- 1. You are given two CFGs G and G'. Prove that the following problems are undecidable.
 - (a) whether $\mathscr{L}(G) \subseteq \mathscr{L}(G')$,
- Solution Suppose that the problem is decidable. Let D be a decider for the given problem. Let G' be a grammar over Σ . We want to decide whether $\mathscr{L}(G') = \Sigma^*$. Generate a grammar G with $\mathscr{L}(G) = \Sigma^*$. Invoke the decider D with G, G' as input. If D outputs yes, we have $\Sigma^* \subseteq \mathscr{L}(G')$, so $\mathscr{L}(G') = \Sigma^*$. If D outputs no, then $\Sigma^* \supseteq \mathscr{L}(G')$. Thus, we have a decider for the problem whether $\mathscr{L}(G') = \Sigma^*$, a contradiction. This is indeed a reduction

 $\{G' \mid \mathscr{L}(G') = \Sigma^*\} \leqslant_m \{G \# G' \mid \mathscr{L}(G) \subseteq \mathscr{L}(G')\}.$

The reduction is correct because $\mathscr{L}(G) \subseteq \mathscr{L}(G')$ if and only if $\mathscr{L}(G') = \Sigma^*$.

- (**b**) whether $\mathscr{L}(G) = \mathscr{L}(G)\mathscr{L}(G)$.
- Solution Make a reduction $\overline{\text{HP}} \leq_m \{G \mid \mathscr{L}(G) = \mathscr{L}(G)\mathscr{L}(G)\}$. The input is M # w (an instance of $\overline{\text{HP}}$), and the output is a CFG *G* such that $\mathscr{L}(G) = \mathscr{L}(G)\mathscr{L}(G)$ if and only if *M* does not halt on *w*. We take *G* to be a grammar for $L = \overline{\text{VALCOMP}(M, w)}$.

If *M* does not halt on *w*, then VALCOMP $(M, w) = \emptyset$ and so $L = \mathscr{L}(G) = \Delta^*$, and we have $\Delta^* = \Delta^* \Delta^*$.

If *M* halts on *w*, then VALCOMP(M, w) $\neq \emptyset$. Let $\gamma = \#C_0\#C_1\#C_2\#...\#C_N$ # be a valid computation history of *M* on *w*. Take $\alpha = \#C_0$ and $\beta = \#C_1\#C_2\#...\#C_N$ #. Then, α is not a valid computation history of *M* on *w*, because the string does not end with #. Moreover, β too is not a valid computation history of *M* on *w*, because the head is not at the leftmost cell (the left end-marker) in the first configuration. Therefore $\alpha, \beta \in L$, whereas $\gamma = \alpha\beta \notin L$. That is, in this case, $\mathscr{L}(G)$ does not satisfy $\mathscr{L}(G) = \mathscr{L}(G)\mathscr{L}(G)$.

- 2. Prove that the following problems are undecidable.
 - (a) whether a CFL is a DCFL.

Solution The same reduction from M # w (an instance of $\overline{\text{HP}}$) to a CFG G for $L = \overline{\text{VALCOMP}(M, w)}$ works.

If *M* does not halt on *w*, then $L = \mathscr{L}(G) = \Delta^*$ which is definitely a DCFL.

If *M* halts on *w*, then a string $\alpha \in \Delta^*$ may be in *L* for multiple reasons simultaneously, like:

- (1) the final configuration is not a halting configuration,
- (2) there is a halting state followed by a non-halting state,
- (3) inconsistent head movement somewhere,

and so on. This means α may have multiple parse trees. So *L* is not a DCFL in this case.

(b) whether the complement of a CFL is a CFL.

Solution Again the reduction of M # w to a CFG G for $L = \overline{VALCOMP(M, w)}$ works.

If *M* does not halt on *w*, then $\mathscr{L}(G) = L = \Delta^*$, the complement of which is \emptyset (a CFL).

If *M* halts on *w*, then $\overline{\mathscr{L}(G)} = \text{VALCOMP}(M, w) \neq \emptyset$ is not context-free.

3. For a TM M and an input w for M, define

VALCOMP-ALT(M, w) = {# $C_0 # C_1^R # C_2 # C_3^R # C_4 # C_5^R # \dots # C_N' # | C_0, C_1, C_2, \dots, C_N$ is a valid computation history of M on w},

where $C'_N = \begin{cases} C_N & \text{if } N \text{ is even,} \\ C_N^R & \text{if } N \text{ is odd,} \end{cases}$ (here α^R is the reverse of the string α). Like VALCOMP(M, w), the language VALCOMP-ALT(M, w), if non-empty, is not context-free. Prove the following facts.

- (a) $\overline{\text{VALCOMP-ALT}(M, w)} = \Delta^* \setminus \text{VALCOMP-ALT}(M, w)$ is context-free.
- Solution Now, since two consecutive configurations are in opposite order, a DPDA can check whether two consecutive configurations *are* consistent or not (elaborate the construction). Therefore if $\alpha \in \Delta^*$ is syntactically correct but contains some inconsistent changes, one such change can be nondeterministically guessed by an NPDA. The NPDA guesses *i*, and then simulates the above DPDA for finding the inconsistency between C_i and C_{i+1} .

(b) VALCOMP-ALT(M, w) is the intersection of two DCFLs.

Solution We can use the consistency-checking DPDA of Part (a) to accept the languages

VALCOMP-ALT_{even}(
$$M, w$$
) = {# C_0 # C_1 # C_2 #...# $C_N | C_{i+1}$ is consistent with C_i for all even i }

and

$$\mathsf{VALCOMP}\mathsf{-}\mathsf{ALT}_{odd}(M,w) = \left\{ \#C_0 \#C_1 \#C_2 \# \dots \#C_N \mid C_{i+1} \text{ is consistent with } C_i \text{ for all odd } i \right\}.$$

So VALCOMP-ALT_{even}(M, w) and VALCOMP-ALT_{odd}(M, w) are DCFLs. Moreover,

VALCOMP-ALT
$$(M, w)$$
 = VALCOMP-ALT_{even} (M, w) \bigcap VALCOMP-ALT_{odd} (M, w) .

- 4. Prove that the following problems are undecidable.
 - (a) Whether the intersection of two CFLs is empty.
- Solution Reduction from $\overline{\text{HP}}$. Given M # w, generate the grammars G_{even}, G_{odd} for VALCOMP-ALT_{even}(M, w) and VALCOMP-ALT_{odd}(M, w), respectively, and output $G_{even} \# G_{odd}$.

If M does not halt on w, there are no valid computation histories of M on w, so

$$\mathscr{L}(G_{even}) \cap \mathscr{L}(G_{odd}) = \text{VALCOMP-ALT}(M, w) = \emptyset.$$

(Note that in this case, $\mathscr{L}(G_{even})$ is not empty, because C_{2i+2} need not be consistent with C_{2i+1} . Likewise, for $\mathscr{L}(G_{odd})$.)

If M halts on w, there are valid computation histories of M on w, so

$$\mathscr{L}(G_{even}) \cap \mathscr{L}(G_{odd}) = \text{VALCOMP-ALT}(M, w) \neq \emptyset.$$

(b) Whether the intersection of two CFLs is a CFL.

Solution The same reduction of Part (a) works, since \emptyset is a CFL, whereas a non-empty VALCOMP-ALT(M, w) is not.

- (c) Whether the union of two DCFLs is a DCFL.
- Solution Since DCFLs are closed under complement, the complements of the languages VALCOMP-ALT_{even}(M, w) and VALCOMP-ALT_{odd}(M, w) in Δ^* are also DCFLs. Let \hat{G}_{even} and \hat{G}_{odd} be DCFGs for these complements.

Use reduction from $\overline{\text{HP}}$. Given M # w, generate and output $\hat{G}_{even} \# \hat{G}_{odd}$.

If *M* does not halt on *w*,
$$\mathscr{L}(\hat{G}_{even}) \cup \mathscr{L}(\hat{G}_{odd}) = \text{VALCOMP-ALT}(M, w) = \Delta^*$$
 is a DCFL.

If *M* halts on *w*, $\mathscr{L}(\hat{G}_{even}) \cup \mathscr{L}(\hat{G}_{odd}) = \overline{\text{VALCOMP-ALT}(M, w)} \neq \Delta^*$ is not a DCFL.

- 5. Prove that the finiteness problem for regular and context-free languages is decidable.
- Solution Use the pumping lemma. Let *L* be a regular/context-free language, and *k* a pumping-lemma constant for *L*. We know (see class test) that *L* is infinite if and only if *L* contains a string of length in the range [k, 2k 1]. So it suffices to check the membership in *L* of all the strings of lengths in this range.

Remark: In many of these exercises, you have a reduction algorithm that generates one or more CFGs. Note that a CFG cannot simulate a TM on an input. So you need to generate CFGs that can describe certain assertions about the working of M on w in a context-free manner. VALCOMP and its cousins are typical examples. Note also that the reduction algorithm R is a TM, and can simulate M on w for producing the output. But R must be a total TM, so it cannot wait for an infinite simulation (looping) of M on w.

Suppose that *M* halts on *w*. In some of the exercises, we have used the following results without proofs.

- VALCOMP(*M*, *w*) and VALCOMP-ALT(*M*, *w*) are not CFL's, in general.
- Their complements are not DCFL's, in general.
- A DCFG is necessarily unambiguous.