UNDECIDABLE PROBLEMS

ABOUT CONTEXT-FREE LANGUAGES

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

April 2, 2020

R.E. Languages vs Context-Free Languages

- R.E. languages are specified by Turing machines *M* or unrestricted grammars.
- We have seen that the following problems are undecidable.
 - whether $\mathscr{L}(M) = \emptyset$.
 - whether $\mathscr{L}(M)$ is finite.
 - whether $\mathscr{L}(M) = \Sigma^*$.
 - whether $\mathscr{L}(M)$ is recursive.
- CFLs are specified by PDA or CFGs. We ask similar questions for a CFG G.
 - whether $\mathscr{L}(G) = \emptyset$.
 - whether $\mathscr{L}(G)$ is finite.
 - whether $\mathscr{L}(G) = \Sigma^*$.
 - whether $\mathscr{L}(G)$ is a DCFL.
- Some of these CFL problems are decidable, some are not.

Theorem

It is decidable whether a context-free grammar G generates (or a PDA N accepts) any strings at all, that is, whether $\mathscr{L}(G) = \emptyset$ (or $\mathscr{L}(N) = \emptyset$) or not.

- Let $L = \mathscr{L}(G)$.
- Let *n* be the number of non-terminal symbols of *G*.
- Then $k = 2^{n+1}$ is a pumping-lemma constant for *L*.
- The pumping lemma implies:
 - If L is finite, then all strings in L are of length < k.
 - If L is infinite, then L contains a string of length in the range [k, 2k).
- Check whether G can generate any string of length < 2k.
- Each such string can be tested by the CKY algorithm.

A Constructive Proof

- Try to mark all symbols in $\Sigma \cup N$.
- Start by marking symbols in Σ .
- Look at the rules $A \rightarrow \beta$.
- If all the symbols of β are marked, mark *A*.
- Continue until no further markings are possible.
- |N| is finite.
- The procedure halts after a finite number of steps.
- *L* is non-empty if and only if the start symbol *S* is marked.
- This procedure is very efficient.

- $S \rightarrow ABC \mid UVS$
- $A \rightarrow aA \mid bU \mid cVW$
- $B \rightarrow caW \mid WW$
- $C \rightarrow cc$
- $U \rightarrow W \mid UWU \mid aBV$
- $V \rightarrow VC \mid WV$
- $W \rightarrow \epsilon | AbcV$

 $S \rightarrow ABC \mid UVS$ $A \rightarrow aA \mid bU \mid cVW$ $B \rightarrow caW \mid WW$ $C \rightarrow cc$ $U \rightarrow W \mid UWU \mid aBV$ $V \rightarrow VC \mid WV$ $W \rightarrow \varepsilon \mid AbcV$

 $S \rightarrow ABC \mid UVS$ $A \rightarrow aA \mid bU \mid cVW$ $B \rightarrow caW \mid WW$ $C \rightarrow cc$ $U \rightarrow W \mid UWU \mid aBV$ $V \rightarrow VC \mid WV$ $W \rightarrow \varepsilon \mid AbcV$

 $S \rightarrow ABC \mid UVS$ $A \rightarrow aA \mid bU \mid cVW$ $B \rightarrow caW \mid WW$ $C \rightarrow cc$ $U \rightarrow W \mid UWU \mid aBV$ $V \rightarrow VC \mid WV$ $W \rightarrow \varepsilon \mid AbcV$

- $S \rightarrow ABC \mid UVS$
- $A \rightarrow aA \mid bU \mid cVW$
- $B \rightarrow caW \mid WW$
- $C \rightarrow cc$
- $U \rightarrow W \mid UWU \mid aBV$
- $V \rightarrow VC \mid WV$
- $W \rightarrow \epsilon | AbcV$

- $S \rightarrow ABC \mid UVS$
- $A \rightarrow aA \mid bU \mid cVW$
- $B \rightarrow caW \mid WW$
- $C \rightarrow cc$
- $U \rightarrow W \mid UWU \mid aBV$
- $V \rightarrow VC \mid WV$
- $W \rightarrow \epsilon | AbcV$

- $S \rightarrow ABC \mid UVS$
- $A \rightarrow aA \mid bU \mid cVW$
- $B \rightarrow caW \mid WW$
- $C \rightarrow cc$
- $U \rightarrow W \mid UWU \mid aBV$
- $V \rightarrow VC \mid WV$
- $W \rightarrow \epsilon | AbcV$

- $S \rightarrow ABC \mid UVS$
- $A \rightarrow aA \mid bU \mid cVW$
- $B \rightarrow caW \mid WW$
- $C \rightarrow cc$
- $U \rightarrow W \mid UWU \mid aBV$
- $V \rightarrow VC \mid WV$
- $W \rightarrow \epsilon | AbcV$

Theorem

It is undecidable whether a context-free grammar G generates (or a PDA N accepts) all strings, that is, whether $\mathscr{L}(G) = \Sigma^*$ (or $\mathscr{L}(N) = \Sigma^*$) or not.

Reduction Idea

- $\overline{\operatorname{HP}} \leq_m \{G \mid G \text{ is a CFG over } \Delta \text{ with } \mathscr{L}(G) = \Delta^* \}.$
- Input: A Turing machine *M* and an input *w* for *M*.
- Output: A context-free grammar G.
- *M* does not halt on $w \Rightarrow \mathscr{L}(G) = \Delta^*$.
- *M* halts on $w \Rightarrow \mathscr{L}(G) \subsetneqq \Delta^*$.
- *G* incorporates the computation histories of *M* on *w*.
- If *M* halts on *w*, it has one or more finite computation histories.
- If *M* does not halt on *w*, it has only infinite computation histories.
- Infinite computation histories cannot be encoded as strings.
- Only finite computation histories ending in a halting configuration are called valid.

What if *M* is an NTM?

- *M* either halts or gets stuck or loops.
- There may be both finite and infinite computation histories.
- Modify *M* as follows:
 - Mark the old reject state *r* as a non-reject state.
 - Add a new reject state r'.
 - If $\delta(p,a) = \emptyset$, change $\delta(p,a) = \{(r,a,R)\}$.
 - Add the transitions $\delta(r,a) = (r,a,R)$ for all $a \in \Gamma$.
 - If *M* accepts *w*, it has one or more finite computation histories.
 - M can never enter the new reject state r'.
 - *M* can never get stuck.
 - *M* rejects by looping in state *r*.
 - There is no finite computation history ending in the new reject state r'.
- In what follows, assume that *M* has this modified form.

Encoding Configurations of *M*

- Σ is the input alphabet for *M*.
- Γ is the tape alphabet for *M*.
- Q is the set of states of M.
- A configuration of *M* is encoded as a string over $\Gamma \times (Q \cup \{-\})$.
- For the configuration

$$C = (p, \rhd aubva\underline{c}bvwua \Box vc \Box^{\omega}),$$

the encoding is:

• The initial configuration C_0 on input $w = a_1 a_2 a_3 \dots a_n$ is

Encoding Computation Histories

- A computation history is a sequence of configurations $C_0, C_1, C_2, \ldots, C_N$.
- Each $C_i \in (\Gamma \times (Q \cup \{-\}))^*$.
- Each C_i must contain only one state.
- C_0 should be the initial configuration.
- Two consecutive configurations must be consistent with the transition function of *M*.
- The last configuration should have the accept state *t* or the reject state *r*.
- We encode this history as

 $#C_0#C_1#C_2#C_3#\cdots #C_N#.$

• We allow t or r to appear in C_i for i < N. If so, $C_i = C_{i+1} = C_{i+2} = \cdots = C_N$.

Valid Computation Histories

- Let $\Delta = (\Gamma \times (Q \cup \{-\})) \cup \{\#\}.$
- Define

VALCOMP $(M, w) = \{ \alpha \in \Delta^* \mid \alpha \text{ is a valid computation history of } M \text{ on input } w \}.$

• Let
$$L = \overline{\text{VALCOMP}(M, w)} = \Delta^* \setminus \text{VALCOMP}(M, w)$$
.

Theorem

L is a context-free language.

- A total Turing machine *R*, given *M* and *w*, can prepare a CFG for *L*.
- *R* does not have to simulate *M* on *w*.

Validity of this Reduction

If *M* halts on *w*

- *M* has one or more valid computation histories.
- VALCOMP $(M, w) \neq \emptyset$.
- $L = \overline{\text{VALCOMP}(M, w)} \neq \Delta^*$.

If M does not halt on w

- *M* has only infinite (so invalid) computation histories.
- VALCOMP $(M, w) = \emptyset$.
- $L = \overline{\text{VALCOMP}(M, w)} = \Delta^*$.

This is a valid reduction $\overline{\operatorname{HP}} \leq_m \{G \mid G \text{ is a CFG with } \mathscr{L}(G) = \Delta^* \}.$

VALCOMP(M,w) and its Complement L

- A string α ∈ Δ* is in VALCOMP(M, w) if and only if the following five conditions hold:
 - **1.** α is of the form $\#C_0\#C_1\#C_2\#\cdots \#C_N\#$ with each $C_i \in (\Gamma \times (Q \cup \{-\}))^*$.
 - **2.** Each C_i must contain only one state.
 - **3.** C_0 must be the start configuration.
 - **4.** C_N is a halting configuration (in state *t* or *r*).
 - **5.** Each C_{i+1} follows from C_i by the transition rules of M.
- Let $A = \{ \alpha \in \Delta^* \mid \alpha \text{ satisfies Conditions 1-4} \}.$
- Let $B = \{ \alpha \in \Delta^* \mid \alpha \text{ satisfies Condition 5} \}.$
- We have $VALCOMP(M, w) = A \cap B$.
- So $L = \overline{\text{VALCOMP}(M, w)} = \overline{A} \cup \overline{B} = \overline{A} \cup (A \cap \overline{B}).$
- To show: \overline{A} and $A \cap \overline{B}$ (or \overline{B}) are context-free.

A is Regular

- Let $w = a_1 a_2 \dots a_n$.
- Notations:

$$\Delta_{-} = \Gamma \times \{-\}, \Delta_{Q} = \Gamma \times Q, \Delta_{t} = \Gamma \times \{t\}, \text{ and } \Delta_{r} = \Gamma \times \{r\}.$$

.

• Regular subexpressions:

- $\beta_i = \Delta_-^* \Delta_Q \Delta_-^*$.
- $\beta_t = \Delta^*_{-} \Delta_t \Delta^*_{-}$.
- $\beta_r = \Delta^*_{-} \Delta_r \Delta^*_{-}$.
- *A* is generated by the regular expression $\#\beta_0(\#\beta_i)^* \#(\beta_t + \beta_r)\#$.
- So A is regular, and \overline{A} is regular too.
- \overline{A} can be specified by a right-linear grammar.

$A \cap \overline{B}$ is Context-Free

- C_i and C_{i+1} are two consecutive configurations.
- We need to check C_{i+1} does **not** follow from C_i .
- Two positions in *C_i* and *C_{i+1}* are corresponding if they are equidistant from their preceding hashes.
- Change in configuration is only local.
- Changes in corresponding positions consistent with the transitions of *M*.

• No change:
$$\begin{array}{c}a & b & c \\ - & - & -\end{array}$$
 remains as $\begin{array}{c}a & b & c \\ - & - & -\end{array}$.
• State enters: $\begin{array}{c}a & b & c \\ - & - & -\end{array}$ changes to $\begin{array}{c}a & b & c \\ q & - & -\end{array}$ or $\begin{array}{c}a & b & c \\ - & - & -\end{array}$.
• $\delta(p,b) = (q,d,L)$: $\begin{array}{c}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{c}a & d & c \\ q & - & -\end{array}$.
• $\delta(p,b) = (q,d,R)$: $\begin{array}{c}a & b & c \\ - & p & -\end{array}$ changes to $\begin{array}{c}a & d & c \\ - & - & q\end{array}$.

$A \cap \overline{B}$ is Context-Free

• Changes in corresponding positions not consistent with the transitions of *M*.

• The state in C_i is t or r, but that in C_{i+1} is not the same.

An NPDA to Detect an Inconsistent Change

- The NPDA non-deterministically chooses:
 - Two consecutive configurations, and
 - The corresponding positions.

- After reading the hash before C_i , the NPDA does these:
 - Push *l* symbols to its stack.
 - Read the three elements of Δ in its finite control.
 - Skip the rest of C_i and the next hash.
 - Move ahead exactly l positions in C_{i+1} by popping from its stack until the stack becomes empty (or some marker is exposed).
 - Read the next three symbols, and confirm inconsistency.

The Final Points about the Reduction

- $L = \overline{\text{VALCOMP}(M, w)} = \overline{A} \cup \overline{B} = \overline{A} \cup (A \cap \overline{B}).$
- If $\alpha \in \Delta^*$ is in $A \cap \overline{B}$, there is at least one inconsistency.
- The NPDA can nondeterministically find that, and accept α .
- \overline{A} has a right-linear grammar.
- Convert the NPDA for $A \cap \overline{B}$ to a CFG.
- CFLs are closed under union.

- 1. You are given two CFGs G and G'. Prove that the following problems are undecidable.
 - (a) whether $\mathscr{L}(G) = \mathscr{L}(G')$,
 - (b) whether $\mathscr{L}(G) \subseteq \mathscr{L}(G')$,
 - (c) whether $\mathscr{L}(G) = \mathscr{L}(G)\mathscr{L}(G)$.
- 2. Prove that the following problems are undecidable.
 - (a) whether a CFL is a DCFL.
 - (b) whether the intersection of two CFLs is a CFL.
 - (c) whether the complement of a CFL is a CFL.
- 3. Prove that the finiteness problem for regular and context-free languages is decidable.