REDUCTIONS

AND UNDECIDABILITY

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 18, 2020

Diagonalization

- Any Turing machine M can be encoded as a string over $\{0,1\}$.
- Any input w for M can also be encoded as a binary string.
- Two important problems (languages)
- MP $=\{M \# w \mid M$ accepts input $w\}$.
- $\mathrm{HP}=\{M \# w \mid M$ halts on input $w\}$.
- A total TM (or decider) halts on all inputs.
- Both these problems are Turing-recognizable (r.e.).
- By a diagonalization argument, we have proved HP to be non-recursive.
- No decider can exist for HP, no matter how intelligent Turing machines are.
- A similar diagonalization argument can be made for MP.

- We want to prove the undecidability of the MP.
- A reduction algorithm converts an input $M \# w$ for HP to an input $N \# v$ for MP.
- The reduction algorithm is a total Turing machine (halts after each conversion).
- N accepts v if and only if M halts on w.
- If MP has a decider D, then the reduction algorithm followed by D decides HP.
- Contradiction. So a decider of MP cannot exist.

Input: M and w. Output: N and v.

Steps:

- Add a new accept state t^{\prime} and a new reject state r^{\prime} to M.
- Mark the old accept and reject states t and r of M as non-halting.
- Add transitions $\boldsymbol{\delta}(t, *)=\left(t^{\prime}, *, R\right)$ and $\delta(r, *)=\left(t^{\prime}, *, R\right)$.
- Take $v=w$.
- Convince yourself that a total TM can transform (M, w) to (N, v).
- N always rejects by looping (no transition to r^{\prime} added).
- If M halts after accepting (in state t) or rejecting (in state r), N runs one more step to jump to t^{\prime} and accepts.
- If M loops on w, N also loops.
- M halts on $w \Longleftrightarrow N$ accepts v.

Direction of Reduction

From a problem already known to be undecidable
to a problem which we want to prove to be undecidable.

A valid reduction from MP to HP

Input: $M \# w$ for the membership problem Output: $N \# v$ for the halting problem

- Keep the accept state t of M the same in N.
- Create a new reject state r^{\prime} for N, and transitions $\delta(r, *)=(r, *, R)$ (loop in state r).
- Take $v=w$.
- M accepts $w \Longleftrightarrow N$ halts on v (no transition lets N enter r^{\prime}).
- This is not an undecidability proof for MP. A decider for MP may not be forced to use a (hypothetical) decider for HP.
- If MP was proved to be undecidable, this reduction proves the undecidability of HP.

- Let $A \subseteq \Sigma^{*}$ and $B \subseteq \Lambda^{*}$ be languages.
- Consider a map $\sigma: \Sigma^{*} \rightarrow \Lambda^{*}$.
- If $w \in A$, then $\sigma(w) \in B$.
- If $w \in \Sigma^{*} \backslash A$, then $\sigma(w) \in \Lambda^{*} \backslash B$.

- σ need not be injective.
- A Turing machine R implements σ.
- On every input w, the TM R halts after correctly computing $\sigma(w)$.
- We call R a reduction algorithm.

- σ is a reduction from A to B.
- Notation: $A \leqslant_{m} B$ (many-to-one reduction) or $A \leqslant_{T M} B$ (Turing reduction).
- The membership problem for A is no more difficult than the membership problem for B.
- Example: $H P \leqslant_{m} M P$ and $M P \leqslant_{m} H P$.

- A language L can be rephrased as the membership problem:

Given $w \in \Sigma^{*}$, is $w \in L$?

- We talk about reduction of one problem to another.
- For problems P, Q, we can write $P \leqslant_{m} Q$.
- A reduction algorithm is supposed to convert an instance of P to an instance of Q.
- A reduction algorithm makes no effort to solve either P or Q.
- Two uses of reduction $P \leqslant_{m} Q$:
- Given a solver for Q, use this solver as a subroutine to solve P.

This is one way of solving P, not the only or the most efficient way.

- If no solver for P exists, then no solver for Q can exist.

Reduction Example 1

Proposition: The problem whether a given Turing machine M accepts the null string ε is undecidable.

Proof Use reduction from HP.

Reduction Example 1

- Input: M and w (an instance of HP).
- Output: A Turing machine N that accepts ε if and only if M halts on w.
- N can use M and w in any manner it likes. These are part of its finite control.
- Behavior of N on input v :
- Erase input v.
- Write the string w on the tape.
- Simulate M on w.
- If the simulation halts, accept v.
- N accepts its input $v \Longleftrightarrow M$ halts on w.
- $\mathscr{L}(N)= \begin{cases}\Sigma^{*} & \text { if } M \text { halts on } w, \\ \emptyset & \text { if } M \text { does not halt on } w \text {. }\end{cases}$
- In particular, N accepts $\varepsilon \Longleftrightarrow M$ halts on w.

The same proof can be used to prove that the following problems are also undecidable.
Proposition: Let w be a fixed string over Σ. The problem whether a given Turing machine M accepts w is undecidable.

Proposition: The problem whether a given Turing machine M accepts any string at all is undecidable.

Proposition: The problem whether a given Turing machine M accepts all the strings over Σ is undecidable.

Proposition: The problem whether a given Turing machine M accepts only finitely many strings is undecidable.

Reduction Example 2

Proposition: The problem whether the language of a given Turing machine M is regular is undecidable.

Proof Again use reduction from HP.

$M \# w \longmapsto N$

- Input: An instance for HP (M and w)
- Output: A Turing machine N whose language is regular if and only if M halts on w.
- N has the information of M and w embedded in its finite control.
- N embeds the information of another fixed Turing machine U in its finite control.
- Take any language L that is recursively enumerable but not recursive.
- Take any TM U whose language is L.
- For example, if $L=$ MP, then U is the Universal Turing Machine.

Reduction Example 2

N, upon the input of v, does the following.

- Store v on a separate tape/track.
- Write w on the tape, and simulate M on w.
- If the simulation halts, do:
- Simulate U on v.
- If U accepts v, accept v.
- N accepts v if and only if both the following conditions hold.
- M halts on w.
- U accepts (and halts) on v.
- $\mathscr{L}(N)= \begin{cases}L & \text { if } M \text { halts on } w, \\ \emptyset & \text { if } M \text { does not halt on } w .\end{cases}$
- \emptyset is regular, but A is not regular.
- Let $L_{2}=\{N \mid \mathscr{L}(N)$ is regular $\}$.
- We have a reduction from HP to the complement $\overline{L_{2}}$.
- This proves that $\overline{L_{2}}$ is not recursive.
- But recursive languages are closed under complementation, so L_{2} is not recursive too.
- Alternative argument:
- Let $\overline{L_{2}}$ have a decider \bar{D}.
- Then L_{2} has a decider D that simulates \bar{D} and flips the decision of \bar{D}.
- The above reduction followed by D decides HP.

Reduction Example 2

The same reduction can be used to prove the following undecidability results.
Proposition: The problem whether the language of a given Turing machine M is finite is undecidable.

Proposition: The problem whether the language of a given Turing machine M is context-free is undecidable.

Proposition: The problem whether the language of a given Turing machine M is context-sensitive is undecidable.

Proposition: The problem whether the language of a given Turing machine M is recursive is undecidable.

Note: The problem whether the language of a given Turing machine M is recursively enumerable is trivially decidable.

Theorem: Let A, B be languages along with a reduction $A \leqslant_{m} B$.
If B is r.e., then A is also r.e.
Contrapositively, if A is not r.e., then B is also not r.e.
Proof

- Let σ be the reduction map from A to B.
- Let $B=\mathscr{L}(N)$ for a Turing machine N.
- A recognizer M for A can be designed as follows.
- On an input w, M does the following:
- Compute $\sigma(w)$ from w.
- Run N on $\sigma(w)$.
- Accept if and only if N accepts $\sigma(w)$.

Theorem: Let A, B be languages along with a reduction $A \leqslant_{m} B$.
If B is recursive, then A is also recursive.
Contrapositively, if A is not recursive, then B is also not recursive.

Proof

- Let B be recursive.
- Let σ be the reduction map $A \leqslant_{m} B$.
- Since B is r.e., A is r.e. too (by the previous theorem).
- σ is also a reduction map for $\bar{A} \leqslant_{m} \bar{B}$.
- \bar{B} is recursive and so r.e.
- By the previous theorem, \bar{A} is r.e. too.
- Since A and \bar{A} are both r.e., A is recursive.

- If A and \bar{A} are r.e., then both are recursive.
- If B is r.e. but not recursive, then \bar{B} must be non-r.e. Examples: $\overline{\mathrm{HP}}, \overline{\mathrm{MP}}$ are non-r.e.
- Both C and \bar{C} can be non-r.e.

An Example of the Third Type

Proposition: Neither the language

$$
\mathrm{FIN}=\{M \mid \mathscr{L}(M) \text { is finite }\}
$$

nor its complement $\overline{\text { FIN }}$ is r.e.

- We have proved that FIN is not recursive by reduction from HP.
- This proof cannot establish that FIN is non-r.e.
- We need reduction from a non-r.e. language.
- $\overline{\mathrm{HP}}=\{M \# w \mid M$ does not halt on $w\}$ is non-r.e.
- We now show

$$
\overline{\mathrm{HP}} \leqslant_{m} \mathrm{FIN}
$$

and

$$
\overline{\mathrm{HP}} \leqslant_{m} \overline{\mathrm{FIN}}
$$

Input: A TM M and an input w for M.
Output: A TM N such that $\mathscr{L}(N)$ is finite if and only if M does not halt on w.
Note: N has the information of M and w in its finite control.

Behavior of N on input v

- Erase the input v.
- Write w on the tape, and simulate M on w.
- If the simulation halts, accept v.
- If M does not halt on $w, \mathscr{L}(N)=\emptyset$ which is finite.
- If M halts on $w, \mathscr{L}(N)=\Sigma^{*}$ which is infinite.

Note: The reduction algorithm is not supposed to run N. It only creates a description of N.

Input: A TM M and an input w for M.
Output: A TM N such that $\mathscr{L}(N)$ is infinite if and only if M does not halt on w.
Note: N has the information of M and w in its finite control.

Behavior of N on input v

- Store v on a separate tape/track.
- Write w on the tape, and simulate M on w for at most $|v|$ steps.
- Accept if the simulation does not halt in these many steps, else reject.
- If M does not halt on w, it does not halt in $|v|$ steps. So $\mathscr{L}(N)=\Sigma^{*}$ is infinite.
- M halts on w after s steps. Let $n=|v|$.
- If $n \geqslant s$, the simulation of M on w halts within n steps, so N rejects v.
- If $n<s$, the simulation of M on w does not halt in n steps, so N accepts v.

So $\mathscr{L}(N)=\left\{v \in \Sigma^{*}| | v \mid<s\right\}$ which is finite (although dependent on M and w).

1. Prove that the following languages are not recursive.
(a) $\{M \# w \mid M$ writes the blank symbol at some point of time on input $w\}$.
(b) $\{M \# w \# \$ \mid M$ writes the symbol $\$ \in \Gamma$ at some point of time on input $w\}$.
2. (a) Prove that the language $\{M \mid M$ halts on exactly 2020 inputs $\}$ is not r.e.
(b) Prove that the language $\{M \mid M$ halts on at least 2020 inputs $\}$ is r.e. but not recursive.
3. Let n steps (M, w) denote the number of steps of M on w. If M loops on w, take n steps $(M, w)=\infty$. If N also loops on v, take nsteps $(M, w)=n s t e p s(N, v)$. Recursive / r.e. but not recursive / non-r.e.? Prove.
(a) $\{M \# N \mid \operatorname{nsteps}(M, \varepsilon)<\operatorname{nsteps}(N, \varepsilon)\}$.
(b) $\{M \# N \mid n \operatorname{nteps}(M, \varepsilon) \leqslant n s t e p s(N, \varepsilon)\}$.
(c) $\{M \# N \mid n \operatorname{nteps}(M, w)<n s t e p s(N, v)$ for some $w, v\}$.
(d) $\{M \# N \mid n \operatorname{steps}(M, w)<n s t e p s(N, v)$ for all $w, v\}$.
4. Prove that the following languages are not recursive.
(a) $\{M \# N \mid \mathscr{L}(M)=\mathscr{L}(N)\}$.
(b) $\{M \# N \mid \mathscr{L}(M) \subseteq \mathscr{L}(N)\}$.
(c) $\{M \# N \mid \mathscr{L}(M) \cap \mathscr{L}(N)=\emptyset\}$.
(d) $\{M \# N \mid \mathscr{L}(M) \cap \mathscr{L}(N)$ is finite $\}$.
(e) $\{M \# N \mid \mathscr{L}(M) \cap \mathscr{L}(N)$ is regular $\}$.
(f) $\{M \# N \mid \mathscr{L}(M) \cap \mathscr{L}(N)$ is context-free $\}$.
(g) $\{M \# N \mid \mathscr{L}(M) \cap \mathscr{L}(N)$ is recursive $\}$.
(h) $\{M \# N \# P \mid \mathscr{L}(M) \cap \mathscr{L}(N)=\mathscr{L}(P)\}$.
5. Prove that neither the language $\operatorname{REG}=\{M \mid \mathscr{L}(M)$ is regular $\}$ nor its complement is r.e.
6. R.E. or not? Prove.
(a) $\{M \mid M$ accepts at most 2020 inputs $\}$.
(b) $\{M \mid M$ accepts at least 2020 inputs $\}$.
(c) $\{M \mid M$ accepts all strings of length $\leqslant 2020\}$.
(d) $\{M \mid M$ does not accept some string of length $\leqslant 2020\}$.
