	INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR										
										Stamp / Signature of the Invigilator	
EXAMINATION (Mid Semester)									SEMESTER (Spring)		
Roll Number								Section	Name		
Subject Number	c	s	2	1	0	0	4	Subject Name	Formal Languages and Automata Theory		
Department / Center of the Student										Additional sheets	

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.
2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.
3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the subject you are taking examination.
4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by the paper-setter.
5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, exchange of these items or any other papers (including question papers) is not permitted.
6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough work. Report to the invigilator if the answer script has torn or distorted page(s).
7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the desk for checking by the invigilator.
8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited inside the Examination Hall.
9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until the invigilators collect all the answer scripts.
10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or exchanging information with others or any such attempt will be treated as 'unfair means'. Do not adopt unfair means and do not indulge in unseemly behavior.
Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

| To be filled in by the examiner | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Question Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
| Marks Obtained | | | | | | | | | | | |

Instructions

- Write your answers in the question paper itself. Be brief and precise. Answer all questions.
- Write the answers in the respective spaces provided. Use the last two blank pages for rough work.
- If you use any theorem/example/formula/construction covered in the class, just mention it, do not elaborate.
- Write your proofs/constructions in mathematically precise language. Unclear, incomplete, and/or dubious statements would be severely penalized.

Do not write anything on this page.

1. Two regular expressions over the same alphabet are called equivalent if they generate the same language. Prove/Disprove the equivalence of the following pairs of regular expressions over the alphabet $\{a, b\}$.
(a) $(a b+a)^{*} a$ and $a(b a+a)^{*}$.

Solution Equivalent. We have $(a b+a)^{*} a=(a(b+\varepsilon))^{*} a$, that is, this generates strings of the form $[a(b+\varepsilon) a(b+\varepsilon) \ldots a(b+\varepsilon)] a=a[(b+\varepsilon) a(b+\varepsilon) a \ldots(b+\varepsilon) a]$.

We finally have $a(b a+a)^{*}=a((b+\varepsilon) a)^{*}$.
(b) $\left(a b^{*} a+b a^{*} b\right)^{*}$ and $\left(a b^{*} a\right)^{*}+\left(b a^{*} b\right)^{*}$.

Solution Not equivalent. For example, $a a b b \in \mathscr{L}\left(\left(a b^{*} a+b a^{*} b\right)^{*}\right)$, whereas $a a b b \notin \mathscr{L}\left(\left(a b^{*} a\right)^{*}+\left(b a^{*} b\right)^{*}\right)$.
2. Convert the following NFA to an equivalent DFA using the subset-construction procedure (no credit for using any other method). Take $\{a, b\}$ as the input alphabet. Draw the state-transition diagram of your DFA. Mark all unreachable states (that is, states inaccessible from the start state) in your DFA.

Solution The transition table for the DFA is first given.

State	Input symbol	Next state
\emptyset	a	\emptyset
\emptyset	b	\emptyset
$\{p\}$	a	$\{p, q\}$
$\{p\}$	b	$\{p\}$
$\{q\}$	a	$\{r\}$
$\{q\}$	b	$\{q\}$
$\{r\}$	a	\emptyset
$\{r\}$	b	\emptyset

State	Input symbol	Next state
$\{p, q\}$	a	$\{p, q, r\}$
$\{p, q\}$	b	$\{p, q\}$
$\{p, r\}$	a	$\{p, q\}$
$\{p, r\}$	b	$\{p\}$
$\{q, r\}$	a	$\{r\}$
$\{q, r\}$	b	$\{q\}$
$\{p, q, r\}$	a	$\{p, q, r\}$
$\{p, q, r\}$	b	$\{p, q\}$

The transition diagram is shown below. The unreachable states are shaded.

3. Consider the languages over the alphabet $\{a, b, c\}$, generated by the context-free grammars of the following two parts. For both these grammars, S is the start (and the only non-terminal) symbol. Which of these languages is/are regular? (No credit without proper justification)
(a) $S \rightarrow a|b| c S c$.

Solution Not regular. The language of this grammar is $L_{(\mathbf{a})}=\left\{c^{n} a c^{n} \mid n \geqslant 0\right\} \cup\left\{c^{n} b c^{n} \mid n \geqslant 0\right\}$. Suppose that $L_{(\mathbf{a})}$ is regular, and let k be a pumping-lemma constant for $L_{(a)}$. Take $u=\varepsilon, v=c^{k}$, and $w=a c^{k}$. The pumping lemma gives the decomposition $v=x y z$ with $l=|y|>0$ such that $u x y^{i} z w \in L_{(\mathrm{a})}$ for all $i \geqslant 0$. Take $i=2$, and note that $c^{k+l} a c^{k} \in L_{(\mathbf{a})}$, a contradiction.
(b) $S \rightarrow a|b| S c S$.

Solution Regular. Repeated applications of the production $S \rightarrow c S c$ give sentential forms $S c S c S c \ldots c S$. Eventually, all occurrences of S must vanish by becoming a or b. Therefore $L_{(\mathrm{b})}=\mathscr{L}(S)$ is the language of the regular expression $(a+b)(c(a+b))^{*}$.
4. (a) Design a context-free grammar for the language $\left\{a^{i} b^{j} c^{k} d^{l} \mid i, j, k, l \geqslant 0\right.$, and $\left.i+k=j+l\right\}$ over the alphabet $\{a, b, c, d\}$. Clearly specify the role played by each non-terminal symbol of your grammar. (No credit for writing only a grammar without any explanation)

Solution We consider two cases.
Case 1: $i \geqslant j$
Write $i=j+t$ for some $t \geqslant 0$. Since $i+k=j+l$, this implies $l=k+t$, that is, $a^{i} b^{j} c^{k} d^{l}=a^{t} a^{j} b^{j} c^{k} d^{k} d^{t}$, where $j, k, t \geqslant 0$ are independent.

Case 2: $j \geqslant i$
Write $j=i+t$ for some $t \geqslant 0$. Since $i+k=j+l$, this implies $k=l+t$, that is, $a^{i} b^{j} c^{k} d^{l}=a^{i} b^{i} b^{t} c^{t} c^{l} d^{l}$, where $i, l, t \geqslant 0$ are independent.

In view of this, we first introduce three new non-terminal symbols and the following productions for them.

$$
\begin{array}{rll}
U & \rightarrow \varepsilon \mid a U b & {\left[\text { Generates } a^{n} b^{n} \text { for } n \geqslant 0\right]} \\
V & \rightarrow \varepsilon \mid b V c & {\left[\text { Generates } b^{n} c^{n} \text { for } n \geqslant 0\right]} \\
W & \rightarrow \varepsilon \mid c W d & {\left[\text { Generates } c^{n} d^{n} \text { for } n \geqslant 0\right]}
\end{array}
$$

If S is the start symbol, Case 2 is easy to handle:

$$
S \quad \rightarrow \quad U V W
$$

In Case $1, S$ generates equally many a 's and d 's at the two ends, and then converts to T to generate the central part.

$$
\begin{aligned}
S & \rightarrow a S d \mid T \\
T & \rightarrow U W
\end{aligned}
$$

Note: We can rephrase Case 2 to have $j>i$ (in order to avoid ambiguity). In this case, $t>0$, so the productions for V would be $V \rightarrow b c \mid b V c$.
(b) Show leftmost derivations of the strings $a d, b c$, and $a b c d$ by your grammar.

Solution

$$
\begin{array}{ll}
S \rightarrow a S d \rightarrow a T d \rightarrow a U W d \rightarrow a W d \rightarrow a d & \\
S \rightarrow U V W \rightarrow V W \rightarrow b V c W \rightarrow b c W \rightarrow b c & \\
S \rightarrow T \rightarrow U W \rightarrow a U b W \rightarrow a b W \rightarrow a b c W d \rightarrow a b c d & \text { [Using Case 1] } \\
S \rightarrow U V W \rightarrow a U b V W \rightarrow a b V W \rightarrow a b W \rightarrow a b c W d \rightarrow a b c d & \text { [Using Case 2] }
\end{array}
$$

5. In the following context-free grammar, the set of terminal symbols is $\Sigma=\{a, b, c\}$, the set of non-terminal symbols is $N=\{S, U, V\}$, and the start symbol is S. Convert the grammar to the Chomsky normal form. Show all the steps of your conversion.

$$
\begin{aligned}
S & \rightarrow U \mid V \\
U & \rightarrow \varepsilon|c| a V a \\
V & \rightarrow \varepsilon|c| b U b
\end{aligned}
$$

Solution To get rid of the unit productions $S \rightarrow U$ and $S \rightarrow V$, we introduce the new productions:

$$
S \rightarrow \varepsilon|c| a V a \mid b U b
$$

Now, in order to avoid the ε productions $U \rightarrow \varepsilon$ and $V \rightarrow \varepsilon$, we introduce the new productions:

$$
\begin{aligned}
& U \rightarrow a a \\
& V \rightarrow b b
\end{aligned}
$$

S does not appear on the right side of any production, so the production $S \rightarrow \varepsilon$ introduces no new productions. Now, we are ready to throw out all unit and ε productions. Thus, our grammar is now of the form:

$$
\begin{aligned}
S & \rightarrow c|a V a| b U b \\
U & \rightarrow c|a a| a V a \\
V & \rightarrow c|b b| b U b
\end{aligned}
$$

Since c does not appear with any other symbol on the right side of any production, it suffices to introduce new non-terminal symbols A and B for a and b only. This gives us:

$$
\begin{aligned}
S & \rightarrow c|A V A| B U B \\
U & \rightarrow c|A A| A V A \\
V & \rightarrow c|B B| B U B \\
A & \rightarrow a \\
B & \rightarrow b
\end{aligned}
$$

Finally, the productions with three symbols on the right side are handled.

$$
\begin{aligned}
S & \rightarrow c|A X| B Y \\
U & \rightarrow c|A A| A X \\
V & \rightarrow c|B B| B Y \\
X & \rightarrow V A \\
Y & \rightarrow U B \\
A & \rightarrow a \\
B & \rightarrow b
\end{aligned}
$$

6. Use the pumping lemma to prove that the language $\left\{x \# y \mid x, y \in\{a, b\}^{*}\right.$, and x is a substring of $\left.y\right\}$ over the alphabet $\{a, b, \#\}$ is not context-free.

Solution Suppose that the language-call it L_{6}-is regular. Let k be a pumping-lemma constant for L_{6}. Consider the string $z=a^{k} b^{k} \# a^{k} b^{k} \in L_{6}$. Since $|z| \geqslant k$, the pumping lemma for context-free languages supplies a decomposition $z=u v w x y$ with the following conditions:
(i) $|v w x| \leqslant k$,
(ii) $v x \neq \varepsilon$, and
(iii) $z_{i}=u v^{i} w x^{i} z \in L_{6}$ for all $i \geqslant 0$.

Let us call the blocks of a and b in z (or z_{i}) $A_{L}, B_{L}, A_{R}, B_{R}$ (from left to right). Now, consider several cases.
\boldsymbol{v} or \boldsymbol{x} contains \#: In this case, z_{i} contains a wrong number of \#'s for all $i \neq 1$.
Both v and \boldsymbol{x} belong to the left of \#: Now, z_{2} contains more symbols to the left of \# than to the right of \#, so the string to the left of \# in z_{2} cannot be a substring of the string to the right of \# in z_{2}.

Both \boldsymbol{v} and \boldsymbol{x} belong to the right of \#: Consider z_{0}, and the symbol counts again indicate that the string to the left of \# in z_{0} cannot be a substring of the string to the right of \# in z_{0}.
\boldsymbol{v} is to the left of \#, and \boldsymbol{x} is to the right of \#: By Condition (i), v and x cannot belong to non-consecutive blocks, so v must belong to B_{L}, and x to A_{R}. By Condition (ii), either v or x is non-empty (or both are). If v is non-empty, consider z_{2}. If x is non-empty, consider z_{0}.

In all the cases, we see that either z_{2} or z_{0} does not belong to L_{6}, a contradiction to Condition (iii).

