
Formal Languages and Automata Theory

Programming Assignment

Last date of submission: 20–March–2021

This assignment deals with the implementation of some utilities for finite automata. It restricts only to DFA and

NFA, and does not deal with ε-NFA. In short, you are asked to carry out the following tasks.

• Read the data for an NFA N = (QN ,Σ,∆,S,FN) from a file.

• Use the subset-construction procedure to convert the input NFA to an equivalent DFA D = (Q,Σ,δ ,s,F).

• Use a graph-traversal algorithm to find out all reachable (or accessible) states in D.

• Remove all unreachable states from D to get a DFA D′ = (Q′,Σ,δ ′,s′,F ′).

• Find all groups of equivalent states in D′.

• Collapse each group of equivalent states in D′ to a single state, and generate the resulting minimized DFA

D′′ = (Q′′,Σ,δ ′′,s′′,F ′′).

Part 1: Representing DFA and NFA

In order to define N, the components QN ,Σ,∆,S,FN need to be specified. Let us first see how this information is

stored in a file. Let n = |QN |, and m = |Σ|. The file storing N starts with the two integers n and m (in that order).

We take QN = {0,1,2, . . . ,n−1}, and Σ = {0,1,2, . . . ,m−1}. The start states are then listed in the file one after

another. The list is terminated by −1. Subsequently, the final states are listed one after another, terminated again

by −1. For the NFA of Figure 1, the start states may appear as 0 12 −1, whereas the final states may appear as

11 14 16 18 20 21 −1. It is not needed to list the start and/or the final states in the sorted order. The rest of the

file lists the transitions of N. If q ∈ ∆(p,a), a line in the file lists p a q. The list of these entries terminates when

p =−1. Again, the individual transitions may appear in any order.

Figure 1: An NFA for E6 and its representation in a file

1

1

0
0000

0 0 0 0

0

1 3 5 7 9

11

108642

0
1 1 1 1

1

0 0 0

0
1 1 1 1

0,1

0 0 0 0

12

13 15

1614

17 19

18 20 21

22

2

0 12 -1

11 14 16 18 20 21 -1

0 0 0

0 0 1

0 1 0

0 1 2

1 0 3

1 1 4

2 0 4

3 0 5

3 1 6

4 0 6

5 0 7

5 1 8

6 0 8

7 0 9

7 1 10

8 0 10

9 1 11

10 0 11

12 0 13

12 1 14

13 0 15

13 1 16

14 0 16

15 0 17

15 1 18

16 0 18

17 0 19

17 1 20

18 0 20

19 1 21

20 0 21

-1

Write a function readNFA(filename) to read the input file, and store the information in a user-defined data structure

N. Store n and m as integer fields in N. For an NFA, S, F , and all ∆(p,a) are subsets of QN . Assume that

— Page 1 of 7 —

n = |QN |< 32, so we can store a subset of QN as a bit array in a 32-bit unsigned integer variable. For example, for

the NFA of Figure 1, we have the binary storage of the following subsets. The bits are numbered 0,1,2,3, . . . ,31

from the least significant end. The i-th bit is 1 if i is in the subset; it is 0 otherwise.

S = {0,12} = 0000 0000 0000 0000 0001 0000 0000 0001,

FN = {11,14,16,18,20,21} = 0000 0000 0011 0101 0100 1000 0000 0000,

∆(0,1) = {0,2} = 0000 0000 0000 0000 0000 0000 0000 0101,

∆(19,0) = /0 = 0000 0000 0000 0000 0000 0000 0000 0000.

It follows that a single 32-bit unsigned integer variable suffices to store each of S and FN . A two-dimensional n×m

matrix of 32-bit unsigned integer variables can, on the other hand, store the entire transition table ∆(p,a).

In the remaining parts, you work with DFA, so a representation of a DFA D = (Q,Σ,δ ,s,F) is also needed. Q

and Σ can be represented as earlier by two integers n = |Q| and m = |Σ|. We assume that n < 232, so a single

32-bit unsigned integer can store n. For D, the start state s is a unique element of Q, and can also be stored as an

integer. Moreover, each δ (p,a) is again a unique member of Q, so an n×m array of integers can store the entire

transition table δ . A problem comes when we want to represent a subset of Q. Unlike an NFA, a DFA may contain

more than 32 states (for example, the subset-construction procedure on the NFA of Figure 1 gives a DFA with

222 = 4,194,304 states). We follow the same bit-level representation of each state in the subset, but now we need

an array A of 32-bit integers. A[0] stores the membership information of states 0 . . .31, A[1] stores the membership

information of states 32 . . .63, A[2] stores the membership information of states 64 . . .95, and so on. Define a data

type for sets of states as an array of unsigned integer variables. This data type can store the set F of final states of

D, and will be used later again when other state sets are used (for example, the set of reachable states of D).

Write two functions printNFA(N) and printDFA(D) to print the information stored in an NFA or a DFA data type,

in the format illustrated in the sample output. If D contains too many (like > 64) states, it is preferable to skip the

printing of the final states and the transition table of D.

In this assignment, you are required to handle your own data structures for storing sets of states. Do not use

any set data type available in any library (like the STL). Not only the bit-level storage specified above is space-

efficient but also using a general-purpose set library will likely lead to infeasible running times for Part 2 which

deals with exponential numbers of states.

Part 2: NFA-to-DFA conversion by subset construction

Write a function subsetcons(N) that, given an NFA N as input, returns an equivalent DFA D obtained by the subset-

construction procedure. Here, N and D must be in the format specified in Part 1. We have Q = 2QN , that is, the

states of Q are subsets of the set of states of N. With the bit-level storage of sets, the states of D have a natural

one-to-one correspondence with the sets of states of N (that is, members of 2QN). Let P ⊆ QN be a state of D. For

each a ∈ Σ, we have δ (P,a) =
⋃

p∈P

∆(p,a). Each ∆(p,a) for N is a set stored as a 32-bit unsigned integer. Therefore

the set union in the above formula is nothing but the word-level OR of ∆(p,a) values. You nevertheless need to

find the bits set in P, but that too can be carried out efficiently by bit-wise operators.

Bit-wise operators

The bit-wise OR of two 32-bit unsigned integers V and W can be computed as in the following examples.

U = (V | W);

W |= V;

Let j ∈ {0,1,2, . . . ,31} be a bit position. The j-th bit in W can be set as:

W |= (1U << j);

In order to check whether the j-th bit in W is set, check whether the following expression is non-zero.

(W & (1U << j))

— Page 2 of 7 —

Part 3: Finding and removing unreachable states in a DFA

Let D = (Q,Σ,δ ,s,F) be a DFA (like the one obtained in Part 2). D can be considered as a directed graph (with

possible self-loops). Run a graph-traversal algorithm (depth-first search seems to be the easiest) starting from the

start state s. After the traversal completes, the visited array (a set of DFA states) stores the states that can be reached

from s. The remaining states in Q are unreachable, and can be thrown away from Q with impunity.

Write a function findreachable(D) to return the set R of states of D reachable from s, and another function

rmunreachable(D,R) to return an equivalent DFA D′ = (Q′,Σ,δ ′,s′,F ′) in which all the states not in R are

removed. Let n = |Q|, and n′ = |Q′| (so n′ 6 n). By our convention, we represent Q = {0,1,2, . . . ,n− 1} and

Q′ = {0,1,2, . . . ,n′ − 1}. After some states are thrown out from Q, a renumbering of the remaining states is

necessary for Q′. Moreover, the transition table for D should be revised to the transition table for D′ in order to

reflect this renumbering.

Part 4: Finding and collapsing equivalent states in a DFA

The DFA D′ obtained in Part 2 may still be not minimal. In order to obtain the minimal DFA, we need to identify

groups of equivalent states, and collapse each group to a single state. Implement the algorithm covered in the class

in a function findequiv(D′) to return a two-dimensional array M such that the states i and j in D′ are equivalent if

and only if M[i][j] is not marked. Finally, write a function collapse(D′,M) to return the state-collapsed (that is,

minimal) DFA D′′. Note that a renumbering of the states and a subsequent readjustment of the transition-function

table are again necessary before D′′ is returned.

The main function

• The user supplies the name of a file storing the information about the input NFA N. Call readNFA to read

the file, and store the information in an NFA data type N. Print N.

• Call subsetcons on N to obtain the DFA D. Print D (skip printing very long lists).

• Call findreachable to obtain the list R of states reachable from s in D. Print the members of R.

• Call rmunreachable to get the DFA D′ from D. Print D′.

• Call findequiv to obtain the two-dimensional array M.

• Identify the equivalent groups from M, and print the groups (this may be done in the function collapse).

• Call collapse to generate the minimal DFA D′′. Print D′′.

Sample output

Let us consider the following families of languages over the binary alphabet {0,1}. For each of these families, k is

a positive integer-valued parameter.

Lk =
{

x
∣

∣ The k-th last symbol of x is 1
}

,

Ak =
{

x
∣

∣ The last k symbols of x contains at least one 1
}

,

Ek =
{

x
∣

∣ The last k symbols of x contains exactly one 1
}

.

All strings in Lk are of length > k. On the other hand, Ak and Ek are allowed to contain strings x of length < k

with the interpretation that x must contain at least one or exactly one 1. An NFA for E6 is already given in

Figure 1. NFA for L6 and A6 are supplied in Figures 2 and 3. Also, consider the following language over

{0,1,2,3}. Figure 4 shows an NFA for this language, directly converted from the (unoptimized) regular expression

3∗03∗13∗23∗+3∗03∗23∗13∗+3∗13∗03∗23∗+3∗13∗23∗03∗+3∗23∗03∗13∗+3∗23∗13∗03∗. The sample output for

E6 is given below. Outputs for L6, A6, and B can be obtained from the course web-site.

B =
{

x ∈ {0,1,2,3}∗
∣

∣ x contains each of the symbols 0,1,2 exactly once
}

.

— Page 3 of 7 —

Figure 2: An NFA for L6

1

0,1

0,1 0,1 0,1 0,1 0,1
4 1 3 6 0 5 2

Figure 3: An NFA for A6

11

10

9

8

7

6

5

4

3

2

1

0
0,1

0 0 0 0

1 1 1 1 1

0,1 0,1 0,1 0,1

0,1

1

0

Figure 4: An NFA for B

1

0

0 1

2

2

1

0 2

1 2 0

2 0 1

2 1 0

0

1

2

3

4

5

6

7

8

9

10

11

18

19

20

21

22

23

12

13

14

15

16

17

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3333

3 3 3 3

— Page 4 of 7 —

Figure 5: The minimal DFA for E6

0

10

21 20

0

1 4

3

6
12

11

7
13

8 14

2 5 9 15

19 18 17 16

101*11

000001 000010 000100

**1001

000000 001000 010000 100000

100001*10001

***110 **1010 *10010 100010

100100*10100**1100

*11000 101000

110000

0

0

0

1

0 1

1

1

1 0

1 1

0 0 0 0

0

1

1 1 1

11
1

0

0 0

1

0

1
0

0
1

0 1

0

0

1

0

1

0

1

— Page 5 of 7 —

The minimal DFA for E6 can be obtained from the first principles (see Figure 5). The output DFA D′′ from your

program should be isomorphic to this DFA. The state numbers obtained in the sample are shown beside the states

in Figure 5. The logical names appear inside the circles.

+++ Input NFA

Number of states: 22

Input alphabet: {0,1}

Start states: {0,12}

Final states: {11,14,16,18,20,21}

Transition function

Delta(0,0) = {0,1}

Delta(0,1) = {0,2}

Delta(1,0) = {3}

Delta(1,1) = {4}

Delta(2,0) = {4}

Delta(2,1) = {}

Delta(3,0) = {5}

Delta(3,1) = {6}

Delta(4,0) = {6}

Delta(4,1) = {}

Delta(5,0) = {7}

Delta(5,1) = {8}

Delta(6,0) = {8}

Delta(6,1) = {}

Delta(7,0) = {9}

Delta(7,1) = {10}

Delta(8,0) = {10}

Delta(8,1) = {}

Delta(9,0) = {}

Delta(9,1) = {11}

Delta(10,0) = {11}

Delta(10,1) = {}

Delta(11,0) = {}

Delta(11,1) = {}

Delta(12,0) = {13}

Delta(12,1) = {14}

Delta(13,0) = {15}

Delta(13,1) = {16}

Delta(14,0) = {16}

Delta(14,1) = {}

Delta(15,0) = {17}

Delta(15,1) = {18}

Delta(16,0) = {18}

Delta(16,1) = {}

Delta(17,0) = {19}

Delta(17,1) = {20}

Delta(18,0) = {20}

Delta(18,1) = {}

Delta(19,0) = {}

Delta(19,1) = {21}

Delta(20,0) = {21}

Delta(20,1) = {}

Delta(21,0) = {}

Delta(21,1) = {}

+++ Converted DFA

Number of states: 4194304

Input alphabet: {0,1}

Start state: 4097

4128768 final states

Transition function: Skipped

+++ Reachable states: {5,19,21,75,83,85,299,331,339,341,683,1195,1323,1355,1363,1365,2731,3243,3371,3403,3411,3413,4097,8195,16389,

32779,65555,65557,131115,262219,262227,262229,524459,1048875,1048907,1048915,1048917,2098347,2098475,2098507,

2098515,2098517}

+++ Reduced DFA after removing unreachable states

Number of states: 42

Input alphabet: {0,1}

Start state: 22

Final states: {16,17,18,19,20,21,24,26,27,29,30,31,33,34,35,36,37,38,39,40,41}

Transition function

a\p| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

---+--

0 | 1 3 4 6 7 8 11 12 13 14 10 16 17 18 19 20 10 16 17 18 19 20 23 25 26 28 29 30 32 33 34 35 10 37 38 39 40 16 17 18 19 20

1 | 0 2 0 5 2 0 9 5 2 0 21 15 9 5 2 0 21 15 9 5 2 0 24 27 0 31 2 0 36 5 2 0 41 9 5 2 0 15 9 5 2 0

+++ Equivalent states

Group 0: {0}

Group 1: {1}

Group 2: {2}

Group 3: {3}

Group 4: {4}

Group 5: {5}

Group 6: {6}

Group 7: {7}

Group 8: {8}

Group 9: {9}

Group 10: {10,22,23,25,28,32}

Group 11: {11}

Group 12: {12}

Group 13: {13}

Group 14: {14}

Group 15: {15}

Group 16: {16}

Group 17: {17,37}

Group 18: {18,33,38}

Group 19: {19,29,34,39}

Group 20: {20,26,30,35,40}

Group 21: {21,24,27,31,36,41}

— Page 6 of 7 —

+++ Reduced DFA after collapsing equivalent states

Number of states: 22

Input alphabet: {0,1}

Start state: 10

Final states: {16,17,18,19,20,21}

Transition function

a\p| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

---+--

0 | 1 3 4 6 7 8 11 12 13 14 10 16 17 18 19 20 10 16 17 18 19 20

1 | 0 2 0 5 2 0 9 5 2 0 21 15 9 5 2 0 21 15 9 5 2 0

Remark: Parts 3 and 4 renumber the states. If you want your new numbers to match the sample outputs exactly,

note the renumbering schemes used here. In Part 3 (remove inaccessible states), the reachable states are numbered

sequentially in the sorted order of their old numbers. In Part 4, the groups are numbered sequentially in the

sorted order of the smallest states in the groups. It is, of course, assumed that you follow the subset-numbering

scheme specified in Part 1. If you use different numbering schemes, you would get isomorphic DFA, and these

isomorphisms can be manually verified for correctness.

Submit a single C/C++ file. Do not use global/static variables. Do not use STL data types.

— Page 7 of 7 —

