Second Short Test

Time: 20 minutes	26–February–2021	Maximum marks: 20

- **1.** Let $A \triangle B$ denote the symmetric difference of two languages *A* and *B* (over the same alphabet). Which of the following statements is true?
 - (A) If *A* and *B* are both CFLs, then $A \bigtriangleup B$ must be a CFL.
 - **(B)** If A is a CFL and B is not a CFL, then $A \triangle B$ must be a CFL.
 - (C) If A is a CFL and B is regular, then $A \triangle B$ must be a CFL.
 - (D) Neither of the other options is true.

Solution (A) and (C): Take $A = \sim \{ww^r \mid w \in \{a, b\}^*\}$ and $B = \{a, b\}^*$, so $A \bigtriangleup B = B - A = \{ww^r \mid w \in \{a, b\}^*\}$. (B): Take $A = \{a^m b^m c^n \mid m, n \ge 0\}$ and $B = \{a^m b^m c^m \mid m \ge 0\}$, so $A \bigtriangleup B = A - B = \{a^m b^m c^n \mid m, n \ge 0, m \ne n\}$.

- 2. Which of the following statements is true for a CFG *G* with start symbol *S* and with the only productions $S \rightarrow aS \mid bS \mid a$?
 - (A) $\mathscr{L}(G)$ is a CFL but not regular.
 - (B) $\mathscr{L}(G)$ is regular but not a CFL.
 - (C) $\mathscr{L}(G)$ is a CFL and regular.
 - (D) $\mathscr{L}(G)$ is neither a CFL nor regular.

Solution $\mathscr{L}(G) = \mathscr{L}((a+b)^*a)$. Every regular language is context-free.

3. Consider the languages

$$L_1 = \left\{ a^m b^m c^{m+n} \mid m, n \ge 1 \right\},$$

$$L_2 = \left\{ a^m b^n c^{m+n} \mid m, n \ge 1 \right\}.$$

Which of the following statements is true?

- (A) Both L_1 and L_2 are CFLs.
- (**B**) Neither L_1 nor L_2 is a CFL.
- (C) L_1 is not a CFL, but L_2 is a CFL.
- (D) L_1 is a CFL, but L_2 is not a CFL.

Solution L_1 : Supply $a^k b^k c^{k+1}$ to the pumping lemma, where k is a PLC.

*L*₂: We have $a^m b^n c^{m+n} = a^m (b^n c^n) c^m$, so the following grammar generates $L_2: S \to aSc \mid aTc, T \to bTc \mid bc$.

- **4.** Let *G* be a CFG in the Chomsky normal form of a language *L* that does not contain ε . For any string $x \in L$ of length *l*, what is the length of the derivation of *x*?
 - (A) l-1 (B) 2l-1 (C) 3l-1 (D) 4l-1

Solution You need to use l - 1 productions of the form $A \rightarrow BC$, and l productions of the form $A \rightarrow a$.

5. Consider the languages

$$L_1 = \left\{ a^m b^n \mid m, n \ge 0, \ m = 2n \right\},$$

$$L_2 = \left\{ a^m b^n \mid m, n \ge 0, \ m \ne 2n \right\}.$$

— Page 1 of 3 —

Which of the following statements is true?

- (A) Both L_1 and L_2 are CFLs.
- (B) Neither L_1 nor L_2 is a CFL.
- (C) L_1 is not a CFL, but L_2 is a CFL.
- **(D)** L_1 is a CFL, but L_2 is not a CFL.

Solution $L_1: a^{2n}b^n = (a^2)^n b^n$. So consider the grammar $S \to aaSb \mid \varepsilon$.

*L*₂: The following grammar with start symbol *T* is built on top of the above grammar for *L*₁. $T \rightarrow AS \mid SB$, $A \rightarrow aA \mid a, B \rightarrow bB \mid b$.

Indeed both L_1 and L_2 are deterministic context-free.

6. Consider the two grammars G and G' with the start symbols S and S' and with the only productions:

Productions of G : $S \to aS \mid B$, $B \to bB \mid b$. Productions of G' : $S' \to aA' \mid bB'$, $A' \to aA' \mid B'$, $B' \to bB' \mid \varepsilon$.

Which of the following statements is true?

(A) $\mathscr{L}(G) = \mathscr{L}(G').$

- (B) $\mathscr{L}(G)$ is strictly contained in $\mathscr{L}(G')$.
- (C) $\mathscr{L}(G')$ is strictly contained in $\mathscr{L}(G)$.
- (D) Neither $\mathscr{L}(G)$ is contained in $\mathscr{L}(G')$ nor $\mathscr{L}(G')$ is contained in $\mathscr{L}(G)$.
- Solution $\mathscr{L}(G) = \mathscr{L}(a^*b^+)$, whereas $\mathscr{L}(G') = \mathscr{L}(a^+b^*+b^+)$. Take a string *x* of the form a^*b^+ . If *x* does not contain *a*, then it is of the form b^+ , and is covered by *G'*. If *x* contains *a*, then it is of the form a^+b^+ , and is covered by a^+b^* in $\mathscr{L}(G')$. On the other hand, all strings of the form a^+ are generated by *G'* but not by *G*.
- 7. What is the language over the alphabet $\{a, b\}$, that is accepted by the following PDA? The PDA accepts by empty stack. Here, \perp is the initial bottom marker for the stack.

$$(\mathbf{A}) \left\{ a^{n}b^{n} \mid n \ge 0 \right\} \qquad (\mathbf{B}) \left\{ a^{m}b^{n} \mid m, n \ge 0 \right\} \qquad (\mathbf{C}) \left\{ a^{m}b^{n} \mid m, n \ge 1 \right\} \qquad (\mathbf{D}) \mathscr{L}\left(\left(a+b\right)^{*}b \right)$$

Solution There exist strings of the form $(a+b)^*b$ other than those specified in (A), (B), and (C).

Note: The correct answer is $\mathscr{L}(\varepsilon + (a+b)^*b)$.

8. Consider the following two PDA. M_1 accepts by empty stack, whereas M_2 accepts by final state. Which of the following strings is accepted by M_2 but not by M_1 ? The initial stack-bottom marker is \perp for both the machines.

— Page 2 of 3 —

Solution (A): Both M_1 and M_2 get stuck at the start state.

- (B): After consuming the entire input a^3b^3 , an A stays in the stack.
- (C): After consuming the entire input a^3b^4 , the stack is empty, so both M_1 and M_2 accept a^3b^4 .
- (D): Both M_1 and M_2 get stuck when the stack gets empty after consuming a^3b^4 .
- 9. Let *L* be the language of a right-linear grammar over some alphabet Σ . Which of the following statements is *false* about the complement $\sim L = \Sigma^* L$?

(A) $\sim L$ can be generated by a CFG where every production is of the form $A \to aB$ or $A \to a$ for non-terminal symbols A, B and for $a \in \Sigma \cup \{\varepsilon\}$.

(B) $\sim L$ can be generated by a CFG where every production is of the form $A \to Ba$ or $A \to a$ for non-terminal symbols A, B and for $a \in \Sigma \cup \{\varepsilon\}$.

- (C) It is possible that no PDA can have the language $\sim L$.
- (D) A PDA with only one state can have the language $\sim L$.

Solution (C): L is regular, so $\sim L$ is regular too. Every regular language is context-free.

10. Let $L = \{x \in \{a, b, c, d\}^* \mid \#a(x) = \#b(x) \text{ and } \#c(x) = \#d(x)\}$. Which of the following languages is context-free but not deterministic context-free?

(A)
$$\{a,b,c,d\}^* \setminus L$$
 (B) $\{a,b,c\}^* \setminus L$ (C) L (D) L^*

Solution (A): $\sim L = \{a, b, c, d\}^* \setminus L = \{x \in \{a, b, c, d\}^* \mid \#a(x) \neq \#b(x) \text{ or } \#c(x) \neq \#d(x)\}$. An NPDA can guess which inequality to verify. Intuitively, this is not possible for a DPDA. For a proof, note that $\sim L$ is context-free, whereas *L* is not (see Part (C)), so $\sim L$ cannot be deterministic context-free.

(B): A string $x \in \{a, b, c\}^*$ is not in *L* if and only if either

(1)
$$#a(x) \neq #b(x)$$

(2) #c(x) > 0.

or

A DPDA can (deterministically) verify the inequality (1). If, during this process, it ever encounters a c, it can accept after reading the rest of the input, regardless of whether the inequality (1) holds or not.

(C): *L* is not context-free. Supply $a^k c^k b^k d^k$ to the pumping lemma, where *k* is a PLC.

(D): $L^* = L$.