Formal Languages and Automata Theory

Second Short Test

1. Let $A \triangle B$ denote the symmetric difference of two languages A and B (over the same alphabet). Which of the following statements is true?
(A) If A and B are both CFLs, then $A \triangle B$ must be a CFL.
(B) If A is a CFL and B is not a CFL, then $A \triangle B$ must be a CFL.
(C) If A is a CFL and B is regular, then $A \triangle B$ must be a CFL.
(D) Neither of the other options is true.

Solution (A) and (C): Take $A=\sim\left\{w w^{r} \mid w \in\{a, b\}^{*}\right\}$ and $B=\{a, b\}^{*}$, so $A \triangle B=B-A=\left\{w w^{r} \mid w \in\{a, b\}^{*}\right\}$.
(B): Take $A=\left\{a^{m} b^{m} c^{n} \mid m, n \geqslant 0\right\}$ and $B=\left\{a^{m} b^{m} c^{m} \mid m \geqslant 0\right\}$, so $A \triangle B=A-B=\left\{a^{m} b^{m} c^{n} \mid m, n \geqslant 0, m \neq n\right\}$.
2. Which of the following statements is true for a CFG G with start symbol S and with the only productions $S \rightarrow a S|b S| a$?
(A) $\mathscr{L}(G)$ is a CFL but not regular.
(B) $\mathscr{L}(G)$ is regular but not a CFL.
(C) $\mathscr{L}(G)$ is a CFL and regular.
(D) $\mathscr{L}(G)$ is neither a CFL nor regular.

Solution $\mathscr{L}(G)=\mathscr{L}\left((a+b)^{*} a\right)$. Every regular language is context-free.
3. Consider the languages

$$
\begin{aligned}
& L_{1}=\left\{a^{m} b^{m} c^{m+n} \mid m, n \geqslant 1\right\} \\
& L_{2}=\left\{a^{m} b^{n} c^{m+n} \mid m, n \geqslant 1\right\}
\end{aligned}
$$

Which of the following statements is true?
(A) Both L_{1} and L_{2} are CFLs.
(B) Neither L_{1} nor L_{2} is a CFL.
(C) L_{1} is not a CFL, but L_{2} is a CFL.
(D) L_{1} is a CFL, but L_{2} is not a CFL.

Solution L_{1} : Supply $a^{k} b^{k} c^{k+1}$ to the pumping lemma, where k is a PLC.
L_{2} : We have $a^{m} b^{n} c^{m+n}=a^{m}\left(b^{n} c^{n}\right) c^{m}$, so the following grammar generates $L_{2}: S \rightarrow a S c|a T c, T \rightarrow b T c| b c$.
4. Let G be a CFG in the Chomsky normal form of a language L that does not contain ε. For any string $x \in L$ of length l, what is the length of the derivation of x ?
(A) $l-1$
(B) $2 l-1$
(C) $3 l-1$
(D) $4 l-1$

Solution You need to use $l-1$ productions of the form $A \rightarrow B C$, and l productions of the form $A \rightarrow a$.
5. Consider the languages

$$
\begin{aligned}
L_{1} & =\left\{a^{m} b^{n} \mid m, n \geqslant 0, m=2 n\right\} \\
L_{2} & =\left\{a^{m} b^{n} \mid m, n \geqslant 0, m \neq 2 n\right\} .
\end{aligned}
$$

Which of the following statements is true?
(A) Both L_{1} and L_{2} are CFLs.
(B) Neither L_{1} nor L_{2} is a CFL.
(C) L_{1} is not a CFL, but L_{2} is a CFL.
(D) L_{1} is a CFL, but L_{2} is not a CFL.

Solution $L_{1}: a^{2 n} b^{n}=\left(a^{2}\right)^{n} b^{n}$. So consider the grammar $S \rightarrow a a S b \mid \varepsilon$.
L_{2} : The following grammar with start symbol T is built on top of the above grammar for $L_{1} . T \rightarrow A S \mid S B$, $A \rightarrow a A|a, B \rightarrow b B| b$.

Indeed both L_{1} and L_{2} are deterministic context-free.
6. Consider the two grammars G and G^{\prime} with the start symbols S and S^{\prime} and with the only productions:

Productions of $G: \quad S \rightarrow a S|B, \quad B \rightarrow b B| b$.
Productions of $G^{\prime}: \quad S^{\prime} \rightarrow a A^{\prime}\left|b B^{\prime}, \quad A^{\prime} \rightarrow a A^{\prime}\right| B^{\prime}, \quad B^{\prime} \rightarrow b B^{\prime} \mid \varepsilon$.
Which of the following statements is true?
(A) $\mathscr{L}(G)=\mathscr{L}\left(G^{\prime}\right)$.
(B) $\mathscr{L}(G)$ is strictly contained in $\mathscr{L}\left(G^{\prime}\right)$.
(C) $\mathscr{L}\left(G^{\prime}\right)$ is strictly contained in $\mathscr{L}(G)$.
(D) Neither $\mathscr{L}(G)$ is contained in $\mathscr{L}\left(G^{\prime}\right)$ nor $\mathscr{L}\left(G^{\prime}\right)$ is contained in $\mathscr{L}(G)$.

Solution $\mathscr{L}(G)=\mathscr{L}\left(a^{*} b^{+}\right)$, whereas $\mathscr{L}\left(G^{\prime}\right)=\mathscr{L}\left(a^{+} b^{*}+b^{+}\right)$. Take a string x of the form $a^{*} b^{+}$. If x does not contain a, then it is of the form b^{+}, and is covered by G^{\prime}. If x contains a, then it is of the form $a^{+} b^{+}$, and is covered by $a^{+} b^{*}$ in $\mathscr{L}\left(G^{\prime}\right)$. On the other hand, all strings of the form a^{+}are generated by G^{\prime} but not by G.
7. What is the language over the alphabet $\{a, b\}$, that is accepted by the following PDA? The PDA accepts by empty stack. Here, \perp is the initial bottom marker for the stack.

(A) $\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$
(B) $\left\{a^{m} b^{n} \mid m, n \geqslant 0\right\}$
(C) $\left\{a^{m} b^{n} \mid m, n \geqslant 1\right\}$
(D) $\mathscr{L}\left((a+b)^{*} b\right)$

Solution There exist strings of the form $(a+b)^{*} b$ other than those specified in (A), (B), and (C).
Note: The correct answer is $\mathscr{L}\left(\varepsilon+(a+b)^{*} b\right)$.
8. Consider the following two PDA. M_{1} accepts by empty stack, whereas M_{2} accepts by final state. Which of the following strings is accepted by M_{2} but not by M_{1} ? The initial stack-bottom marker is \perp for both the machines.

(A) ε
(B) $a^{3} b^{3}$
(C) $a^{3} b^{4}$
(D) $a^{3} b^{5}$

Solution (A): Both M_{1} and M_{2} get stuck at the start state.
(B): After consuming the entire input $a^{3} b^{3}$, an A stays in the stack.
(C): After consuming the entire input $a^{3} b^{4}$, the stack is empty, so both M_{1} and M_{2} accept $a^{3} b^{4}$.
(D): Both M_{1} and M_{2} get stuck when the stack gets empty after consuming $a^{3} b^{4}$.
9. Let L be the language of a right-linear grammar over some alphabet Σ. Which of the following statements is false about the complement $\sim L=\Sigma^{*}-L$?
(A) $\sim L$ can be generated by a CFG where every production is of the form $A \rightarrow a B$ or $A \rightarrow a$ for nonterminal symbols A, B and for $a \in \Sigma \cup\{\varepsilon\}$.
(B) $\sim L$ can be generated by a CFG where every production is of the form $A \rightarrow B a$ or $A \rightarrow a$ for nonterminal symbols A, B and for $a \in \Sigma \cup\{\varepsilon\}$.
(C) It is possible that no PDA can have the language $\sim L$.
(D) A PDA with only one state can have the language $\sim L$.

Solution (C): L is regular, so $\sim L$ is regular too. Every regular language is context-free.
10. Let $L=\left\{x \in\{a, b, c, d\}^{*} \mid \# a(x)=\# b(x)\right.$ and $\left.\# c(x)=\# d(x)\right\}$. Which of the following languages is context-free but not deterministic context-free?
(A) $\{a, b, c, d\}^{*} \backslash L$
(B) $\{a, b, c\}^{*} \backslash L$
(C) L
(D) L^{*}

Solution (A): $\sim L=\{a, b, c, d\}^{*} \backslash L=\left\{x \in\{a, b, c, d\}^{*} \mid \# a(x) \neq \# b(x)\right.$ or $\left.\# c(x) \neq \# d(x)\right\}$. An NPDA can guess which inequality to verify. Intuitively, this is not possible for a DPDA. For a proof, note that $\sim L$ is context-free, whereas L is not (see Part (C)), so $\sim L$ cannot be deterministic context-free.
(B): A string $x \in\{a, b, c\}^{*}$ is not in L if and only if either
(1) $\# a(x) \neq \# b(x)$
or
(2) $\# c(x)>0$.

A DPDA can (deterministically) verify the inequality (1). If, during this process, it ever encounters a c, it can accept after reading the rest of the input, regardless of whether the inequality (1) holds or not.
(C): L is not context-free. Supply $a^{k} c^{k} b^{k} d^{k}$ to the pumping lemma, where k is a PLC.
(D): $L^{*}=L$.

