim: Minimum length derivation of $x \in \Sigma^{*}-\{\epsilon\}$ such that $S \rightarrow_{\hat{G}}^{*} \times$ does not use any ϵ - or unit productions. Implication: They can be deleted from \hat{G} to get \tilde{G} !

Property of \hat{G}

- Claim: Minimum length derivation of $x \in \Sigma^{*}-\{\epsilon\}$ such that $S \rightarrow_{\hat{G}}^{*} \times$ does not use any ϵ - or unit productions. Implication: They can be deleted from \hat{G} to get \tilde{G} !
- (i) Suppose for contradiction that an ϵ-production $B \rightarrow \epsilon$ is used in the minimum length derivation:
$S \rightarrow{ }_{\hat{G}}^{*} \gamma B \delta \rightarrow_{\hat{G}}^{*} \gamma \delta \rightarrow_{\hat{G}}^{*} \times(\gamma$ or δ must be non-null if $x \neq \epsilon)$.

Property of \hat{G}

- Claim: Minimum length derivation of $x \in \Sigma^{*}-\{\epsilon\}$ such that $S \rightarrow{ }_{\hat{G}}^{*} \times$ does not use any ϵ - or unit productions. Implication: They can be deleted from \hat{G} to get \tilde{G} !
- (i) Suppose for contradiction that an ϵ-production $B \rightarrow \epsilon$ is used in the minimum length derivation:
$S \rightarrow{ }_{\hat{G}}^{*} \gamma B \delta \rightarrow_{\hat{G}}^{*} \gamma \delta \rightarrow_{\hat{G}}^{*} \times(\gamma$ or δ must be non-null if $x \neq \epsilon)$.
- This implies, there is $A \rightarrow \alpha B \beta$ such that

$$
S \rightarrow{ }_{\hat{G}}^{m} \eta A \theta \rightarrow{ }_{\hat{G}}^{1} \eta \alpha B \beta \theta \rightarrow{ }_{\hat{G}}^{n} \gamma B \delta \rightarrow_{\hat{G}}^{1} \gamma \delta \rightarrow_{\hat{G}}^{k} x .
$$

Property of \hat{G}

- Claim: Minimum length derivation of $x \in \Sigma^{*}-\{\epsilon\}$ such that $S \rightarrow{ }_{\hat{G}}^{*} \times$ does not use any ϵ - or unit productions. Implication: They can be deleted from \hat{G} to get \tilde{G} !
- (i) Suppose for contradiction that an ϵ-production $B \rightarrow \epsilon$ is used in the minimum length derivation:
$S \rightarrow_{\hat{G}}^{*} \gamma B \delta \rightarrow_{\hat{G}}^{*} \gamma \delta \rightarrow_{\hat{G}}^{*} \times(\gamma$ or δ must be non-null if $x \neq \epsilon)$.
- This implies, there is $A \rightarrow \alpha B \beta$ such that $S \rightarrow{ }_{\hat{G}}^{m} \eta A \theta \rightarrow{ }_{\hat{G}}^{1} \eta \alpha B \beta \theta \rightarrow{ }_{\hat{G}}^{n} \gamma B \delta \rightarrow{ }_{\hat{G}}^{1} \gamma \delta \rightarrow{ }_{\hat{G}}^{k} x$.
- But by rule (a), $A \rightarrow \alpha \beta \in \hat{P}$: $S \rightarrow{ }_{\hat{G}}^{m} \eta A \theta \rightarrow{ }_{\hat{G}}^{1} \eta \alpha \beta \theta \rightarrow{ }_{\hat{G}}^{n} \gamma \delta \rightarrow{ }_{\hat{G}}^{k} x$ is a shorter derivation $(\rightarrow \leftarrow)$.

Property of \hat{G}

- (ii) Suppose for contradiction that a unit-production $A \rightarrow B$ is used in the minimum length derivation of x : $S \rightarrow{ }_{\hat{G}}^{*} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{*} \times(\gamma$ or δ must be non-null if $x \neq \epsilon)$.

Property of \hat{G}

- (ii) Suppose for contradiction that a unit-production $A \rightarrow B$ is used in the minimum length derivation of x : $S \rightarrow{ }_{\hat{G}}^{*} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{*} \times(\gamma$ or δ must be non-null if $x \neq \epsilon)$.
- This implies, there is a $B \rightarrow \alpha$ such that $S \rightarrow{ }_{\hat{G}}^{m} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{n} \eta B \theta \rightarrow{ }_{\hat{G}}^{1} \eta \alpha \theta \rightarrow{ }_{\hat{G}}^{k} x$.

Property of \hat{G}

- (ii) Suppose for contradiction that a unit-production $A \rightarrow B$ is used in the minimum length derivation of x : $S \rightarrow{ }_{\hat{G}}^{*} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{*} x(\gamma$ or δ must be non-null if $x \neq \epsilon)$.
- This implies, there is a $B \rightarrow \alpha$ such that $S \rightarrow{ }_{\hat{G}}^{m} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{n} \eta B \theta \rightarrow{ }_{\hat{G}}^{1} \eta \alpha \theta \rightarrow{ }_{\hat{G}}^{k} x$.
- But by rule (b), $A \rightarrow \alpha \in \hat{P}$: $S \rightarrow{ }_{\hat{G}}^{m} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma \alpha \delta \rightarrow_{\hat{G}}^{n} \eta \alpha \theta \rightarrow{ }_{\hat{G}}^{k} \times$ is a shorter derivation $(\rightarrow \leftarrow)$.

Property of \hat{G}

- (ii) Suppose for contradiction that a unit-production $A \rightarrow B$ is used in the minimum length derivation of x : $S \rightarrow{ }_{\hat{G}}^{*} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{*} x(\gamma$ or δ must be non-null if $x \neq \epsilon)$.
- This implies, there is a $B \rightarrow \alpha$ such that $S \rightarrow{ }_{\hat{G}}^{m} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma B \delta \rightarrow{ }_{\hat{G}}^{n} \eta B \theta \rightarrow{ }_{\hat{G}}^{1} \eta \alpha \theta \rightarrow{ }_{\hat{G}}^{k} x$.
- But by rule (b), $A \rightarrow \alpha \in \hat{P}$: $S \rightarrow{ }_{\hat{G}}^{m} \gamma A \delta \rightarrow{ }_{\hat{G}}^{1} \gamma \alpha \delta \rightarrow_{\hat{G}}^{n} \eta \alpha \theta \rightarrow{ }_{\hat{G}}^{k} x$ is a shorter derivation $(\rightarrow \leftarrow)$.
- \tilde{G} : after throwing away ϵ - and unit productions from \hat{G}.

Chomsky Normal Form

- Start with \tilde{G}.

Chomsky Normal Form

- Start with \tilde{G}.
- For each terminal $a \in \Sigma$, introduce a new nonterminal A_{α} and production $A_{\alpha} \rightarrow$ a.
Replace with A_{α} all RHS occurrences of a except in productions of form $B \rightarrow a$.

Chomsky Normal Form

- Start with \tilde{G}.
- For each terminal $a \in \Sigma$, introduce a new nonterminal A_{α} and production $A_{\alpha} \rightarrow a$.
Replace with A_{α} all RHS occurrences of a except in productions of form $B \rightarrow a$.
- After this, all productions are of the form $A \rightarrow a$ or $A \rightarrow B_{1} B_{2} \ldots B_{k}, k \geq 2$ and $B_{i} \in N$.

Chomsky Normal Form

- Start with \tilde{G}.
- For each terminal $a \in \Sigma$, introduce a new nonterminal A_{α} and production $A_{\alpha} \rightarrow$ a.
Replace with A_{α} all RHS occurrences of a except in productions of form $B \rightarrow a$.
- After this, all productions are of the form $A \rightarrow a$ or $A \rightarrow B_{1} B_{2} \ldots B_{k}, k \geq 2$ and $B_{i} \in N$.
- Take an $A \rightarrow B_{1} B_{2} \ldots B_{k}$ with $k \geq 3$ and introduce a new nonterminal C;
Replace with $A \rightarrow B_{1} C$ and $C \rightarrow B_{2} B_{3} \ldots B_{k}$. Keep doing this till all RHS's are of length at most 2.

Example 1

Balanced Parentheses
Start with $S \rightarrow[S]|S S| \epsilon$.
CNF for non-empty Balanced Parentheses:
$S \rightarrow A B|A C| S S, C \rightarrow S B, A \rightarrow[, B \rightarrow]$.

Example 2

$\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
Start with $S \rightarrow a S b \mid \epsilon$.
CNF for $\left\{a^{n} b^{n} \mid n \geq 0\right\}-\{\epsilon\}=\left\{a^{n} b^{n} \mid n \geq 1\right\}$:
$S \rightarrow A B \mid A C, C \rightarrow S B, A \rightarrow a, B \rightarrow b$.

