- 1. Prove that the following problems are undecidable.
 - (a) Given a Turing machine M, determine whether M writes the blank symbol on at least one input.
 - (b) Given a Turing machine *M*, determine whether *M* writes the blank symbol on all inputs.

(c) Given a Turing machine M, determine whether M overwrites a non-blank symbol by the blank symbol on at least one input.

(d) Given a Turing machine M, determine whether M overwrites a non-blank symbol by the blank symbol on all inputs.

2. Is it decidable whether a single-tape Turing machine on input ε scans some tape cell three or more times?

3. Recursive / not recursive but r.e / non-r.e.? Supply proofs.

- (a) $\{M \mid M \text{ halts on } \mathcal{E}\}.$
- (b) $\{M \mid M \text{ halts on some input}\}.$
- (c) $\{M \mid M \text{ halts on all inputs}\}.$
- (d) $\{M \mid M \text{ halts on no input}\}.$
- 4. Recursive or not? Give proofs.

(a) $\{M \# w \mid M \text{ is a one-tape Turing machine that never modifies the input}\}$.

(b) $\{M \mid M \text{ contains a useless state}\}$. A state of *M* is called *useless* if it is never entered on any input. The accept state and the reject state are never called useless.

- 5. Recursive / not recursive but r.e / non-r.e.? Supply proofs.
 - (a) $\{M \mid \mathscr{L}(M) = \mathscr{L}(M)^R\}$ (where L^R is the reverse of *L*).
 - (b) $\{M \mid \mathscr{L}(M) = \mathscr{L}(M)\mathscr{L}(M)\}.$
 - (c) $\{M \mid \mathscr{L}(M) = \mathscr{L}(M)^*\}.$
- 6. Design nondeterministic Turing machines to accept the following languages.
 - (a) $\{a^m b^{mn} \mid m, n \ge 0\}.$

(b) {*wvw* |
$$w \in \{a, b\}^*, v \in \{a, b, c\}^*$$
}.

- 7. Design unrestricted grammars for the following languages.
 - (a) $\{a^n b^{n^2} \mid n \ge 0\}.$
 - (**b**) $\{a^m b^{mn} \mid m, n \ge 0\}.$
 - (c) $\{w \in \{a, b, c\}^* \mid \#a(w) > \#b(w) > \#c(w)\}.$
 - (d) $\{wvw \mid w \in \{a,b\}^*, v \in \{a,b,c\}^*\}.$
- **8.** Let *L* be a CFL (specified by a CFG or a PDA), and *R* a regular language (specified by a DFA or an NFA or a regular expression). Which of the following problems is/are decidable? Supply proofs.
 - (a) Determine whether $L \subseteq R$.
 - (b) Determine whether $R \subseteq L$.
- 9. Prove that given a CFG G, the following problems are undecidable.
 - (a) Determine whether $\mathscr{L}(G)$ contains a string of the form *ww*.
 - (b) Determine whether $\mathscr{L}(G) = \mathscr{L}(G)^R$.
- **10.** Prove that the following problems about DFA D, D_1 , D_2 over Σ are decidable.
 - (a) Whether $\mathscr{L}(D) = \emptyset$.
 - (b) Whether $\mathscr{L}(D)$ is finite.
 - (c) Whether $\mathscr{L}(D) = \Sigma^*$.
 - (d) Whether $\mathscr{L}(D_1) = \mathscr{L}(D_2)$.
 - (e) Whether $\mathscr{L}(D) = \mathscr{L}(D_1)\mathscr{L}(D_2)$.