1. Prove that the following problems are undecidable.
(a) Given a Turing machine M, determine whether M writes the blank symbol on at least one input.
(b) Given a Turing machine M, determine whether M writes the blank symbol on all inputs.
(c) Given a Turing machine M, determine whether M overwrites a non-blank symbol by the blank symbol on at least one input.
(d) Given a Turing machine M, determine whether M overwrites a non-blank symbol by the blank symbol on all inputs.
2. Is it decidable whether a single-tape Turing machine on input ε scans some tape cell three or more times?
3. Recursive / not recursive but r.e / non-r.e.? Supply proofs.
(a) $\{M \mid M$ halts on $\varepsilon\}$.
(b) $\{M \mid M$ halts on some input $\}$.
(c) $\{M \mid M$ halts on all inputs $\}$.
(d) $\{M \mid M$ halts on no input $\}$.
4. Recursive or not? Give proofs.
(a) $\{M \# w \mid M$ is a one-tape Turing machine that never modifies the input $\}$.
(b) $\{M \mid M$ contains a useless state $\}$. A state of M is called useless if it is never entered on any input. The accept state and the reject state are never called useless.
5. Recursive / not recursive but r.e / non-r.e.? Supply proofs.
(a) $\left\{M \mid \mathscr{L}(M)=\mathscr{L}(M)^{R}\right\}$ (where L^{R} is the reverse of L).
(b) $\{M \mid \mathscr{L}(M)=\mathscr{L}(M) \mathscr{L}(M)\}$.
(c) $\left\{M \mid \mathscr{L}(M)=\mathscr{L}(M)^{*}\right\}$.
6. Design nondeterministic Turing machines to accept the following languages.
(a) $\left\{a^{m} b^{m n} \mid m, n \geqslant 0\right\}$.
(b) $\left\{w v w \mid w \in\{a, b\}^{*}, v \in\{a, b, c\}^{*}\right\}$.
7. Design unrestricted grammars for the following languages.
(a) $\left\{a^{n} b^{n^{2}} \mid n \geqslant 0\right\}$.
(b) $\left\{a^{m} b^{m n} \mid m, n \geqslant 0\right\}$.
(c) $\left\{w \in\{a, b, c\}^{*} \mid \# a(w)>\# b(w)>\# c(w)\right\}$.
(d) $\left\{w v w \mid w \in\{a, b\}^{*}, v \in\{a, b, c\}^{*}\right\}$.
8. Let L be a CFL (specified by a CFG or a PDA), and R a regular language (specified by a DFA or an NFA or a regular expression). Which of the following problems is/are decidable? Supply proofs.
(a) Determine whether $L \subseteq R$.
(b) Determine whether $R \subseteq L$.
9. Prove that given a $\mathrm{CFG} G$, the following problems are undecidable.
(a) Determine whether $\mathscr{L}(G)$ contains a string of the form $w w$.
(b) Determine whether $\mathscr{L}(G)=\mathscr{L}(G)^{R}$.
10. Prove that the following problems about DFA D, D_{1}, D_{2} over Σ are decidable.
(a) Whether $\mathscr{L}(D)=\emptyset$.
(b) Whether $\mathscr{L}(D)$ is finite.
(c) Whether $\mathscr{L}(D)=\Sigma^{*}$.
(d) Whether $\mathscr{L}\left(D_{1}\right)=\mathscr{L}\left(D_{2}\right)$.
(e) Whether $\mathscr{L}(D)=\mathscr{L}\left(D_{1}\right) \mathscr{L}\left(D_{2}\right)$.
