Myhill-Nerode Relations

R - regular language

M, N -> two DFA with
$$\mathcal{K}(M) = \mathcal{K}(N) = \mathbb{R}$$
.

I no inaccessible states

M/2

essentially the same machine

(property of R

jump from machines to languages

and from languages to machines

 $R = \{x \in \{0,1\}^* \mid x \text{ contains at least one 1 in its last two positions}\}$

$R = \{x \in \{0,1\}^* \mid x \text{ contains at least one } 1 \text{ in its last two positions}\}$

$R = \{x \in \{0,1\}^* \mid x \text{ contains at least one 1 in its last two positions}\}$

$$L_{00} = \{ \epsilon, 0 \} \cup \mathcal{L} ((0+1)^* \circ 0) \}$$

$$L_{01} = \{ 1 \} \cup \mathcal{L} ((0+1)^* \circ 0) \}$$

$$L_{10} - same as before$$

$$L_{11} - \sum_{\text{Partition of } \Sigma} \text{ in } 4 \text{ parts.}$$

$$- \text{ even coarser}$$

$R = \{x \in \{0,1\}^* \mid x \text{ contains at least one 1 in its last two positions}\}$

$$L_{00} = \{ \epsilon, 0 \} \cup \mathcal{L}((0+1)^{*}00) \}$$

$$L_{10} = \mathcal{L}((0+1)^{*}10)$$

$$L_{\#1} = \mathcal{L}((0+1)^{*}1)$$

$$Partition of Ξ^{*} in Ξ^{*} parts
$$Coarser$$$$

- No further collapsing possible - The partition cannot be mady any coarser.

Not all partitions are realizable by DFA

Partitions and Equivalence Relations

S -> a set Equivalence relations on S have a one-to-one correspondence with all partition of S set of all equivalence classes Tur elements are equivalent partition They belong to the same part.

Equivalence relations on E.

From DFA to Relations
$$M = (Q, \Sigma, \delta, 8, F)$$

$$\chi(M) = R$$

$$\chi \equiv \chi$$

$$\rightleftharpoons$$

s.t.
$$\chi \equiv_M \chi \qquad \qquad \stackrel{\frown}{\searrow} \qquad \stackrel{\frown}{\delta} (\beta, \chi) = \stackrel{\frown}{\delta} (\beta, \gamma)$$

$$\chi \equiv M$$

$$x \equiv_M y \implies x \alpha \equiv_M y \alpha \forall \alpha \in \Sigma$$

An equivalence relation on Σ^* natisfying 1, 2 and 3 is called a Myhill-Nevode relation

From Relations to DFA

Input: A Myhill-Nevode relation
$$\equiv$$
 on Σ

Goal: To countract a DFA $M \equiv = (Q, \Sigma, S, 8, F)$
 $Q = \{ [x] \mid x \in \Sigma^* \} \longrightarrow \text{finite}$
 $S = [F]$
 $F = \{ [x] \mid x \in R \} \longrightarrow x \in R \Longrightarrow [x] \in F$
 $S([x], a) = [xa] \longrightarrow \text{well-defined by}$

the right congruence property

$$S([x], \alpha) = [xq]$$
 $S([x], y) = [xy]$ Prove by induction on $[y]$.

Theorem: $L(M_{\equiv}) = R$.

Proof: $\chi \in L(M_{\equiv}) \Leftrightarrow S([\epsilon], \chi) \in F$
 $\Leftrightarrow \chi \in R$

$$M \equiv = (Q, \Sigma, \delta, s, F)$$

$$Q = \left\{ \begin{bmatrix} x \end{bmatrix} \middle| x \in \mathcal{E}^* \right\}$$

$$S = \left[\in \right], F = \left\{ \begin{bmatrix} x \end{bmatrix} \middle| x \in \mathcal{R}^* \right\}$$

$$S\left(\begin{bmatrix} x \end{bmatrix}, \alpha \right) = \left[x \alpha \right]$$

M
$$\mapsto$$
 \equiv M \equiv M

M and M = M are isomorphic. $Q' = \{ [x] | x \in \Sigma \}$ Q, Σ, δ, s, F $=_{M} \qquad \chi \equiv_{M} \qquad \Longrightarrow \qquad \widetilde{\delta} \left(s, \chi \right) = \widetilde{\delta} \left(s, y \right)$ - fin a lejjection $f:Q\rightarrow Q$ $[x] \mapsto \hat{\delta}(s,x)$ injective f([x]) = f([y]) $= \hat{\delta}(s,x)$ $= \sum_{i=1}^{n} \left(s_{i}, x_{i} \right) = \left(s_{i}, y_{i} \right)$ (i) $f(s') = f([\epsilon]) = \delta(s, \epsilon) = s$ $\Rightarrow \chi \equiv_{M} y$ (iii) $f(s'([x], a)) = f([xa]) \Rightarrow [x] = [y]$ $\Rightarrow \qquad \left(\begin{array}{c} \chi \end{array} \right) = \left(\begin{array}{c} \chi \end{array} \right)$ = $\delta(8, [xa]) = \delta(\delta(5, x), a)$ Surjective follows from that M doer not contain in accessible states. = $\delta\left(f(x), \alpha\right)$.

Theorem	•	There	be	a Y a	egular oue-	to - one	ege. Corre	sponduc	z be-	tween
(l)	the	net	of (all	DFA	who	se lar	g hago	is R	
(2)	The						(+1	relation	بر _ا لا _) .
The over	(1)			0	10	venta DFA MN			-	Talk about Rain lgebraic Lerms