First Long Test

Time: 50 minutes	12–February–2021	Maximum marks: 40
Time: 50 minutes	12–February–2021	Maximum marks: 4

1. Consider the following language over the alphabet $\{a, b\}$:

$$L_1 = \Big\{ x \in \{a,b\}^* \mid x \text{ starts with } ab \text{ but does not end with } ab \Big\}.$$

(a) Write a regular expression for L_1 .

Solution $ab(a+b+(a+b)^*(aa+ba+bb))$.

(b) Design a DFA for L_1 .

Solution

2. (a) Construct a regular expression over the alphabet $\{a, b, c\}$ for

$$L_2 = \Big\{ x \in \{a, b, c\}^* \mid x \text{ has } 4i + 1 \text{ b's for some integer } i \ge 0 \Big\}.$$

Solution $((a+c)^*b(a+c)^*b(a+c)^*b(a+c)^*b)^*(a+c)^*b(a+c)^*$.

(b) For a language A over some alphabet Σ , define the language

cyclicshift(A) =
$$\left\{ yx \mid xy \in A \text{ for some } x, y \in \Sigma^* \right\}$$

If A is regular, prove that cyclicshift(A) is regular too.

Solution Let $D = (Q, \Sigma, \delta, s, F)$ be a DFA for A. Fix a $q \in Q$, and define the language

$$B_q = \left\{ yx \mid \hat{\delta}(s,x) = q \text{ and } \hat{\delta}(q,y) \in F \right\}$$

We design an ε -NFA $N = (Q_N, \Sigma, \Delta_N, s_N, F_N)$ for B_q as follows. Q_N consists of two copies of Q, that is, we take $Q_N = \{p \mid p \in Q\} \cup \{p' \mid p \in Q\}$. We keep all the transitions of D in both the copies, that is, for every transition $\delta(p, a) = q$ of D, we have $q \in \Delta_N(p, a)$ and $q' \in \Delta_N(p', a)$. For every final state $f \in F$, we add the transition $s' \in \Delta_N(f, \varepsilon)$. Finally, we take $s_N = q$, and $F_N = \{q'\}$.

It therefore follows that each B_q is regular. But then,

$$\operatorname{cyclicshift}(A) = \bigcup_{q \in Q} B_q$$

is the union of finitely many regular languages, and is regular too.

(6)

(4)

(4)

(6)

3. One of the following languages over the alphabet $\{0,1\}$ is regular; the other is not. Identify which one is what. Justify. No credit for correct identification only.

(a)
$$L_{3(a)} = \left\{ \alpha \beta \alpha \mid \alpha \in \{0,1\}^+ \text{ and } \beta \in \{0,1\}^+ \right\}.$$
 (5)

Solution Not regular. For proving this, suppose that $L_{3(a)}$ is regular. Let $k \in \mathbb{N}$ be a pumping-lemma constant for $L_{3(a)}$. The string $01^k 0^2 1^k$ belongs to $L_{3(a)}$ (here $\alpha = 01^k$ and $\beta = 0$). Using the notations of the pumping lemma, take $x = 0, y = 1^k$, and $z = 0^2 1^k$. The pumping lemma gives a decomposition y = uvw with |v| > 0 (so $v = 1^l$ for some $1 \le l \le k$). Pumping out v gives $01^{k-l} 0^2 1^k \in L_{3(a)}$. But this string cannot be written in the form $\alpha\beta\alpha$, and so is not in $L_{3(a)}$, a contradiction.

(**b**)
$$L_{3(b)} = \left\{ \alpha \beta \alpha \mid \alpha \in \{0\}^+ \text{ and } \beta \in \{0,1\}^+ \right\}.$$
 (5)

Solution Regular. Show that $L_{3(b)}$ is the set of all strings over $\{0,1\}$ of length ≥ 3 , that start and end with 0, that is, $L_{3(b)} = \mathscr{L}(0(0+1)^+0) = \mathscr{L}(0(0+1)(0+1)^*0).$

4. Use the Myhill–Nerode theorem (no credit for using any other method) to prove the regularity/non-regularity of the following languages over the alphabet $\{a, b\}$.

(a)
$$L_{4(a)} = \left\{ x \in \{a, b\}^* \mid \#a(x) - \#b(x) = 2021 \right\}.$$
 (5)

Solution Not regular. Define the surplus of a's over b's in $w \in \{a, b\}^*$ as s(w) = #a(w) - #b(w). We have

$$L_{4(a)} = \left\{ x \in \{a, b\}^* \mid s(x) = 2021 \right\}$$

Define a relation on $\{a,b\}^*$ as $x \equiv_a y$ if and only if s(x) = s(y). It is easy to see that \equiv_a is an equivalence relation, is a right congruence, and refines $L_{4(a)}$.

In order to show that \equiv_a is the coarsest MN' relation for $L_{4(a)}$, take any MN' relation \equiv for $L_{4(a)}$. Let $x \equiv y$. There exists $z \in \{a, b\}^*$ such that $xz \in L_{4(a)}$. This is because if s(x) = 2021, we take $z = \varepsilon$; if s(x) = 2021 + r for some r > 0, we take $z = b^r$; and if s(x) = 2021 - r for some r > 0, we take $z = a^r$. Since \equiv is a right congruence and refines $L_{4(a)}$, we have $yz \in L_{4(a)}$ for this choice of z. But then, s(xz) = s(yz) = 2021, that is, s(x) + s(z) = s(y) + s(z), that is, s(x) = s(y), that is, $x \equiv_a y$.

Finally, note that \equiv_a has infinitely many equivalence classes—one class for each $n \in \mathbb{Z}$.

(**b**)
$$L_{4(b)} = \left\{ x \in \{a, b\}^* \mid \#a(x) - \#b(x) \text{ is a multiple of } 2021 \right\}.$$
 (5)

Solution Regular. Define the surplus function $s: \{a, b\}^* \to \mathbb{Z}$ as in Part (a). We have

$$L_{4(b)} = \left\{ x \in \{a, b\}^* \mid s(x) \equiv 0 \pmod{2021} \right\}.$$

Define a relation on $\{a,b\}^*$ as $x \equiv_b y$ if and only if $s(x) \equiv s(y) \pmod{2021}$. It is easy to see that \equiv_b is an equivalence relation, is a right congruence, and refines $L_{4(b)}$.

In order to show that \equiv_b is the coarsest MN' relation for $L_{4(b)}$, take any MN' relation \equiv for $L_{4(b)}$. Let $x \equiv y$. There exists $z \in \{a, b\}^*$ such that $xz \in L_{4(b)}$. This is because if s(x) = 2021q + r for $q \in \mathbb{Z}$ and $r \in \{0, 1, 2, \dots, 2020\}$, we can take $z = b^r$. Since \equiv is a right congruence and refines $L_{4(b)}$, we have $yz \in L_{4(b)}$ for this choice of z. But then, $s(xz) \equiv 0 \pmod{2021}$ and $s(yz) \equiv 0 \pmod{2021}$, that is, $s(xz) \equiv s(yz) \pmod{2021}$, that is, $s(x) \equiv s(y) + s(z) \pmod{2021}$, that is, $s(x) \equiv s(y) \pmod{2021}$, that is, $x \equiv b y$.

Finally, note that \equiv_b has only finitely many (2021 to be precise) equivalence classes.