Abstract Algebraic Structures

- 1. Let *R* be a commutative ring with identity, and R[x] the set of univariate polynomials with coefficients from *R*. Define addition and multiplication of polynomials in the usual way.
 - (a) Prove that R[x] is a ring.

Solution Straightforward verification.

- (b) Prove that R[x] is an integral domain if and only if R is an integral domain.
- Solution $[\Rightarrow]$ Take non-zero elements $a, b \in R$. Then a and b are non-zero (constant) polynomials. Since R[x] is an integral domain, ab is not the zero polynomial. But ab is again a constant polynomial. It follows that $ab \neq 0$.

[\Leftarrow] Suppose that there exist $A(x), B(x) \in R[x]$ such that $A(x)B(x) = 0, A(x) \neq 0$, and $B(x) \neq 0$. Write $A(x) = a_0 + a_1x + a_2x^2 + \dots + a_dx^d$ with $a_d \neq 0$ and $d \ge 0$, and $B(x) = b_0 + b_1x + b_2x^2 + \dots + b_ex^e$ with $b_e \neq 0$ and $e \ge 0$. Since A(x)B(x) = 0, we have $a_db_e = 0$. This implies that R is not an integral domain.

- 2. (a) Prove that $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ is an integral domain.
- Solution Closure under subtraction and multiplication is easy to check. Since \mathbb{R} is commutative, $\mathbb{Z}[\sqrt{5}]$ is so too. Finally, take a = 1 and b = 0 in the definition to conclude that $\mathbb{Z}[\sqrt{5}]$ contains the multiplicative identity.
 - (**b**) Prove that $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$ is a field.

Solution Easy verification. Particularly, take $a + b\sqrt{5} \neq 0$, and show that

$$\frac{1}{a+b\sqrt{5}} = \frac{a-b\sqrt{5}}{a^2-5b^2} = \left(\frac{a}{a^2-5b^2}\right) + \left(\frac{-b}{a^2-5b^2}\right)\sqrt{5}.$$

Since $\sqrt{5}$ is irrational, we cannot have $a^2 - 5b^2 = 0$ for rational numbers a, b. So every non-zero element of $\mathbb{Q}[\sqrt{5}]$ is a unit.

- (c) Argue that $\mathbb{Z}[\sqrt{5}]$ contains infinitely many units.
- Solution $(2+\sqrt{5})(-2+\sqrt{5}) = 1$, so $2+\sqrt{5}$ is a unit, and it is > 1. Therefore $(2+\sqrt{5})^n$ are units for all $n \in \mathbb{N}$, distinct from one another.
- **3.** Define an operation \circ on $G = \mathbb{R}^* \times \mathbb{R}$ as $(a,b) \circ (c,d) = (ac,bc+d)$. Prove that (G,\circ) is a non-Abelian group.
- Solution [Closure] Obvious.

[Associativity] We have $(a,b) \circ ((c,d) \circ (e,f)) = (a,b) \circ (ce,de+f) = (ace,bce+de+f)$, and $((a,b) \circ (c,d)) \circ (e,f) = (ac,bc+d) \circ (e,f) = (ace,bce+de+f)$. [Identity] We have $(1,0) \circ (a,b) = (a,b)$ and $(a,b) \circ (1,0) = (a,b)$, so (1,0) is the identity in *G*. [Inverse] We have $(a,b) \circ (\frac{1}{a}, -\frac{b}{a}) = (1,0)$ and $(\frac{1}{a}, -\frac{b}{a}) \circ (a,b) = (1,0)$. Since $a \in \mathbb{R}^*$, $\frac{1}{a}$ is defined. [Non-Abelian] We have $(1,2) \circ (2,3) = (2,7)$, whereas $(2,3) \circ (1,2) = (2,5)$.

- 4. Let *G* be a (multiplicative) group, and *H*, *K* subgroups of *G*. Prove that:
 - (a) $H \cap K$ is a subgroup of G.
- Solution Let $a, b \in H \cap K$. Since $a, b \in H$ and H is a subgroup, we have $ab, a^{-1} \in H$. Likewise, $ab, a^{-1} \in K$. That is, $ab, a^{-1} \in H \cap K$.
 - (b) $H \cup K$ need not be a subgroup of *G*.
- Solution Take $G = \mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 15\}, H = \{1, 4\}$, and $K = \{1, 11\}$. $H \cup K = \{1, 4, 11\}$ is not closed under multiplication: $4 \times 11 \equiv 14 \pmod{15}$.
 - (c) $H \cup K$ is a subgroup of *G* if and only if $H \subseteq K$ or $K \subseteq H$.

Solution [If] Obvious.

[Only if] $H \cup K$ is a subgroup of *G*. Suppose that *H* is not contained in *K*. Then, there exists $h \in H$ such that $h \notin K$. Take any $k \in K$. Since h, k are both in $H \cup K$, and $H \cup K$ is a subgroup, we have $hk \in H \cup K$. Suppose that $hk \in K$. Since $k \in K$, we have $k^{-1} \in K$, so $(hk)k^{-1} = h \in K$, a contradiction. Therefore $hk \in H$. But $h \in H$, so $h^{-1} \in H$, and therefore $h^{-1}(hk) = k \in H$. It follows that $K \subseteq H$.

- (d) Define $HK = \{hk \mid h \in H, k \in K\}$. Define *KH* analogously. Prove that *HK* is a subgroup of *G* if and only if HK = KH.
- Solution [If] Let $h, h_1, h_2 \in H$ and $k, k_1, k_2 \in K$. We have $(h_1k_1)(h_2k_2) = h_1(k_1h_2)k_2$. Since KH = HK, $k_1h_2 = h_3k_3$ for some $h_3 \in H$ and $k_3 \in K$. Therefore $(h_1k_1)(h_2k_2) = h_1(h_3k_3)k_2 = (h_1h_3)(k_3k_2) \in HK$. Next, consider $(hk)^{-1} = k^{-1}h^{-1}$. Since KH = HK, we have $k^{-1}h^{-1} = h_4k_4$ for some $h_4 \in H$ and $k_4 \in K$, so $(hk)^{-1} = h_4k_4 \in HK$.

[Only if] Take $hk \in HK$. Since HK is a subgroup, we have $(hk)^{-1} \in HK$, that is, there exist $h_1 \in H$ and $k_1 \in K$ such that $(hk)^{-1} = h_1k_1$. But then, $hk = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH$. That is, $HK \subseteq KH$.

Conversely, take $kh \in KH$. We have $h^{-1} \in H$ and $k^{-1} \in K$, so $h^{-1}k^{-1} \in HK$. Since HK is a subgroup, we have $(h^{-1}k^{-1})^{-1} = kh \in HK$. Therefore $KH \subseteq HK$.

Additional Exercises

- 5. The set of *Gaussian integers* is defined as $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[i]$ is an integral domain. What are the units in this ring? Also define the set $\mathbb{Q}[i] = \{a + ib \mid a, b \in \mathbb{Q}\}$. Prove that $\mathbb{Q}[i]$ is a field.
- 6. Prove that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] = \left\{a + \left(\frac{1+\sqrt{5}}{2}\right)b \mid a, b \in \mathbb{Z}\right\}$ is an integral domain. Argue that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ contains infinitely many units. Prove that $\mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right] = \left\{a + \left(\frac{1+\sqrt{5}}{2}\right)b \mid a, b \in \mathbb{Q}\right\}$ is a field. Prove/Disprove the following equalities as sets: (a) $\mathbb{Z}[\sqrt{5}] = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, (b) $\mathbb{Q}[\sqrt{5}] = \mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right]$.
- 7. Prove that $\mathbb{Z}[\sqrt{-5}] = \{a+b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ is an integral domain. Find all the units in this ring. Prove that $\mathbb{Q}[\sqrt{-5}] = \{a+b\sqrt{-5} \mid a, b \in \mathbb{Q}\}$ is a field.
- 8. Let $n \ge 2$, and let $(R_i, +_i, \times_i)$ be rings for $i = 1, 2, 3, \dots, n$. Define two operations on the Cartesian product $R = R_1 \times R_2 \times \cdots \times R_n$ as $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ and $(a_1, a_2, \dots, a_n) \cdot (b_1, b_2, \dots, b_n) = (a_1 \times b_1, a_2 \times b_2, \dots, a_n \times b_n)$ (component-wise operations).
 - (a) Prove that $(R, +, \cdot)$ is a ring.
 - (b) If each R_i is commutative, prove that R is commutative too.
 - (c) If each R_i is with identity, prove that R is with identity too. What are the units of R in this case?
 - (d) Prove/Disprove: If each R_i is an integral domain, then R is also an integral domain.
 - (e) Prove/Disprove: If each R_i is a field, then R is also a field.
- **9.** Let *R* be the set of all functions $\mathbb{Z} \to \mathbb{Z}$. For $f, g \in R$, define (f+g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n) for all $n \in \mathbb{Z}$.
 - (a) Prove that *R* is a commutative ring with identity under these two operations.
 - (b) What are the units of *R*?
 - (c) Is *R* an integral domain?
- **10.** Let *R* be the set of all functions $\mathbb{Z} \to \mathbb{Z}$. For $f, g \in R$, define (f+g)(n) = f(n) + g(n) and (fg)(n) = f(g(n)) for all $n \in \mathbb{Z}$. Prove/Disprove: *R* is a ring under these two operations.
- **11.** Let *R* be the set of all *n*-bit words for some $n \in \mathbb{N}$. Which of the following is/are ring(s)?
 - (a) *R* under bitwise OR and AND operations.
 - (b) *R* under bitwise XOR and AND operations.
- 12. Let *R* be a ring. Prove that the following conditions are equivalent.
 - (1) R is commutative.
 - (2) $(a+b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.
 - (3) $(a+b)(a-b) = a^2 b^2$ for all $a, b \in R$.

13. Let *R* be a commutative ring with identity.

(a) Let $n \in \mathbb{N}$, $n \ge 2$, be a fixed constant. Prove that the set $R[x_1, x_2, \dots, x_n]$ of *n*-variate polynomials with coefficients from *R* is a commutative ring with identity.

(b) Prove that the set R[[x]] of all infinite power series expansions with coefficients from R is a commutative ring with identity. What are the units of R[[x]]?

- 14. If *R* is an integral domain, which of the rings of the previous exercise is/are integral domain(s)?
- **15.** Let *R* be a ring, and *S*, T_1 , T_2 subrings of *R*. If $S \subseteq T_1 \cup T_2$, prove that $S \subseteq T_1$ or $S \subseteq T_2$.
- 16. Let *G* be a group. Suppose that there exists some $n \in \mathbb{N}$ such that for all $a, b \in G$, we have $(ab)^n = a^n b^n$ and $(ab)^{n+1} = a^{n+1}b^{n+1}$. Prove that *G* is Abelian.
- **17.** Let *H* and *K* be two subgroups of a (multiplicative) group *G*. Suppose that HK = KH (so this is a subgroup), and $H \cap K = \{e\}$. Prove that for every element $a \in HK$, there exist a unique $h \in H$ and a unique $k \in K$ such that a = hk.
- **18.** Let G be a (multiplicative) group, and H a subgroup of G.
 - (a) Prove that the following conditions are equivalent.
 - (1) aH = bH. (2) $a^{-1}b \in H$.

(b) Define a relation ρ on *G* as $a \rho b$ if and only if aH = bH (or equivalently, $a^{-1}b \in H$). Prove that ρ is an equivalence relation.

- (c) What are the equivalence classes of ρ ?
- (d) Prove that the equivalence classes of ρ are equinumerous.
- **19.** [*Lagrange's theorem*] Let G be a finite group, and H a subgroup. Then, the order of H divides the order of G. (The order of a group is the number of elements in it.)
- **20.** Let *I* be a non-empty index set (not necessarily finite), and let a_i , $i \in I$, be symbols. Define *G* to be the set of all symbolic sums of the form $\sum_{i \in I} n_i a_i$, where all $n_i \in \mathbb{Z}$, and only finitely many n_i are non-zero. Define addition on *G* as $\sum_{i \in I} m_i a_i + \sum_{i \in I} n_i a_i = \sum_{i \in I} (m_i + n_i)a_i$. Prove that *G* is an Abelian group under this addition. *G* is called the *free Abelian group* generated by the symbols a_i , $i \in I$.