
Formal Languages and Automata Theory

Second Long Test

Time: 50 minutes 12–March–2021 Maximum marks: 40

1. (a) Consider the following grammar with the start symbol S:

S → abScB | ε

B → bB | b

What language does this grammar generate? Is this grammar ambiguous? (4 + 1)

Solution {(ab)n(cb+)n | n > 0}. Here, the different instances of b+ contain independently many occurrences of b.

Unambiguous.

(b) Prove that the language

L1 =
{

albmcn
∣

∣ l < m and l < n
}

is not context-free. (5)

Solution Assume that L1 is context-free. Let k be a pumping-lemma constant for L1. Consider the string z = akbk+1ck+1.

The demon breaks z into uvwxy such that zi = uviwxiy ∈ L1 for all i > 0. If v or x spans across the block

boundaries, then for i = 2, zi is not of the form a∗b∗c∗. So v and x must be in individual blocks. First, suppose

that v is non-empty. If v is in the block of a’s, the substring x cannot be in the block of c’s by the length condition

|vwx|6 k. Therefore for i = 2, the c’s in zi cannot be more numerous than the a’s. Otherwise if v is in the block

of b’s or c’s, then there will not be enough b’s or c’s in z0. Finally, if v is empty, x must be non-empty. If x is in

the block of a’s, take i = 2. If x is in the block of b’s or c’s, take i = 0.

2. (a) Design an unambiguous CFG for the set L2 of all non-palindromes over {a,b}. Assume that ε is not in

the language. (Partial credit if the grammar is ambiguous.) (6)

Solution The following unambiguous grammar with the start symbol S generates L2.

S → aSa | bSb | T

T → aRb | bRa

R → XRX | X | ε

X → a | b

(b) Design a PDA whose language is ∼L2 (the set of all palindromes over {a,b}). (4)

Solution You can use the CFG-to-PDA conversion on the grammar S → aSa | bSb | a | b | ε , or design a PDA from

the scratch. Notice that the nondeterministic switch from the first half of the input to the second half may be

triggered by ε (for even-length palindromes) or by a symbol in {a,b} (for odd-length palindromes).

3. (a) Let P = (Q,Σ,Γ,⊥,δ ,s,F) be a PDA which never pops from its stack, that is, every transition of P is

of the form ((p,a,A),(q,γA)), where p,q ∈ Q, a ∈ Σ∪{ε}, A ∈ Γ, and γ ∈ Γ∗. Since P cannot empty its

stack, it accepts by final state. Prove that L (P) is regular. (5)

Solution The idea is to remember the top of the stack in the state. Since P never pops from its stack, each transition

of P uniquely identifies the next top of the stack, and therefore a finite automaton can simulate the working of

P perfectly. Formally, we construct an NFA N = (Q′,Σ,∆′,S′,F ′) as follows (since P is non-deterministic, N

would be so too). Take Q′ = Q×Γ, S′ = {(s,⊥)}, and F = {(f ,A) | f ∈ F and A ∈ Γ}. For each transition

((p,a,A),(q,γA)) of P, include the transition (q,B) in ∆((p,A),a), where B is A if γ = ε , or B is the first symbol

of γ if γ 6= ε . It is straightforward to establish that L (P) = L (N).

— Page 1 of 2 —

(b) Let G be a CFG. A production A → γ is said to be of degree d if the number of non-terminal

symbols in γ is exactly d. For example, the production S → aT T bcUabSc is of degree four (the lower-

case letters are terminal symbols, and the upper-case letters are non-terminal symbols). G is said to be

of degree d if the maximum degree of the productions in G is d. For example, a CFG for the language
{

x ∈ {a,b}∗
∣

∣ #a(x) = 2 × #b(x)
}

consists of the productions S → ε | aB | bAA, A → aS | bAAA, and

B → bA | aBB | aSbS. This grammar is of degree three (because of the production A → bAAA, the other

productions having degrees 6 2). Prove that every CFL has a CFG of degree two. (5)

Solution It suffices to show that every production of degree k > 3 can be rewritten as a sequence of productions of degree

two. Let A → α0B1α1B2α3 . . .αk−1Bkαk be such a production, where Bi are non-terminal symbols, and α j are

strings in Σ∗. Introduce k−2 new non-terminal symbols U1,U2,U3, . . . ,Uk−2 and the new productions:

A → α0B1U1

U1 → α1B2U2

U2 → α2B3U3

...

Uk−3 → αk−3Bk−2Uk−2

Uk−2 → αk−2Bk−1αk−1Bkαk

Alternatively, note that any grammar in the Chomsky normal form is of degree (at most) two. But such

grammars cannot generate ε , so you need to add the production S → ε of degree zero if ε is in the language.

4. Let Σ1 and Σ2 be disjoint alphabets, Σ = Σ1 ∪ Σ2, and L ⊆ Σ∗. Denote, by L1, the language over Σ1

obtained by deleting all symbols of Σ2 from the strings in L. Likewise, let L2 denote the language over

Σ2 obtained by deleting all symbols of Σ1 from the strings in L. For example, if Σ1 = {a}, Σ2 = {b}, and

L =
{

abab2ab3. . . abn
∣

∣ n > 1
}

, then we have L1 =
{

an
∣

∣ n > 1
}

, and L2 =
{

bn(n+1)/2
∣

∣ n > 1
}

.

Prove/Disprove the statements in each of the following two parts. If you use any language that is not covered

in the lectures/tutorials, it is your duty to prove the language to be a DCFL or not.

(a) If L is a DCFL, then both L1 and L2 must be DCFL. (5)

Solution False. Idea: The existence of symbol(s) from Σ2 may help a PDA for L to take deterministic decisions, whereas

a PDA for L1 cannot leverage the hints provided by the symbol(s) from Σ2.

Take Σ1 = {a,b,c}, Σ2 = {$,#}, and L = {$aib jck | i 6= j}∪{#aib jck | j 6= k}. It is easy to construct a DPDA

for L, since the first symbol fixes the inequality to verify. But we have seen that L1 = {aib jck | i 6= j} ∪
{aib jck | j 6= k} is not a DCFL. In this example, L2 = {$,#} is a DCFL, but this does not matter.

(b) If both L1 and L2 are DCFL, then L must be a DCFL. (5)

Solution False. Idea: Removal of symbols from the strings in L may “simplify” the language.

Take Σ1 = {a,b}, Σ2 = {c}, and L = {anbncn | n > 0}. We have L1 = {anbn | n > 0}, and L2 = {cn | n > 0}.

Clearly, L1 and L2 are DCFL, whereas L is not even a CFL.

— Page 2 of 2 —

