Myhill-Nerode Relations
R - regular language
$M, N \rightarrow$ two $D F A$ with $\alpha(M)=\alpha(N)=R$.
\rightarrow no inaccessible staten
$M / \approx \quad$
$N / \approx \frac{\text { essentially the same machine }}{\text { isomorphic }}$
property of R
jump from machines to languages and from languages to machines
$R=\{x \in\{0,1\} * \mid x$ contains at least one 1 in its last two positions $\}$
$L_{q}, q \in Q$,

$$
\varepsilon \notin R
$$

$$
x \in \Sigma^{*}
$$

$$
\hat{\delta}(s
$$

$$
L_{\epsilon}=\{\epsilon\}
$$

$$
L_{0}=\{0\}, \quad L_{1}=\{1\}
$$

$$
L_{00}=\alpha\left\{(0+1)^{*} 00\right\}
$$

Each $q \in Q$ is associated isth

$$
-\bigcup_{q \in Q} L_{q}=\Sigma^{*} \neq L_{q} \subseteq \Sigma^{*}, \cap L_{q}=\varnothing \text { if } p \neq q=10
$$

$$
L_{01}=\alpha\left((0+1)^{*} 01\right\}
$$

$$
L_{10}=\alpha\left((0+1)^{*} 10\right\}
$$

$L_{11}=\alpha\left((0+1)^{*} 11\right\}$
$R=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains at least one 1 in its last two positions $\}$

$$
\begin{aligned}
& L_{\epsilon}=\{\epsilon\} \\
& L_{00}=\{0\} \cup \alpha\left((0+1)^{*} 00\right) \\
& L_{01}=\{1\} \cup \alpha\left((0+1)^{*} 01\right) \\
& L_{10}=\alpha\left((0+1)^{*} 10\right) \\
& L_{11}=\alpha\left((0+1)^{*} 11\right)
\end{aligned}
$$

A new partition of Σ^{*}
5 parts (coarser than the previous partition)
$R=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains at least one 1 in its last two positions $\}$

$$
\begin{aligned}
& L_{00}=\{\epsilon, 0\} \cup \mathcal{L}\left((0+1)^{*} 00\right\} \\
& L_{01}=\{1\} \cup \mathcal{L}\left((0+1)^{*} 01\right\} \\
& L_{10}-\text { same as le fore } \\
& L_{11}-\text { s. }
\end{aligned}
$$

Partition of \sum^{*} in 4 parts.

- even coarser
$R=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains at least one 1 in its last two positions $\}$

$$
\begin{aligned}
& L_{00}=\{\epsilon, 0\} \cup \alpha\left((0+1)^{*} 00\right\} \\
& L_{10}=\alpha\left((0+1)^{*} 10\right) \\
& L_{\# 1}=\alpha\left((0+1)^{*} 1\right)
\end{aligned}
$$

Partition of Σ^{*} in 3 parts
Coarser

- No further collapsing possible
- The partition cannot le mady any coarser.

Not all partitions are realizable by DFA
$R=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains at least one 1 in its last two positions $\}$

not allowed for a DFA

Partitions and Equivalence Relations
$S \rightarrow$ a set Equivalence relations on S
have a ore-to-one correspondence with all partition of S

ミ partition - set of all equivalence classes
partition - Tiro elements are equivalent \Rightarrow They belong to the same part.

Equivalence relations on \sum^{*}.

From DFA to Relations

$$
M=(Q, \Sigma, \delta, s, F) \quad \alpha(M)=R
$$

Define \equiv m on Σ^{*} st. $x \equiv M_{M} y \not \sum_{\delta}(s, x)=\hat{\delta}(r, y)$
${ }^{-}$Equivalence relation
1 - Right congruence $\quad x \equiv_{M} y \quad \Rightarrow \quad \equiv_{M}$ ya $\forall a \in \Sigma$
$2 \quad \equiv m \xrightarrow[m]{\text { refines }} R \quad x \equiv_{m}^{y} \Rightarrow(x \in R \underset{X}{X} y \in R)$
3 ミM has finite $\xrightarrow{\text { index }}$ the no of equivalence classes
An equivalence relation on Σ^{*} notifying
1, 2 and 3 is called a Myhill-Nerode relation

From Relations to DFA
Input: A Myhill-Nerode retation 三 on Σ^{*}
Goal : To construct a DFA $M_{\equiv}=(Q, \Sigma, \delta, s, F)$

$$
\begin{aligned}
& Q=\left\{[x] \mid x \in \Sigma^{*}\right\} \rightarrow \text { finite } \\
& s=[\epsilon] \\
& F=\{[x] \mid x \in R\} \rightarrow x \in R \notin[x] \in F
\end{aligned}
$$

$\delta([x], a)=[x a] \longrightarrow \begin{aligned} & \text { well -de fined by } \\ & \text { the right congarnenc }\end{aligned}$ the right congruence property

$$
\begin{aligned}
& \delta([x], a)=[x a] \\
& \delta([x], y)=[x y] \quad \text { Prove by induction on }|y| .
\end{aligned}
$$

Theorem: $\mathcal{L}\left(M_{\equiv}\right)=R$.
Proof: $\quad x \in \alpha(M \equiv) \nLeftarrow \hat{\delta}([\epsilon], x) \in F$

$$
\begin{aligned}
& \Leftrightarrow \quad[x] \in F \\
& \Leftrightarrow \quad x \in R
\end{aligned}
$$

$$
\begin{array}{l|l}
M \longmapsto M_{M} & \equiv \longmapsto M_{\equiv} \longmapsto \sum_{M} \\
\equiv \longmapsto & M \longmapsto M_{M} \longmapsto M_{\equiv M}
\end{array}
$$

Theorem: \equiv and $\equiv M_{\equiv}$ are the same.

$$
\begin{array}{rlrl}
M \equiv & =(Q, \Sigma, \delta, s, F) & Q=\left\{[x] \mid x \in \varepsilon^{*}\right\} \\
x \equiv M \equiv y & \Leftrightarrow=[\epsilon], F=\{[x] \mid \\
& \Leftrightarrow \hat{\delta}([\epsilon], x) & \delta([x], a)=[x a] \\
& =\hat{R}\} \\
& \Leftrightarrow[x]=[y] & & \\
& \Leftrightarrow x \equiv y .
\end{array}
$$

$$
\begin{aligned}
& M \longmapsto \equiv_{M} \longmapsto M_{M} \\
& =(Q, \Sigma, \delta, r, F) \quad=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right) \\
& 2 \\
& \text { individual states } \\
& \text { The same } \\
& \text { machine with } \\
& \begin{aligned}
\leftarrow & =\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right) \\
\text { renaming of states } \longleftarrow N & =\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right)
\end{aligned}
\end{aligned}
$$

M and N are inomothtic if \exists a bijection $f: Q_{M} \rightarrow Q_{N}$ s.t.
(i) $\delta\left(s_{M}\right)=s_{v}(i i) q \in F_{M}$
(iii) $f\left(\delta_{M}(q, a)\right)=\delta_{N}(f(q), a) \nRightarrow \nRightarrow(q) \in F_{N}$

$$
\begin{aligned}
& M \text { and } M_{\equiv M} \text { are isomorphic } \\
& (Q, \Sigma, \delta, s, F) \longrightarrow\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right) \longrightarrow\left\{[x] \mid x \in \Sigma^{*}\right\} \\
& \longrightarrow \equiv_{M} \quad x \equiv_{m} y \not \hat{\delta}(s, x)=\hat{\delta}(s, y) \\
& f: Q^{\prime} \rightarrow Q \quad-\quad f \text { is a bijection } \\
& {[x] \mapsto \hat{\delta}(s, x)} \\
& \text { infective } f([x])=f([y]) \\
& \Rightarrow \hat{\delta}(s, x)=\hat{\delta}(x ; y) \\
& \text { (i) } f\left(s^{\prime}\right)=f([\epsilon])=\hat{\delta}(s, \epsilon)=s \\
& \Rightarrow \quad x \equiv_{M} y \\
& \Rightarrow \quad[x]=[y] \\
& =\hat{\delta}(s,[x a])=\delta(\hat{\delta}(\xi, x) \text {, a) subjective follows from that } \\
& =\delta(f(x), a) \text {. } \\
& M \text { doer not contain } \\
& \text { inaccessible neaten. }
\end{aligned}
$$

Let K be a regular Language.
Theorem: There is a one-to-one corresponduce between
(1) the set of all DFA whose language is R
(2) the net of all Mytill-Nerode relations (that refine R).

Theorem one - to - one corvestandence
(1) the set of all DFA
(2) the set of all MN relations.

Talk about R in algebraic terms.

