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Properties of RE Languages

• Let RE = {L (M) | M is a Turing machine}.

• RE is the class of all r.e. languages.

• A property of r.e. sets is a map

P : RE →{T,F}.

• Example: Emptiness is a property defined as

PEMP(L) =

{

T if L = /0

F if L 6= /0

• R.E. languages are specified by Turing machines.

• Properties too are specified by Turing machines.

• Example: The emptiness property is specified by any member of

PEMP = {M | L (M) = /0}.
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Examples of Properties

• Finiteness property: Any member of {M | L (M) is finite}.

• Regularity property: Any member of {M | L (M) is regular}.

• Context-free property: Any member of {M | L (M) is context free}.

• Acceptance of a string: Any member of {M | 01011000 ∈ L (M)}.

• Full-ness property: Any member of {M | L (M) = Σ
∗}.

• We specify a property by a single Turing machine, the language of which has that

property.

• Properties are properties of RE sets, not of Turing machines.

• A property must be independent of the representative machine.
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Non-Examples

• Any member of {M | M has at least 2020 states}.

• We can design two TMs M1 and M2 both accepting /0.

• M1 has less than 2020 states.

• M2 has 2020 or more states.

• If /0 is represented by M1, the property is false for /0.

• If /0 is represented by M2, the property is true for /0.

• Any member of {M | M is a total TM}.

• Any member of {M | M rejects 01011000 and halts}.

• Any member of {M | M ever goes to the right of the input}.

• Any member of {M | M has the smallest number of states

among all machines accepting L (M)}.

FLAT, Spring 2020 Abhijit Das



Types of Properties

• Trivial properties

• The constant map RE →{T,F} taking all L ∈ RE to T .

• The constant map RE →{T,F} taking all L ∈ RE to F.

• Any other property is called non-trivial.

• Example of trivial property: L (M) is recursively enumerable.

• Example of non-trivial property: L (M) is recursive.

• Monotone properties

• Assume F 6 T .

• Whenever A ⊆ B, we have P(A)6 P(B).

• Examples of monotone properties: L (M) is infinite, L (M) = Σ
∗.

• Examples of non-monotone properties: L (M) is finite, L (M) = /0.
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Rice’s Theorem (Part 1)

Theorem

Any non-trivial property P of r.e. languages is undecidable. In other words, the set

Π = {N | P(L (N)) = T} is not recursive.

Proof

• Let P be a non-trivial property of r.e. languages.

• Suppose P( /0) = F (the other case can be analogously handled).

• Since P is non-trivial, there exist L ∈ RE, L 6= /0, such that P(L) = T .

• Let K be a Turing machine with L (K) = L.

• We make a reduction from HP to Π.
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Rice’s Theorem: The Reduction HP 6m Π

• Input: M # w (an instance of HP)

• Output: A Turing machine N such that P(L (N)) = T if and only if M halts on w.

• Behavior of N on input v:

• Copy v to a separate tape.

• Write w to the first tape, and simulate M on w.

• If the simulation halts:

– Simulate K on v.

– Accept if and only if K accepts v.

• If M halts on w, L (N) = L (K) = L.

• If M does not halt on w, L (N) = /0.

• P(L) = T and P( /0) = F.
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Rice’s Theorem: Part 2

Theorem

No non-monotone property P of r.e. languages is semidecidable. In other words, the set

Π = {N | P(L (N)) = T} is not recursively enumerable.

Proof

• P is non-monotone. So there exist r.e. languages L1 and L2 such that

L1 ⊆ L2, P(L1) = T , P(L2) = F.

• Take Turing machines M1,M2 such that L (M1) = L1 and L (M2) = L2.

• We supply a reduction from HP to Π.

• The reduction algorithms embeds the information of

M, w, M1, and M2 in the finite control of N.
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Rice’s Theorem: Part 2: The Reduction HP 6m Π

• Input: M # w.

• Output: A Turing machine N such that P(L (N)) = T if and only if M does not halt on w.

• Behavior of N on input v:

• Copy v from the first tape to the second tape, and w from the finite control to the third tape.

• Run three simulations in parallel (one step of each in round-robin fashion)

M1 on v on the first tape,

M2 on v on the second tape,

M on w on the third tape.

• Accept if and only if one of the following conditions hold:

(1) M1 accepts v,

(2) M halts on w, and M2 accepts v.

• M does not halt on w ⇒ N accepts by (1) ⇒ L (N) = L (M1) = L1.

• If M halts on w, N accepts if either M1 or M2 accepts v. In this case,

L (N) = L (M1)∪L (M2) = L1 ∪L2 = L2 (since L1 ⊆ L2).
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Tutorial Exercises

1. Prove/Disprove: No non-trivial property of r.e. languages is semidecidable.

2. Use Rice’s theorems to prove that neither the following languages nor their

complements are r.e.

(a) FIN = {M | L (M) is finite}.

(b) REG = {M | L (M) is regular}.

(c) CFL = {M | L (M) is context-free}.

3. [Generalization of Rice’s theorem for pairs of r.e. langauges] Consider the set of

pairs of r.e. languages: RE2 = {(L1,L2) | L1,L2 ∈ RE}.

(a) Define a property of pairs of r.e. languages.

(b) How do you specify a property of a pair of r.e. languages?

(c) Which properties of pairs of r.e. languages should be called non-trivial?

(d) Prove that every non-trivial property of pairs of r.e. languages is undecidable.
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Tutorial Exercises

4. Use the previous exercise to prove that the following problems about pairs of

r.e. languages are undecidable.

(a) L (M) = L (N).
(b) L (M)⊆ L (N).
(c) L (M)∩L (N) = /0.

(d) L (M)∩L (N) is finite.

(e) L (M)∩L (N) is regular.

(f) L (M)∩L (N) is context-free.

(g) L (M)∩L (N) is recursive.

(h) L (M)∪L (N) = Σ
∗.

(i) L (M)∪L (N) = /0.

(j) L (M)∪L (N) is finite.

(k) L (M)∪L (N) is recursive.
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