Myhill-Nerode Theorem

Recall: An equivalence relation \equiv on Σ^* is called a MNT relation for R if 1. Right congruence: $x \equiv y \Rightarrow x \alpha \equiv y \alpha \quad \forall \alpha \in \Sigma$ $x \equiv y \Rightarrow x Z \equiv y Z \quad \forall Z \in \Sigma^* \quad [induction on |Z|]$

2. $\equiv \text{ refiner } R : \chi \equiv \gamma \Rightarrow (\chi \in R \iff \gamma \in R)$

3. = has finite index.

An equivalence relation \equiv on Σ^{+} is called a MN relation for R if \equiv natisfies 1 and 2.

Recall (a) $M \mapsto \equiv M$ (b) $\equiv \mapsto M \equiv$ inverses of one another $\equiv \text{ on } \Sigma \xrightarrow{} \text{ a machine (DFA) involved}$

Def: Let R C E * (not necessarily regular). Define = R an: $\chi \equiv_{R} \gamma \Leftrightarrow \forall \forall \forall \in \Sigma^{*} (\chi \forall \in R),$ Lemma: = R in an MN relation. Proof: 1. (Right congruence) Z = aw $X \equiv_{R} Y \implies \forall \alpha \in \Sigma \ \forall \omega \in \Sigma^{*} \left(\text{ raw } \in \mathcal{R} \iff \text{ yaw } \in \mathcal{R} \right)$ 2. Er refiner R Take Z = E. Def: =, and = 2 are two equivalence relations. = 1 refiner = 2 $if = 1 \subseteq = 2$. Example: cong mod 6 refiner cong mod 3 [equiv rel on 72]

Lemma: If = in an MN relation for R, then = refiner = R. Proof: $\chi \equiv y \Rightarrow \forall z (\chi z \equiv yz) \Rightarrow \forall z (\chi z \in R \Leftrightarrow yz \in R)$ => 2 = R y. = R in the coarsest MN relation for R. =1, =2 -> Coarsent MN relations for R $\equiv_1 \subseteq \Xi_2$ and $\Xi_2 \subseteq \Xi_1 \implies \Xi_1 = \Xi_2$.

Myhill-Nerode Theorem: For a language RCE*, the following are equivalent: An if and only if

condition

Both regularity

and non-regularity (a) R is regular (b) R has an MN relation (c) = R hers finite index. Proof: [(a) =) (b) DFA M for R. = M u a MN relation for R. [(b) =) (c)] = in a MN relation for R \Rightarrow \equiv refiner \equiv R finite index also of finite index [(c) => (a)] = R in of finite index $\equiv_R \longrightarrow M \equiv_R \sim DFA.$

Application 1 Let $R \subseteq \Sigma^*$ be regular. Let M be a collapsed DFA for R. Then $\equiv M = \equiv R$. Then $\equiv_{M} = \equiv_{R}$. Proof: $| \uparrow \approx 9 \Leftrightarrow \forall z (\hat{\delta}(\uparrow, z) \in F \Leftrightarrow$ $\delta(9,7) \in F$ $\mathcal{R} \equiv \mathcal{R} \mathcal{J}$ $\Rightarrow \forall z \in \Sigma^{+} \left(zz \in R \Leftrightarrow \forall z \in R \right) \Rightarrow \uparrow = 7.$ \Leftrightarrow $\forall z \in \Xi^* \left(\delta(x, \chi z) \in F \Leftrightarrow \delta(x, \gamma z) \in F \right)$ $(=) \forall z \in \Sigma^* \left(\widehat{S}(\widehat{S}(s,x),z) \in F \Leftrightarrow \widehat{S}(\widehat{S}(s,y),z) \in F \right)$ $\Leftrightarrow \delta(8,x) \approx \delta(8,y)$ $\Leftrightarrow \delta(8,x) \approx \delta(8,y)$ $\Leftrightarrow \delta(8,x) = \delta(8,y) \Leftrightarrow x = My.$ Is unique.

Application 2 What alont $A = \{a^n b^n \mid n > 0\}$ in not regular. "minimi zation of NFA"? Proof: = A in not of finite index. - See Kozen. $[a^k] \neq [a^l] \quad k \neq l$ $Z = b^k$ $a^k b^k \in A$ but $a^k b^l \notin A$

There are at least these many equivalence classer:

[a], [a], [a], [a], [a], ...

= a is not of finite index.

A is not regular.