
REDUCTIONS

AND UNDECIDABILITY

Abhijit Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

March 18, 2020

FLAT, Spring 2020 Abhijit Das

Diagonalization

• Any Turing machine M can be encoded as a string over {0,1}.

• Any input w for M can also be encoded as a binary string.

• Two important problems (languages)

• MP = {M # w | M accepts input w}.

• HP = {M # w | M halts on input w}.

• A total TM (or decider) halts on all inputs.

• Both these problems are Turing-recognizable (r.e.).

• By a diagonalization argument, we have proved HP to be non-recursive.

• No decider can exist for HP, no matter how intelligent Turing machines are.

• A similar diagonalization argument can be made for MP.

FLAT, Spring 2020 Abhijit Das

Reduction

Decider

MP

for
from HP

algorithm

to MP

Reduction
N # v

Decider for HP

M # w Yes / No

• We want to prove the undecidability of the MP.

• A reduction algorithm converts an input M # w for HP to an input N # v for MP.

• The reduction algorithm is a total Turing machine (halts after each conversion).

• N accepts v if and only if M halts on w.

• If MP has a decider D, then the reduction algorithm followed by D decides HP.

• Contradiction. So a decider of MP cannot exist.

FLAT, Spring 2020 Abhijit Das

The Reduction Algorithm

Input: M and w.

Output: N and v.

Steps:

• Add a new accept state t ′ and a new reject state r ′ to M.

• Mark the old accept and reject states t and r of M as non-halting.

• Add transitions δ (t,∗) = (t ′,∗,R) and δ (r,∗) = (t ′,∗,R).

• Take v = w.

• Convince yourself that a total TM can transform (M,w) to (N,v).

• N always rejects by looping (no transition to r ′ added).

• If M halts after accepting (in state t) or rejecting (in state r), N runs one more step to

jump to t ′ and accepts.

• If M loops on w, N also loops.

• M halts on w ⇐⇒ N accepts v.

FLAT, Spring 2020 Abhijit Das

Direction of Reduction

From a problem already known to be undecidable

to a problem which we want to prove to be undecidable.

A valid reduction from MP to HP

Input: M # w for the membership problem

Output: N # v for the halting problem

• Keep the accept state t of M the same in N.

• Create a new reject state r ′ for N, and transitions δ (r,∗) = (r,∗,R) (loop in state r).

• Take v = w.

• M accepts w ⇐⇒ N halts on v (no transition lets N enter r ′).

• This is not an undecidability proof for MP. A decider for MP may not be forced to use

a (hypothetical) decider for HP.

• If MP was proved to be undecidable, this reduction proves the undecidability of HP.

FLAT, Spring 2020 Abhijit Das

Formal Definition of Reduction

A

B

Σ* Λ*

• Let A ⊆ Σ∗ and B ⊆ Λ∗ be languages.

• Consider a map σ : Σ∗ → Λ∗.

• If w ∈ A, then σ(w) ∈ B.

• If w ∈ Σ∗ \A, then σ(w) ∈ Λ∗ \B.

FLAT, Spring 2020 Abhijit Das

Formal Definition of Reduction

A

B

Σ* Λ*

• σ need not be injective.

• A Turing machine R implements σ .

• On every input w, the TM R halts after correctly computing σ(w).

• We call R a reduction algorithm.

FLAT, Spring 2020 Abhijit Das

Formal Definition of Reduction

A

B

Σ* Λ*

• σ is a reduction from A to B.

• Notation: A 6m B (many-to-one reduction) or A 6TM B (Turing reduction).

• The membership problem for A is no more difficult than the membership problem for B.

• Example: HP 6m MP and MP 6m HP.

FLAT, Spring 2020 Abhijit Das

Example of Reduction

FLAT, Spring 2020 Abhijit Das

Example of Reduction

FLAT, Spring 2020 Abhijit Das

Example of Reduction

FLAT, Spring 2020 Abhijit Das

Example of Reduction

FLAT, Spring 2020 Abhijit Das

Example of Reduction

FLAT, Spring 2020 Abhijit Das

Notes on Reduction

• A language L can be rephrased as the membership problem:

Given w ∈ Σ∗, is w ∈ L?

• We talk about reduction of one problem to another.

• For problems P,Q, we can write P 6m Q.

• A reduction algorithm is supposed to convert an instance of P to an instance of Q.

• A reduction algorithm makes no effort to solve either P or Q.

• Two uses of reduction P 6m Q:

• Given a solver for Q, use this solver as a subroutine to solve P.

This is one way of solving P, not the only or the most efficient way.

• If no solver for P exists, then no solver for Q can exist.

FLAT, Spring 2020 Abhijit Das

Reduction Example 1

Proposition: The problem whether a given Turing machine M accepts the null string ε is

undecidable.

Proof Use reduction from HP.

M

w

M

w

M # w N

N

FLAT, Spring 2020 Abhijit Das

Reduction Example 1

• Input: M and w (an instance of HP).

• Output: A Turing machine N that accepts ε if and only if M halts on w.

• N can use M and w in any manner it likes. These are part of its finite control.

• Behavior of N on input v:

• Erase input v.

• Write the string w on the tape.

• Simulate M on w.

• If the simulation halts, accept v.

• N accepts its input v ⇐⇒ M halts on w.

• L (N) =

{

Σ∗ if M halts on w,

/0 if M does not halt on w.

• In particular, N accepts ε ⇐⇒ M halts on w.

FLAT, Spring 2020 Abhijit Das

Reduction Example 1

The same proof can be used to prove that the following problems are also undecidable.

Proposition: Let w be a fixed string over Σ. The problem whether a given Turing machine

M accepts w is undecidable.

Proposition: The problem whether a given Turing machine M accepts any string at all is

undecidable.

Proposition: The problem whether a given Turing machine M accepts all the strings over

Σ is undecidable.

Proposition: The problem whether a given Turing machine M accepts only finitely many

strings is undecidable.

FLAT, Spring 2020 Abhijit Das

Reduction Example 2

Proposition: The problem whether the language of a given Turing machine M is regular is

undecidable.

Proof Again use reduction from HP.

M

w

M

w

M # w

N

U

N

FLAT, Spring 2020 Abhijit Das

Reduction Example 2

• Input: An instance for HP (M and w)

• Output: A Turing machine N whose language is regular if and only if M halts on w.

• N has the information of M and w embedded in its finite control.

• N embeds the information of another fixed Turing machine U in its finite control.

• Take any language L that is recursively enumerable but not recursive.

• Take any TM U whose language is L.

• For example, if L = MP, then U is the Universal Turing Machine.

FLAT, Spring 2020 Abhijit Das

Reduction Example 2

N, upon the input of v, does the following.

• Store v on a separate tape/track.

• Write w on the tape, and simulate M on w.

• If the simulation halts, do:

• Simulate U on v.

• If U accepts v, accept v.

• N accepts v if and only if both the following conditions hold.

• M halts on w.

• U accepts (and halts) on v.

• L (N) =

{

L if M halts on w,

/0 if M does not halt on w.

• /0 is regular, but A is not regular.

FLAT, Spring 2020 Abhijit Das

Reduction Example 2

• Let L2 = {N | L (N) is regular}.

• We have a reduction from HP to the complement L2.

• This proves that L2 is not recursive.

• But recursive languages are closed under complementation, so L2 is not recursive too.

• Alternative argument:

• Let L2 have a decider D.

• Then L2 has a decider D that simulates D and flips the decision of D.

• The above reduction followed by D decides HP.

FLAT, Spring 2020 Abhijit Das

Reduction Example 2

The same reduction can be used to prove the following undecidability results.

Proposition: The problem whether the language of a given Turing machine M is finite is

undecidable.

Proposition: The problem whether the language of a given Turing machine M is

context-free is undecidable.

Proposition: The problem whether the language of a given Turing machine M is

context-sensitive is undecidable.

Proposition: The problem whether the language of a given Turing machine M is recursive

is undecidable.

Note: The problem whether the language of a given Turing machine M is recursively

enumerable is trivially decidable.

FLAT, Spring 2020 Abhijit Das

A Theorem about Reduction

Theorem: Let A,B be languages along with a reduction A 6m B.

If B is r.e., then A is also r.e.

Contrapositively, if A is not r.e., then B is also not r.e.

Proof

• Let σ be the reduction map from A to B.

• Let B = L (N) for a Turing machine N.

• A recognizer M for A can be designed as follows.

• On an input w, M does the following:

• Compute σ(w) from w.

• Run N on σ(w).

• Accept if and only if N accepts σ(w).

FLAT, Spring 2020 Abhijit Das

Another Theorem about Reduction

Theorem: Let A,B be languages along with a reduction A 6m B.

If B is recursive, then A is also recursive.

Contrapositively, if A is not recursive, then B is also not recursive.

Proof

• Let B be recursive.

• Let σ be the reduction map A 6m B.

• Since B is r.e., A is r.e. too (by the previous theorem).

• σ is also a reduction map for A 6m B.

• B is recursive and so r.e.

• By the previous theorem, A is r.e. too.

• Since A and A are both r.e., A is recursive.

FLAT, Spring 2020 Abhijit Das

Three Possibilities

CC

A

A

B

B

Non−R.E.

R.E.

Recursive

• If A and A are r.e., then both are recursive.

• If B is r.e. but not recursive, then B must be non-r.e. Examples: HP, MP are non-r.e.

• Both C and C can be non-r.e.

FLAT, Spring 2020 Abhijit Das

An Example of the Third Type

Proposition: Neither the language

FIN = {M | L (M) is finite}

nor its complement FIN is r.e.

• We have proved that FIN is not recursive by reduction from HP.

• This proof cannot establish that FIN is non-r.e.

• We need reduction from a non-r.e. language.

• HP = {M # w | M does not halt on w} is non-r.e.

• We now show

HP 6m FIN

and

HP 6m FIN.

FLAT, Spring 2020 Abhijit Das

HP 6m FIN

Input: A TM M and an input w for M.

Output: A TM N such that L (N) is finite if and only if M does not halt on w.

Note: N has the information of M and w in its finite control.

Behavior of N on input v

• Erase the input v.

• Write w on the tape, and simulate M on w.

• If the simulation halts, accept v.

• If M does not halt on w, L (N) = /0 which is finite.

• If M halts on w, L (N) = Σ∗ which is infinite.

Note: The reduction algorithm is not supposed to run N. It only creates a description of N.

FLAT, Spring 2020 Abhijit Das

HP 6m FIN

Input: A TM M and an input w for M.

Output: A TM N such that L (N) is infinite if and only if M does not halt on w.

Note: N has the information of M and w in its finite control.

Behavior of N on input v

• Store v on a separate tape/track.

• Write w on the tape, and simulate M on w for at most |v| steps.

• Accept if the simulation does not halt in these many steps, else reject.

• If M does not halt on w, it does not halt in |v| steps. So L (N) = Σ∗ is infinite.

• M halts on w after s steps. Let n = |v|.

• If n > s, the simulation of M on w halts within n steps, so N rejects v.

• If n < s, the simulation of M on w does not halt in n steps, so N accepts v.

So L (N) = {v ∈ Σ∗ | |v|< s} which is finite (although dependent on M and w).

FLAT, Spring 2020 Abhijit Das

Tutorial Exercises

1. Prove that the following languages are not recursive.

(a) {M # w | M writes the blank symbol at some point of time on input w}.

(b) {M # w # $ | M writes the symbol $ ∈ Γ at some point of time on input w}.

2. (a) Prove that the language {M | M halts on exactly 2020 inputs} is not r.e.

(b) Prove that the language {M | M halts on at least 2020 inputs} is r.e. but not

recursive.

3. Let nsteps(M,w) denote the number of steps of M on w. If M loops on w, take

nsteps(M,w) = ∞. If N also loops on v, take nsteps(M,w) = nsteps(N,v).
Recursive / r.e. but not recursive / non-r.e.? Prove.

(a) {M # N | nsteps(M,ε)< nsteps(N,ε)}.

(b) {M # N | nsteps(M,ε)6 nsteps(N,ε)}.

(c) {M # N | nsteps(M,w)< nsteps(N,v) for some w,v}.

(d) {M # N | nsteps(M,w)< nsteps(N,v) for all w,v}.

FLAT, Spring 2020 Abhijit Das

Tutorial Exercises

4. Prove that the following languages are not recursive.

(a) {M # N | L (M) = L (N)}.

(b) {M # N | L (M)⊆ L (N)}.

(c) {M # N | L (M)∩L (N) = /0}.

(d) {M # N | L (M)∩L (N) is finite}.

(e) {M # N | L (M)∩L (N) is regular}.

(f) {M # N | L (M)∩L (N) is context-free}.

(g) {M # N | L (M)∩L (N) is recursive}.

(h) {M # N # P | L (M)∩L (N) = L (P)}.

5. Prove that neither the language REG = {M | L (M) is regular} nor its complement is r.e.

6. R.E. or not? Prove.

(a) {M | M accepts at most 2020 inputs}.

(b) {M | M accepts at least 2020 inputs}.

(c) {M | M accepts all strings of length 6 2020}.

(d) {M | M does not accept some string of length 6 2020}.

FLAT, Spring 2020 Abhijit Das

