## Second Long Test

1. (a) Consider the following grammar with the start symbol $S$ :

$$
\begin{array}{r}
S \rightarrow a b S c B \mid \varepsilon \\
B \rightarrow b B \mid b
\end{array}
$$

What language does this grammar generate? Is this grammar ambiguous?
Solution $\left\{(a b)^{n}\left(c b^{+}\right)^{n} \mid n \geqslant 0\right\}$. Here, the different instances of $b^{+}$contain independently many occurrences of $b$. Unambiguous.
(b) Prove that the language

$$
\begin{equation*}
L_{1}=\left\{a^{l} b^{m} c^{n} \mid l<m \text { and } l<n\right\} \tag{5}
\end{equation*}
$$

is not context-free.
Solution Assume that $L_{1}$ is context-free. Let $k$ be a pumping-lemma constant for $L_{1}$. Consider the string $z=a^{k} b^{k+1} c^{k+1}$. The demon breaks $z$ into $u v w x y$ such that $z_{i}=u v^{i} w x^{i} y \in L_{1}$ for all $i \geqslant 0$. If $v$ or $x$ spans across the block boundaries, then for $i=2, z_{i}$ is not of the form $a^{*} b^{*} c^{*}$. So $v$ and $x$ must be in individual blocks. First, suppose that $v$ is non-empty. If $v$ is in the block of $a$ 's, the substring $x$ cannot be in the block of $c$ 's by the length condition $|v w x| \leqslant k$. Therefore for $i=2$, the $c^{\prime}$ s in $z_{i}$ cannot be more numerous than the $a$ 's. Otherwise if $v$ is in the block of $b$ 's or $c$ 's, then there will not be enough $b$ 's or $c$ 's in $z_{0}$. Finally, if $v$ is empty, $x$ must be non-empty. If $x$ is in the block of $a$ 's, take $i=2$. If $x$ is in the block of $b$ 's or $c$ 's, take $i=0$.
2. (a) Design an unambiguous CFG for the set $L_{2}$ of all non-palindromes over $\{a, b\}$. Assume that $\varepsilon$ is not in the language. (Partial credit if the grammar is ambiguous.)

Solution The following unambiguous grammar with the start symbol $S$ generates $L_{2}$.

$$
\begin{aligned}
S & \rightarrow a S a|b S b| T \\
T & \rightarrow a R b \mid b R a \\
R & \rightarrow X R X|X| \varepsilon \\
X & \rightarrow a \mid b
\end{aligned}
$$

(b) Design a PDA whose language is $\sim L_{2}$ (the set of all palindromes over $\{a, b\}$ ).

Solution You can use the CFG-to-PDA conversion on the grammar $S \rightarrow a S a|b S b| a|b| \varepsilon$, or design a PDA from the scratch. Notice that the nondeterministic switch from the first half of the input to the second half may be triggered by $\varepsilon$ (for even-length palindromes) or by a symbol in $\{a, b\}$ (for odd-length palindromes).
3. (a) Let $P=(Q, \Sigma, \Gamma, \perp, \delta, s, F)$ be a PDA which never pops from its stack, that is, every transition of $P$ is of the form $((p, a, A),(q, \gamma A))$, where $p, q \in Q, a \in \Sigma \cup\{\varepsilon\}, A \in \Gamma$, and $\gamma \in \Gamma^{*}$. Since $P$ cannot empty its stack, it accepts by final state. Prove that $\mathscr{L}(P)$ is regular.

Solution The idea is to remember the top of the stack in the state. Since $P$ never pops from its stack, each transition of $P$ uniquely identifies the next top of the stack, and therefore a finite automaton can simulate the working of $P$ perfectly. Formally, we construct an NFA $N=\left(Q^{\prime}, \Sigma, \Delta^{\prime}, S^{\prime}, F^{\prime}\right)$ as follows (since $P$ is non-deterministic, $N$ would be so too). Take $Q^{\prime}=Q \times \Gamma, S^{\prime}=\{(s, \perp)\}$, and $F=\{(f, A) \mid f \in F$ and $A \in \Gamma\}$. For each transition $((p, a, A),(q, \gamma A))$ of $P$, include the transition $(q, B)$ in $\Delta((p, A), a)$, where $B$ is $A$ if $\gamma=\varepsilon$, or $B$ is the first symbol of $\gamma$ if $\gamma \neq \varepsilon$. It is straightforward to establish that $\mathscr{L}(P)=\mathscr{L}(N)$.
(b) Let $G$ be a CFG. A production $A \rightarrow \gamma$ is said to be of degree $d$ if the number of non-terminal symbols in $\gamma$ is exactly $d$. For example, the production $S \rightarrow a T T b c U a b S c$ is of degree four (the lowercase letters are terminal symbols, and the upper-case letters are non-terminal symbols). $G$ is said to be of degree $d$ if the maximum degree of the productions in $G$ is $d$. For example, a CFG for the language $\left\{x \in\{a, b\}^{*} \mid \# a(x)=2 \times \# b(x)\right\}$ consists of the productions $S \rightarrow \varepsilon|a B| b A A, A \rightarrow a S \mid b A A A$, and $B \rightarrow b A|a B B| a S b S$. This grammar is of degree three (because of the production $A \rightarrow b A A A$, the other productions having degrees $\leqslant 2$ ). Prove that every CFL has a CFG of degree two.

Solution It suffices to show that every production of degree $k \geqslant 3$ can be rewritten as a sequence of productions of degree two. Let $A \rightarrow \alpha_{0} B_{1} \alpha_{1} B_{2} \alpha_{3} \ldots \alpha_{k-1} B_{k} \alpha_{k}$ be such a production, where $B_{i}$ are non-terminal symbols, and $\alpha_{j}$ are strings in $\Sigma^{*}$. Introduce $k-2$ new non-terminal symbols $U_{1}, U_{2}, U_{3}, \ldots, U_{k-2}$ and the new productions:

$$
\begin{aligned}
A & \rightarrow \alpha_{0} B_{1} U_{1} \\
U_{1} & \rightarrow \alpha_{1} B_{2} U_{2} \\
U_{2} & \rightarrow \alpha_{2} B_{3} U_{3} \\
& \vdots \\
U_{k-3} & \rightarrow \alpha_{k-3} B_{k-2} U_{k-2} \\
U_{k-2} & \rightarrow \alpha_{k-2} B_{k-1} \alpha_{k-1} B_{k} \alpha_{k}
\end{aligned}
$$

Alternatively, note that any grammar in the Chomsky normal form is of degree (at most) two. But such grammars cannot generate $\varepsilon$, so you need to add the production $S \rightarrow \varepsilon$ of degree zero if $\varepsilon$ is in the language.
4. Let $\Sigma_{1}$ and $\Sigma_{2}$ be disjoint alphabets, $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, and $L \subseteq \Sigma^{*}$. Denote, by $L_{1}$, the language over $\Sigma_{1}$ obtained by deleting all symbols of $\Sigma_{2}$ from the strings in $L$. Likewise, let $L_{2}$ denote the language over $\Sigma_{2}$ obtained by deleting all symbols of $\Sigma_{1}$ from the strings in $L$. For example, if $\Sigma_{1}=\{a\}, \Sigma_{2}=\{b\}$, and $L=\left\{a b a b^{2} a b^{3} \ldots a b^{n} \mid n \geqslant 1\right\}$, then we have $L_{1}=\left\{a^{n} \mid n \geqslant 1\right\}$, and $L_{2}=\left\{b^{n(n+1) / 2} \mid n \geqslant 1\right\}$.
Prove/Disprove the statements in each of the following two parts. If you use any language that is not covered in the lectures/tutorials, it is your duty to prove the language to be a DCFL or not.
(a) If $L$ is a DCFL, then both $L_{1}$ and $L_{2}$ must be DCFL.

Solution False. Idea: The existence of symbol(s) from $\Sigma_{2}$ may help a PDA for $L$ to take deterministic decisions, whereas a PDA for $L_{1}$ cannot leverage the hints provided by the symbol(s) from $\Sigma_{2}$.
Take $\Sigma_{1}=\{a, b, c\}, \Sigma_{2}=\{\$, \#\}$, and $L=\left\{\$ a^{i} b^{j} c^{k} \mid i \neq j\right\} \cup\left\{\# a^{i} b^{j} c^{k} \mid j \neq k\right\}$. It is easy to construct a DPDA for $L$, since the first symbol fixes the inequality to verify. But we have seen that $L_{1}=\left\{a^{i} b^{j} c^{k} \mid i \neq j\right\} \cup$ $\left\{a^{i} b^{j} c^{k} \mid j \neq k\right\}$ is not a DCFL. In this example, $L_{2}=\{\$, \#\}$ is a DCFL, but this does not matter.
(b) If both $L_{1}$ and $L_{2}$ are DCFL, then $L$ must be a DCFL.

Solution False. Idea: Removal of symbols from the strings in $L$ may "simplify" the language.
Take $\Sigma_{1}=\{a, b\}, \Sigma_{2}=\{c\}$, and $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$. We have $L_{1}=\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$, and $L_{2}=\left\{c^{n} \mid n \geqslant 0\right\}$. Clearly, $L_{1}$ and $L_{2}$ are DCFL, whereas $L$ is not even a CFL.

