CLARIFICATIONS AND NOTES

PART 1

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

April 24, 2020

Undecidable Problems: A Note

That a problem Π is undecidable does not mean that all instances of Π are undecidable.

- A decider may exist for some instances of Π .
- HP is proved to be undecidable by a diagonalization argument.
- Restrict the instance M # w for HP to those TMs M which do not have transitions of the form δ(p,a) = (q,b,L).
- The heads of these machines always move right.
- Given such an *M*, and any input *w* for *M*, it is decidable whether *M* halts on *w*.
- A limited-time simulation of *M* on *w* can decide this.

A Specific Example

Consider a TM K with the specifications:

- $Q = \{s, t, r\}.$
- $\Sigma = \{0, 1\}.$
- $\Gamma = \{ \rhd, 0, 1, \Box \}.$
- Transition function:

- $\mathscr{L}(K) = \{w \in \{0,1\}^* \mid w \text{ starts with } 0\}.$
- *K* halts on all inputs in two steps.

- *M* is a TM with no transitions with left head movement.
- w is an input for M.
- Run M for |w| + 1 + |Q| steps.
- If *M* halts by that time, accept.
- If not, reject.
 - After the first |w| + 1 steps, the head of *M* leaves the input.
 - Subsequently, the head can only scan blanks.
 - If M runs for another |Q| iterations, some state must be repeated.
 - *M* has started looping, and will not halt.

But Then

Can a reduction $HP \leq_m \Pi$ map all instances of HP to only easy instances of Π ?

• No.

- The easy instances of Π have a decider D.
- The reduction followed by running D decides HP.
- HP is already proved to be undecidable by diagonalization.
- Although reductions are many-to-one maps, using them is perfectly legitimate to prove the undecidability of new problems.

A Fact about CFLs

It is undecidable whether the complement of a CFL *L* is again a CFL.

- Use the reduction that maps M # w to $L = \overline{VALCOMP(M, w)}$.
- If *M* does not halt on *w*:
 - There are no valid computation histories.
 - VALCOMP $(M, w) = \emptyset$.
 - $L = \overline{\text{VALCOMP}(M, w)} = \Delta^*$.
 - $\overline{L} = \emptyset$ is a CFL.
- If *M* halts on *w*:
 - There are valid computation histories.
 - \overline{L} = VALCOMP $(M, w) \neq \emptyset$ should be a non-CFL.
- But, a non-empty VALCOMP(*M*, *w*) may be a CFL, even regular.

- VALCOMP $(M, w) \neq \emptyset$ must be infinite.
- It is infinite for two reasons:
 - We are allowed to repeat the halting configuration (at the end) as many times as we want.
 - In each configuration, we can append as many blank symbols (_ to be more precise) as we want.
- This alone does not prove that VALCOMP(M, w) is not a CFL.

A Regular VALCOMP(M,w)

- Consider the machine *K* with
 - $Q = \{s, t, r\}.$
 - $\Sigma = \{0, 1\}$, and $\Gamma = \{ \rhd, 0, 1, \Box \}$.
 - $\delta(s, \rhd) = (s, \rhd, R), \ \delta(s, 0) = (t, 0, R), \\ \delta(s, 1) = (r, 1, R), \ \delta(s, \Box) = (r, \Box, R).$
- Let the input to *K* be 0.
- Consider the regular expressions:

•
$$C_0 = \bigvee_{s=-}^{\triangleright} 0 \left(\bigcup_{-} \right)^*$$
.
• $C_1 = \bigvee_{-s}^{\triangleright} 0 \left(\bigcup_{-} \right)^*$.
• $C_2 = \bigvee_{--t}^{\triangleright} 0 \bigoplus_{-}^{\frown} \left(\bigcup_{-} \right)^*$.
VALCOMP $(K, 0) = \mathscr{L} \left(\# C_0 \# C_1 \# C_2 \# (C_2 \#)^* \right)$.

A Generic Construction

- **Input:** *M* # *w*.
- **Output:** *N* # *w*.
 - *N* is a nondeterministic Turing machine.
 - $\mathscr{L}(N) = \mathscr{L}(M).$
 - *M* has valid computation histories on $w \iff N$ has valid computation histories on w.
- The conversion:
 - Mark the accept state t and the reject state r of M as non-halting.
 - Add a new accept state t' and a new reject state r'.
 - Add a new tape symbol **•**.
 - Add the transitions $\delta(t, \rhd) = \{(t, \rhd, R)\}, \quad \delta(r, \rhd) = \{(r, \rhd, R)\},$

 $\boldsymbol{\delta}(t,*) = \{(t,\blacksquare,R), (t',\blacksquare,R)\} \quad \text{and} \quad \boldsymbol{\delta}(r,*) = \{(r,\blacksquare,R), (r',\blacksquare,R)\}.$

• VALCOMP(*N*, *w*) is **not** a CFL irrespective of VALCOMP(*M*, *w*).

A Strong Variant of Ogden's Lemma

- Let *L* be a CFL.
- There exists a constant *k*.
- Take any $z \in L$ such that
 - *z* has *d* **distinguished** positions,
 - *z* has *e* **excluded** positions,
 - $d \ge k(e+1)$.
- Then,

z = uvwxy

such that

- 1. *vwx* contains at most *d* distinguished positions,
- 2. vx contains at least one distinguished position,
- 3. vx contains no excluded positions,

4.
$$z_i = uv^i w x^i z \in L$$
 for all $i \ge 0$.

A Non-Empty VALCOMP(N,w) is not Context-Free

• Take a sufficiently long valid computation history

$# C_0 # C_1 # C_2 # \dots # C_L #.$

- No configuration with trailing blanks (unless the head is there).
- Mark the #'s as excluded positions.
- Mark all other positions as distinguished.
- *L* is chosen such that $d \ge k(e+1)$ is satisfied.
- *vx* does not contain any #.
- *v* or *x*, whichever is non-empty, must be inside a single configuration.
- Pump in or pump out *vx* once.
- (At least) once inconsistency is introduced.
- $z_0, z_2 \notin L$, a contradiction.

$\overline{\text{VALCOMP}(M,w)} \neq \Delta^*$ is not a DCFL

- A string $\alpha = \#C_0 \#C_1 \#C_2 \# \dots \#C_N \# \in \Delta^*$ may be in VALCOMP(M, w) for many reasons *simultaneously*.
- Syntactic reasons
 - C_0 is not the start configuration.
 - Some configurations contain multiple (or no) states.
 - C_N is not a halting configuration.
- Semantic reasons
 - Multiple inconsistencies among consecutive pairs of configurations.
- α may have multiple parse trees.
- Any grammar for $\overline{VALCOMP(M, w)} \neq \Delta^*$ is ambiguous.
- A DCFL is inherently unambiguous.