Formal Languages and Automata Theory

First Long Test

1. Consider the following language over the alphabet $\{a, b\}$:

$$
L_{1}=\left\{x \in\{a, b\}^{*} \mid x \text { starts with } a b \text { but does not end with } a b\right\} .
$$

(a) Write a regular expression for L_{1}.

Solution $a b\left(a+b+(a+b)^{*}(a a+b a+b b)\right)$.
(b) Design a DFA for L_{1}.

Solution

2. (a) Construct a regular expression over the alphabet $\{a, b, c\}$ for

$$
L_{2}=\left\{x \in\{a, b, c\}^{*} \mid x \text { has } 4 i+1 b \text { 's for some integer } i \geqslant 0\right\}
$$

Solution $\left((a+c)^{*} b(a+c)^{*} b(a+c)^{*} b(a+c)^{*} b\right)^{*}(a+c)^{*} b(a+c)^{*}$.
(b) For a language A over some alphabet Σ, define the language

$$
\operatorname{cyclicshift}(A)=\left\{y x \mid x y \in A \text { for some } x, y \in \Sigma^{*}\right\}
$$

If A is regular, prove that cyclicshift (A) is regular too.
Solution Let $D=(Q, \Sigma, \delta, s, F)$ be a DFA for A. Fix a $q \in Q$, and define the language

$$
B_{q}=\{y x \mid \hat{\delta}(s, x)=q \text { and } \hat{\delta}(q, y) \in F\} .
$$

We design an ε-NFA $N=\left(Q_{N}, \Sigma, \Delta_{N}, s_{N}, F_{N}\right)$ for B_{q} as follows. Q_{N} consists of two copies of Q, that is, we take $Q_{N}=\{p \mid p \in Q\} \cup\left\{p^{\prime} \mid p \in Q\right\}$. We keep all the transitions of D in both the copies, that is, for every transition $\delta(p, a)=q$ of D, we have $q \in \Delta_{N}(p, a)$ and $q^{\prime} \in \Delta_{N}\left(p^{\prime}, a\right)$. For every final state $f \in F$, we add the transition $s^{\prime} \in \Delta_{N}(f, \varepsilon)$. Finally, we take $s_{N}=q$, and $F_{N}=\left\{q^{\prime}\right\}$.

It therefore follows that each B_{q} is regular. But then,

$$
\operatorname{cyclicshift}(A)=\bigcup_{q \in Q} B_{q}
$$

is the union of finitely many regular languages, and is regular too.
3. One of the following languages over the alphabet $\{0,1\}$ is regular; the other is not. Identify which one is what. Justify. No credit for correct identification only.
(a) $L_{3(a)}=\left\{\alpha \beta \alpha \mid \alpha \in\{0,1\}^{+}\right.$and $\left.\beta \in\{0,1\}^{+}\right\}$.

Solution Not regular. For proving this, suppose that $L_{3(a)}$ is regular. Let $k \in \mathbb{N}$ be a pumping-lemma constant for $L_{3(a)}$. The string $01^{k} 0^{2} 1^{k}$ belongs to $L_{3(a)}$ (here $\alpha=01^{k}$ and $\beta=0$). Using the notations of the pumping lemma, take $x=0, y=1^{k}$, and $z=0^{2} 1^{k}$. The pumping lemma gives a decomposition $y=u v w$ with $|v|>0$ (so $v=1^{l}$ for some $1 \leqslant l \leqslant k$). Pumping out v gives $01^{k-l} 0^{2} 1^{k} \in L_{3(a)}$. But this string cannot be written in the form $\alpha \beta \alpha$, and so is not in $L_{3(a)}$, a contradiction.
(b) $L_{3(b)}=\left\{\alpha \beta \alpha \mid \alpha \in\{0\}^{+}\right.$and $\left.\beta \in\{0,1\}^{+}\right\}$.

Solution Regular. Show that $L_{3(b)}$ is the set of all strings over $\{0,1\}$ of length $\geqslant 3$, that start and end with 0 , that is, $L_{3(b)}=\mathscr{L}\left(0(0+1)^{+} 0\right)=\mathscr{L}\left(0(0+1)(0+1)^{*} 0\right)$.
4. Use the Myhill-Nerode theorem (no credit for using any other method) to prove the regularity/non-regularity of the following languages over the alphabet $\{a, b\}$.
(a) $L_{4(a)}=\left\{x \in\{a, b\}^{*} \mid \# a(x)-\# b(x)=2021\right\}$.

Solution Not regular. Define the surplus of a 's over b 's in $w \in\{a, b\}^{*}$ as $s(w)=\# a(w)-\# b(w)$. We have

$$
L_{4(a)}=\left\{x \in\{a, b\}^{*} \mid s(x)=2021\right\} .
$$

Define a relation on $\{a, b\}^{*}$ as $x \equiv_{a} y$ if and only if $s(x)=s(y)$. It is easy to see that \equiv_{a} is an equivalence relation, is a right congruence, and refines $L_{4(a)}$.
In order to show that \equiv_{a} is the coarsest MN^{\prime} relation for $L_{4(a)}$, take any MN^{\prime} relation \equiv for $L_{4(a)}$. Let $x \equiv y$. There exists $z \in\{a, b\}^{*}$ such that $x z \in L_{4(a)}$. This is because if $s(x)=2021$, we take $z=\varepsilon$; if $s(x)=2021+r$ for some $r>0$, we take $z=b^{r}$; and if $s(x)=2021-r$ for some $r>0$, we take $z=a^{r}$. Since \equiv is a right congruence and refines $L_{4(a)}$, we have $y z \in L_{4(a)}$ for this choice of z. But then, $s(x z)=s(y z)=2021$, that is, $s(x)+s(z)=s(y)+s(z)$, that is, $s(x)=s(y)$, that is, $x \equiv_{a} y$.

Finally, note that \equiv_{a} has infinitely many equivalence classes-one class for each $n \in \mathbb{Z}$.
(b) $L_{4(b)}=\left\{x \in\{a, b\}^{*} \mid \# a(x)-\# b(x)\right.$ is a multiple of 2021$\}$.

Solution Regular. Define the surplus function $s:\{a, b\}^{*} \rightarrow \mathbb{Z}$ as in Part (a). We have

$$
L_{4(b)}=\left\{x \in\{a, b\}^{*} \mid s(x) \equiv 0(\bmod 2021)\right\} .
$$

Define a relation on $\{a, b\}^{*}$ as $x \equiv_{b} y$ if and only if $s(x) \equiv s(y)(\bmod 2021)$. It is easy to see that \equiv_{b} is an equivalence relation, is a right congruence, and refines $L_{4(b)}$.
In order to show that \equiv_{b} is the coarsest MN^{\prime} relation for $L_{4(b)}$, take any MN^{\prime} relation \equiv for $L_{4(b)}$. Let $x \equiv y$. There exists $z \in\{a, b\}^{*}$ such that $x z \in L_{4(b)}$. This is because if $s(x)=2021 q+r$ for $q \in \mathbb{Z}$ and $r \in\{0,1,2, \ldots, 2020\}$, we can take $z=b^{r}$. Since \equiv is a right congruence and refines $L_{4(b)}$, we have $y z \in L_{4(b)}$ for this choice of z. But then, $s(x z) \equiv 0(\bmod 2021)$ and $s(y z) \equiv 0(\bmod 2021)$, that is, $s(x z) \equiv s(y z)(\bmod 2021)$, that is, $s(x)+s(z) \equiv s(y)+s(z)(\bmod 2021)$, that is, $s(x) \equiv s(y)(\bmod 2021)$, that is, $x \equiv_{b} y$.
Finally, note that \equiv_{b} has only finitely many (2021 to be precise) equivalence classes.

