
CLARIFICATIONS AND NOTES

PART 1

Abhijit Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

April 24, 2020

FLAT, Spring 2020 Abhijit Das

Undecidable Problems: A Note

That a problem Π is undecidable does not mean

that all instances of Π are undecidable.

• A decider may exist for some instances of Π.

• HP is proved to be undecidable by a diagonalization argument.

• Restrict the instance M # w for HP to those TMs M which do not have transitions of

the form δ (p,a) = (q,b,L).

• The heads of these machines always move right.

• Given such an M, and any input w for M, it is decidable whether M halts on w.

• A limited-time simulation of M on w can decide this.

FLAT, Spring 2020 Abhijit Das

A Specific Example

Consider a TM K with the specifications:

• Q = {s, t,r}.

• Σ = {0,1}.

• Γ = {⊲,0,1,�}.

• Transition function:

δ (s,⊲) = (s,⊲,R),

δ (s,0) = (t,0,R),

δ (s,1) = (r,1,R),

δ (s,�) = (r,�,R).

• L (K) = {w ∈ {0,1}∗ | w starts with 0}.

• K halts on all inputs in two steps.

FLAT, Spring 2020 Abhijit Das

The General Case

• M is a TM with no transitions with left head movement.

• w is an input for M.

• Run M for |w|+1+ |Q| steps.

• If M halts by that time, accept.

• If not, reject.

• After the first |w|+1 steps, the head of M leaves the input.

• Subsequently, the head can only scan blanks.

• If M runs for another |Q| iterations, some state must be repeated.

• M has started looping, and will not halt.

FLAT, Spring 2020 Abhijit Das

But Then

Can a reduction HP 6m Π map all instances

of HP to only easy instances of Π?

• No.

• The easy instances of Π have a decider D.

• The reduction followed by running D decides HP.

• HP is already proved to be undecidable by diagonalization.

• Although reductions are many-to-one maps, using them is perfectly legitimate to

prove the undecidability of new problems.

FLAT, Spring 2020 Abhijit Das

A Fact about CFLs

It is undecidable whether the complement of a

CFL L is again a CFL.

• Use the reduction that maps M # w to L = VALCOMP(M,w).

• If M does not halt on w:

• There are no valid computation histories.

• VALCOMP(M,w) = /0.

• L = VALCOMP(M,w) = ∆∗.

• L = /0 is a CFL.

• If M halts on w:

• There are valid computation histories.

• L = VALCOMP(M,w) 6= /0 should be a non-CFL.

• But, a non-empty VALCOMP(M, w) may be a CFL, even regular.

FLAT, Spring 2020 Abhijit Das

More about a Non-Empty VALCOMP(M,w)

• VALCOMP(M,w) 6= /0 must be infinite.

• It is infinite for two reasons:

• We are allowed to repeat the halting configuration (at the end) as many times as we

want.

• In each configuration, we can append as many blank symbols (
�

−
to be more precise) as

we want.

• This alone does not prove that VALCOMP(M,w) is not a CFL.

FLAT, Spring 2020 Abhijit Das

A Regular VALCOMP(M,w)

• Consider the machine K with

• Q = {s, t,r}.

• Σ = {0,1}, and Γ = {⊲,0,1,�}.

• δ (s,⊲) = (s,⊲,R), δ (s,0) = (t,0,R),
δ (s,1) = (r,1,R), δ (s,�) = (r,�,R).

• Let the input to K be 0.

• Consider the regular expressions:

• C0 =
⊲

s

0

−

(

�

−

)∗

.

• C1 =
⊲

−

0

s

(

�

−

)∗

.

• C2 =
⊲

−

0

−

�

t

(

�

−

)∗

.

• VALCOMP(K,0) = L

(

C0 # C1 # C2 # (C2 #)∗
)

.

FLAT, Spring 2020 Abhijit Das

A Generic Construction

• Input: M # w.

• Output: N # w.

• N is a nondeterministic Turing machine.

• L (N) = L (M).

• M has valid computation histories on w ⇐⇒ N has valid computation histories on w.

• The conversion:

• Mark the accept state t and the reject state r of M as non-halting.

• Add a new accept state t ′ and a new reject state r ′.

• Add a new tape symbol �.

• Add the transitions δ (t,⊲) = {(t,⊲,R)}, δ (r,⊲) = {(r,⊲,R)},

δ (t,∗) = {(t,�,R),(t ′,�,R)} and δ (r,∗) = {(r,�,R),(r ′,�,R)}.

• VALCOMP(N,w) is not a CFL irrespective of VALCOMP(M,w).

FLAT, Spring 2020 Abhijit Das

A Strong Variant of Ogden’s Lemma

• Let L be a CFL.

• There exists a constant k.

• Take any z ∈ L such that

• z has d distinguished positions,

• z has e excluded positions,

• d > k(e+1).

• Then,

z = uvwxy

such that

1. vwx contains at most d distinguished positions,

2. vx contains at least one distinguished position,

3. vx contains no excluded positions,

4. zi = uviwxiz ∈ L for all i > 0.

FLAT, Spring 2020 Abhijit Das

A Non-Empty VALCOMP(N,w) is not Context-Free

• Take a sufficiently long valid computation history

C0 # C1 # C2 # . . . # CL #.

• No configuration with trailing blanks (unless the head is there).

• Mark the #’s as excluded positions.

• Mark all other positions as distinguished.

• L is chosen such that d > k(e+1) is satisfied.

• vx does not contain any #.

• v or x, whichever is non-empty, must be inside a single configuration.

• Pump in or pump out vx once.

• (At least) once inconsistency is introduced.

• z0,z2 /∈ L, a contradiction.

FLAT, Spring 2020 Abhijit Das

VALCOMP(M,w) 6= ∆∗ is not a DCFL

• A string α = #C0#C1#C2# . . .#CN# ∈ ∆∗ may be in

VALCOMP(M,w) for many reasons simultaneously.

• Syntactic reasons

• C0 is not the start configuration.

• Some configurations contain multiple (or no) states.

• CN is not a halting configuration.

• Semantic reasons

• Multiple inconsistencies among consecutive pairs of configurations.

• α may have multiple parse trees.

• Any grammar for VALCOMP(M,w) 6= ∆∗ is ambiguous.

• A DCFL is inherently unambiguous.

FLAT, Spring 2020 Abhijit Das

