1. Design unrestricted grammars for the following languages.
(a) $\left\{w \in\{a, b, c\}^{*} \mid \# a(w)=\# b(w)=\# c(w)\right\}$.

Solution We first generate $(A B C)^{n}$. We then allow A, B, C 's to line up in any fashion. Finally, we change them to a, b, c, respectively.

$$
\begin{aligned}
S & \rightarrow \varepsilon \mid A B C S \\
A B & \rightarrow B A \\
B A & \rightarrow A B \\
B C & \rightarrow C B \\
C B & \rightarrow B C \\
C A & \rightarrow A C \\
A C & \rightarrow C A \\
A & \rightarrow a \\
B & \rightarrow b \\
C & \rightarrow c
\end{aligned}
$$

(b) $\left\{w w \mid w \in\{a, b\}^{*}\right\}$.

Solution The start symbol S generates a string $(a A+b B)^{*}$ and then converts to T at the end. We then allow A and B to cross a and b (but not themselves) to come in contact with T and get converted to a and b, respectively.

$$
\begin{aligned}
S & \rightarrow a A S|b B S| T \\
A a & \rightarrow a A \\
A b & \rightarrow b A \\
A T & \rightarrow T a \\
B a & \rightarrow a B \\
B b & \rightarrow b B \\
B T & \rightarrow T b \\
T & \rightarrow \varepsilon
\end{aligned}
$$

(c) $\left\{a^{i} b^{j} c^{k} d^{l} \mid i=k\right.$ and $\left.j=l\right\}$.

Solution First generate $a^{i} C^{i} b^{j} T d^{j}$. Then allow the C 's to cross the b 's, come in contact with T, and convert to c.

$$
\begin{aligned}
S & \rightarrow U V \\
U & \rightarrow \varepsilon \mid a U C \\
V & \rightarrow T \mid b V d \\
C b & \rightarrow b C \\
C T & \rightarrow T c \\
T & \rightarrow \varepsilon
\end{aligned}
$$

2. Consider the unrestricted grammar over the singleton alphabet $\Sigma=\{a\}$, having the start symbol S, and with the following productions.

$$
\begin{aligned}
S & \rightarrow A S \mid a T \\
A a & \rightarrow \text { aaaA } \\
A T & \rightarrow T \\
T & \rightarrow \varepsilon
\end{aligned}
$$

What is the language generated by this unrestricted grammar? Justify.

Solution We have $\mathscr{L}(S)=\left\{a^{3^{n}} \mid n \geqslant 0\right\}$. In order to prove this, we may proceed by induction on the number of A 's generated before the rule $S \rightarrow a T$ is applied. Each generated A must get in contact with T for vanishing. In the rightward journey of each A, the number of a 's is tripled.
3. Prove that any grammar can be converted to an equivalent grammar with rules of the form $\alpha A \gamma \rightarrow \alpha \beta \gamma$ for $A \in N$ and $\alpha, \beta, \gamma \in(\Sigma \cup N)^{*}$.

Solution First, we introduce a non-terminal symbol T_{a} for each terminal symbol a, and add the rule $T_{a} \rightarrow a$. Let us now look at a general rule $\alpha \rightarrow \beta$ with $|\alpha|=m$ and $|\beta|=n$. If α and β contain terminal symbols, replace them by the corresponding non-terminal symbols introduced above. We can now assume that $\alpha, \beta \in N^{*}$. In particular, we can write the rule $\alpha \rightarrow \beta$ as $U_{1} U_{2} \ldots U_{m} \rightarrow V_{1} V_{2} \ldots V_{n}$, where the U_{i} and V_{j} are all non-terminal symbols. By introducing new non-terminal symbols $W_{1}, W_{2}, \ldots, W_{m}$, we can replace the given rule by a sequence of rules, each of the form given in the question. Notice that $m \geqslant 1$, so the following rules work only in the presence of the new terminal symbols W_{i} and consequently do not interfere with the existing grammar.

Case 1: $m \leqslant n$.

$$
\begin{aligned}
& U_{1} U_{2} U_{3} \ldots U_{m-1} U_{m} \rightarrow \\
& W_{1} U_{2} U_{3} \ldots U_{m-1} U_{m} \\
& W_{1} U_{2} U_{3} \ldots U_{m-1} U_{m} \rightarrow \\
& W_{1} W_{2} U_{3} \ldots U_{m-1} U_{m} \\
& W_{1} W_{2} U_{3} \ldots U_{m-1} U_{m} \rightarrow W_{1} W_{2} W_{3} \ldots U_{m-1} U_{m} \\
& \vdots \\
& W_{1} W_{2} W_{3} \ldots U_{m-1} U_{m} \rightarrow W_{1} W_{2} W_{3} \ldots W_{m-1} U_{m} \\
& W_{1} W_{2} W_{3} \ldots W_{m-1} U_{m} \rightarrow \\
& W_{1} W_{2} W_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \\
& W_{1} W_{2} W_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \rightarrow \\
& V_{1} W_{2} W_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \\
& V_{1} W_{2} W_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \rightarrow \\
& V_{1} V_{2} W_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \\
& V_{2} W_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \rightarrow V_{1} V_{2} V_{3} \ldots W_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \\
& \vdots \\
& V_{1} V_{2} V_{3} \ldots W_{m-1} W_{n} V_{m+1} V_{m+2} \ldots V_{n} \rightarrow V_{1} V_{2} V_{3} \ldots V_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \\
& V_{1} V_{2} V_{3} \ldots V_{m-1} W_{m} V_{m+1} V_{m+2} \ldots V_{n} \rightarrow V_{1} V_{2} V_{3} \ldots V_{m-1} V_{m} V_{m+1} V_{m+2} \ldots V_{n}
\end{aligned}
$$

Case 2: $m \geqslant n$.

$$
\begin{aligned}
U_{1} U_{2} U_{3} \ldots U_{m} & \rightarrow W_{1} U_{2} U_{3} \ldots U_{m} \\
W_{1} U_{2} U_{3} \ldots U_{m} & \rightarrow W_{1} W_{2} U_{3} \ldots U_{m} \\
W_{1} W_{2} U_{3} \ldots U_{m} & \rightarrow W_{1} W_{2} W_{3} \ldots U_{m} \\
& \vdots \\
W_{1} W_{2} W_{3} \ldots W_{m-1} U_{m} & \rightarrow W_{1} W_{2} W_{3} \ldots W_{m-1} W_{m} \\
W_{1} W_{2} W_{3} \ldots W_{n} W_{n+1} W_{n+2} \ldots W_{m} & \rightarrow W_{1} W_{2} W_{3} \ldots W_{n} W_{n+2} \ldots W_{m} \\
W_{1} W_{2} W_{3} \ldots W_{n} W_{n+2} W_{n+3} \ldots W_{m} & \rightarrow W_{1} W_{2} W_{3} \ldots W_{n} W_{n+3} \ldots W_{m} \\
& \vdots \\
W_{1} W_{2} W_{3} \ldots W_{n} W_{m} & \rightarrow W_{1} W_{2} W_{3} \ldots W_{n} \\
W_{1} W_{2} W_{3} \ldots W_{n} & \rightarrow V_{1} W_{2} W_{3} \ldots W_{n} \\
V_{1} W_{2} W_{3} \ldots W_{n} & \rightarrow V_{1} V_{2} W_{3} \ldots W_{n} \\
V_{1} V_{2} W_{3} \ldots W_{n} & \rightarrow V_{1} V_{2} V_{3} \ldots W_{n} \\
& \vdots \\
V_{1} V_{2} V_{3} \ldots V_{n-1} W_{n} & \rightarrow V_{1} V_{2} V_{3} \ldots V_{n-1} V_{n}
\end{aligned}
$$

4. Write a context-sensitive grammar for the language

$$
\left\{a^{n} b^{n} c^{n} \mid n \geqslant 1\right\} .
$$

Solution Each rule in a context-sensitive grammar is of the form $\alpha A \gamma \rightarrow \alpha \beta \gamma$ with $|\beta| \geqslant 1$. In particular, rules of the form $A \rightarrow \varepsilon$ are not allowed, and so ε cannot be in the language of a CSG. In view of Exercise 3, however, we can convert arbitrary rules $\alpha \rightarrow \beta$ with $|\beta| \geqslant|\alpha|$ to rules of the desired form.

An unrestricted grammar for the same language (with $n \geqslant 0$) is given in the slides. We have to get rid of the terminal symbols U and T which can vanish. Moreover, we have to replace $C b \rightarrow b C$ because this is not of the desired format.

Eliminating U is easy. Use the rules

$$
S \quad \rightarrow \quad a B C \mid a S B C
$$

Next, let us handle the swap of B and C. Add the rules

$$
\begin{aligned}
C B & \rightarrow U B, \\
U B & \rightarrow U V, \\
U V & \rightarrow B V, \\
B V & \rightarrow B C .
\end{aligned}
$$

When the B 's and the C 's are properly lined up, C can change to c :

$$
C \rightarrow c .
$$

At this point, sentential forms are $a^{n} B^{n} c^{n}$. In order to convert the B 's to b 's, we use the final two rules:

$$
\begin{aligned}
a B & \rightarrow a b, \\
b B & \rightarrow b b .
\end{aligned}
$$

Remark: The rule $B \rightarrow b$ cannot be used. Why?

