Equivalence of CFG and PDA
$C F G \rightarrow P D A \rightarrow$ accepts by empty ntack

$$
\begin{aligned}
&(N, \Sigma, P, S) \longmapsto(\{*\}, \Sigma, \Gamma, \delta, \delta, *, \not \subset)=M \\
& G= N \cup \Sigma \\
& A \gamma \quad((*, \epsilon, A),(*, \gamma)) \in \delta \\
& \forall a \in \Sigma((*, a, a),(*, \epsilon)) \in \delta
\end{aligned}
$$

$\mathcal{L}(G)=\mathcal{L}(M) \quad$ [Exercise: Use induction]
M simulates a leftmost derivation of x in the language.
$E \rightarrow \epsilon|a E b| b E a \mid E E \quad L=\mathcal{L}(E)=\left\{\omega \in\{a, b\}^{*} \mid \# a(\omega)\right.$

$\epsilon, E / \epsilon$
$\epsilon, E / a E b$
$\overline{\text { laabla }} \in L$
$\epsilon, E / b E a$
$E \rightarrow E E \rightarrow E E E \rightarrow b E a E E$
$E, E / E E$
\rightarrow baEE \rightarrow baaEbE
$a, a / \epsilon$
\rightarrow baabE \rightarrow baabbEa \rightarrow bacllaa
$b, b / \epsilon$

baabla
$\frac{P D A \rightarrow C F G}{M \longmapsto G}$
Two-step process
(1) $M \longmapsto M^{\prime} \longleftarrow$ has only one notate accepts by empty stack
(2) $M^{\prime} \longmapsto G \leftarrow$ reverse of the $C F G \rightarrow P D A$ conversion
Step (2) $((*, a, A),(*, \gamma)) \in \delta$ process
introduce $A \rightarrow a \gamma^{\sim}$
(straightforward to prove carrectuen)
Step (1) Is M^{\prime} general enough? Yes.

$$
M \quad M^{\prime}=\left(\{*\}, \Sigma, \Gamma^{\prime}, 1, \delta^{\prime}, *, \varnothing\right)
$$

$(Q, \Sigma, \Gamma, \perp, \delta, s,\{t\})$

M accepts by
both empity itack and final rtate

$$
\begin{aligned}
& \Gamma^{\prime}=Q \times \Gamma^{-} \times Q \quad \quad L^{\prime}=\langle s \perp t\rangle \\
& \langle p A q\rangle \\
& (p, A, q\rangle
\end{aligned}
$$

M" "ntores" the ntate its ntack. information of M in

M

$$
1^{\prime}=\langle s \perp t\rangle
$$

$$
\begin{aligned}
& M \quad\left((p, a, A),\left(q_{0}, B_{1} B_{2} \ldots B_{k}\right)\right) \in \delta
\end{aligned}
$$

$$
\begin{aligned}
& a \in \sum \cup\{\in\} \quad x=a \alpha_{1} \alpha_{2} \ldots \alpha_{k}, M^{\prime} \text { guensen } q_{1}, q_{2}, \ldots, q_{k} \\
& \left(\left(*, a,\left\langle p A q_{k}\right\rangle\right),\left(*,\left\langle q_{0} B_{1} q_{1}\right\rangle\left\langle q_{1} B_{2} q_{2}\right\rangle \cdots\left\langle q_{k-1} B_{k} q_{k}\right),\right.\right.
\end{aligned}
$$

$$
((s, a, \perp),(s, A \perp))
$$

$$
a, \perp / A \perp
$$

$$
b, A / \varepsilon
$$

$$
a, A / A A
$$

$$
\varepsilon, \perp / \varepsilon
$$

$$
((s, a, A),(s, A A))
$$

$$
((s, \varepsilon, \perp),(t, \perp))
$$

$$
((s, \varepsilon, A),(t, A))
$$

$$
((t, b, A),(t, \varepsilon))
$$

$$
((t, \varepsilon, \perp),(t, \varepsilon))
$$

$\langle s \perp t\rangle \perp_{s}$
$\langle s A t\rangle A_{s}$
$\langle t \perp t\rangle \perp t$
$\langle t A t\rangle A_{t}$

S

$t \quad t$ * $\begin{aligned} & \left(*^{*}, \varepsilon,\langle s \perp t>),(*,\langle t \perp t\rangle)\right. \\ & \left(\left(^{*}, \varepsilon,\langle s A t\rangle\right),\left({ }^{*},\langle t A t\rangle\right)\right)\end{aligned}$

$$
\begin{aligned}
& ((*, a,\langle s \perp t>),(*,\langle s A t\rangle\langle t \perp t\rangle)) \\
& \text { ((*, }, \text {, },\langle s A t\rangle),(*,\langle s A t\rangle\langle t A t>)) \\
& ((*, \varepsilon,<s \perp t\rangle),(*,\langle t \perp t>)) \\
& ((*, \varepsilon,\langle s A t\rangle),(*,\langle t A t>)) \\
& ((*, b,\langle t A t\rangle),(*, \varepsilon)) \\
& \left(\left(^{*}, \varepsilon,\langle t \perp t\rangle\right),\left({ }^{*}, \varepsilon\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\text { useless }}\left\{\begin{array}{l}
\langle s A \quad s\rangle\langle s \perp s\rangle \\
\langle t A s\rangle\langle t \perp s\rangle
\end{array}\right. \\
& \underline{\text { useless }}\left\{\begin{array}{l}
\langle s A \quad s\rangle\langle s \perp s\rangle \\
\langle t A s\rangle\langle t \perp s\rangle
\end{array}\right. \\
& s \\
& \text { s } \\
& \langle S \mid t\rangle
\end{aligned}
$$

$$
\begin{aligned}
& a_{1} \perp \sin _{s} \mid A_{s} \perp t \\
& \Gamma=\left\{1_{s}, 1_{t}, A_{s}, A_{t}\right\} \\
& \rightarrow *< \\
& \text { a, } A_{s} / A_{s} A_{t} \\
& \text { ahab } \\
& \epsilon, \perp_{s} / \perp \perp_{t} \\
& \epsilon, A_{s} / A_{t} \\
& \text { b, } A_{t} / \epsilon \\
& E, \perp_{t} / \epsilon
\end{aligned}
$$

Formal proof $\mathcal{L}\left(M^{\prime}\right)=\alpha(M) \underline{\text { Induction }}$

