
CS21201 Discrete Structures

Tutorial 10

Abstract Algebraic Structures

1. Let R be a commutative ring with identity, and R[x] the set of univariate polynomials with coefficients from

R. Define addition and multiplication of polynomials in the usual way.

(a) Prove that R[x] is a ring.

Solution Straightforward verification.

(b) Prove that R[x] is an integral domain if and only if R is an integral domain.

Solution [⇒] Take non-zero elements a,b ∈ R. Then a and b are non-zero (constant) polynomials. Since R[x] is an

integral domain, ab is not the zero polynomial. But ab is again a constant polynomial. It follows that ab 6= 0.

[⇐] Suppose that there exist A(x),B(x) ∈ R[x] such that A(x)B(x) = 0, A(x) 6= 0, and B(x) 6= 0. Write

A(x) = a0 + a1x + a2x2 + · · ·+ adxd with ad 6= 0 and d > 0, and B(x) = b0 + b1x + b2x2 + · · ·+ bexe with

be 6= 0 and e > 0. Since A(x)B(x) = 0, we have adbe = 0. This implies that R is not an integral domain.

2. (a) Prove that Z[
√

5 ] = {a+b
√

5 | a,b ∈ Z} is an integral domain.

Solution Closure under subtraction and multiplication is easy to check. Since R is commutative, Z[
√

5 ] is so too. Finally,

take a = 1 and b = 0 in the definition to conclude that Z[
√

5 ] contains the multiplicative identity.

(b) Prove that Q[
√

5 ] = {a+b
√

5 | a,b ∈Q} is a field.

Solution Easy verification. Particularly, take a+b
√

5 6= 0, and show that

1

a+b
√

5
=

a−b
√

5

a2 −5b2
=

(

a

a2 −5b2

)

+

( −b

a2 −5b2

)√
5.

Since
√

5 is irrational, we cannot have a2 − 5b2 = 0 for rational numbers a,b. So every non-zero element of

Q[
√

5 ] is a unit.

(c) Argue that Z[
√

5 ] contains infinitely many units.

Solution (2+
√

5)(−2+
√

5) = 1, so 2+
√

5 is a unit, and it is > 1. Therefore (2+
√

5)n are units for all n ∈N, distinct

from one another.

3. Define an operation ◦ on G = R∗×R as (a,b) ◦ (c,d) = (ac,bc+ d). Prove that (G,◦) is a non-Abelian

group.

Solution [Closure] Obvious.

[Associativity] We have (a,b)◦((c,d)◦(e, f )) = (a,b)◦(ce,de+ f ) = (ace,bce+de+ f ), and ((a,b)◦(c,d))◦
(e, f ) = (ac,bc+d)◦ (e, f ) = (ace,bce+de+ f ).

[Identity] We have (1,0)◦ (a,b) = (a,b) and (a,b)◦ (1,0) = (a,b), so (1,0) is the identity in G.

[Inverse] We have (a,b)◦ ( 1
a
,− b

a
) = (1,0) and ( 1

a
,− b

a
)◦ (a,b) = (1,0). Since a ∈R∗, 1

a
is defined.

[Non-Abelian] We have (1,2)◦ (2,3) = (2,7), whereas (2,3)◦ (1,2) = (2,5).

4. Let G be a (multiplicative) group, and H,K subgroups of G. Prove that:

(a) H ∩K is a subgroup of G.

Solution Let a,b ∈ H ∩K. Since a,b ∈ H and H is a subgroup, we have ab,a−1 ∈ H. Likewise, ab,a−1 ∈ K. That is,

ab,a−1 ∈ H ∩K.

(b) H ∪K need not be a subgroup of G.

Solution Take G = Z∗
15 = {1,2,4,7,8,11,13,15}, H = {1,4}, and K = {1,11}. H ∪K = {1,4,11} is not closed under

multiplication: 4×11 ≡ 14 (mod 15).

(c) H ∪K is a subgroup of G if and only if H ⊆ K or K ⊆ H.
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Solution [If] Obvious.

[Only if] H ∪K is a subgroup of G. Suppose that H is not contained in K. Then, there exists h ∈ H such that

h /∈ K. Take any k ∈ K. Since h,k are both in H ∪K, and H ∪K is a subgroup, we have hk ∈ H ∪K. Suppose

that hk ∈ K. Since k ∈ K, we have k−1 ∈ K, so (hk)k−1 = h ∈ K, a contradiction. Therefore hk ∈ H. But h ∈ H,

so h−1 ∈ H, and therefore h−1(hk) = k ∈ H. It follows that K ⊆ H.

(d) Define HK = {hk | h ∈ H, k ∈ K}. Define KH analogously. Prove that HK is a subgroup of G if and

only if HK = KH.

Solution [If] Let h,h1,h2 ∈ H and k,k1,k2 ∈ K. We have (h1k1)(h2k2) = h1(k1h2)k2. Since KH = HK, k1h2 = h3k3 for

some h3 ∈ H and k3 ∈ K. Therefore (h1k1)(h2k2) = h1(h3k3)k2 = (h1h3)(k3k2) ∈ HK. Next, consider (hk)−1 =
k−1h−1. Since KH = HK, we have k−1h−1 = h4k4 for some h4 ∈ H and k4 ∈ K, so (hk)−1 = h4k4 ∈ HK.

[Only if] Take hk ∈ HK. Since HK is a subgroup, we have (hk)−1 ∈ HK, that is, there exist h1 ∈ H and k1 ∈ K

such that (hk)−1 = h1k1. But then, hk = (h1k1)
−1 = k−1

1 h−1
1 ∈ KH. That is, HK ⊆ KH.

Conversely, take kh ∈ KH. We have h−1 ∈ H and k−1 ∈ K, so h−1k−1 ∈ HK. Since HK is a subgroup, we have

(h−1k−1)−1 = kh ∈ HK. Therefore KH ⊆ HK.

Additional Exercises

5. The set of Gaussian integers is defined as Z[i] = {a+ ib | a,b ∈ Z}. Prove that Z[i] is an integral domain.

What are the units in this ring? Also define the set Q[i] = {a+ ib | a,b ∈Q}. Prove that Q[i] is a field.

6. Prove that Z
[

1+
√

5
2

]

=
{

a+
(

1+
√

5
2

)

b | a,b ∈ Z

}

is an integral domain. Argue that Z
[

1+
√

5
2

]

contains

infinitely many units. Prove that Q
[

1+
√

5
2

]

=
{

a+
(

1+
√

5
2

)

b | a,b ∈Q

}

is a field. Prove/Disprove the

following equalities as sets: (a) Z[
√

5 ] = Z

[

1+
√

5
2

]

, (b) Q[
√

5 ] =Q

[

1+
√

5
2

]

.

7. Prove that Z[
√
−5 ] = {a+b

√
−5 | a,b ∈ Z} is an integral domain. Find all the units in this ring. Prove that

Q[
√
−5 ] = {a+b

√
−5 | a,b ∈Q} is a field.

8. Let n > 2, and let (Ri,+i,×i) be rings for i = 1,2,3, . . . ,n. Define two operations on the Cartesian

product R = R1 ×R2 ×·· ·×Rn as (a1,a2, . . . ,an)+ (b1,b2, . . . ,bn) = (a1 +1 b1,a2 +2 b2, . . . ,an +n bn) and

(a1,a2, . . . ,an) · (b1,b2, . . . ,bn) = (a1 ×1 b1,a2 ×2 b2, . . . ,an ×n bn) (component-wise operations).

(a) Prove that (R,+, ·) is a ring.

(b) If each Ri is commutative, prove that R is commutative too.

(c) If each Ri is with identity, prove that R is with identity too. What are the units of R in this case?

(d) Prove/Disprove: If each Ri is an integral domain, then R is also an integral domain.

(e) Prove/Disprove: If each Ri is a field, then R is also a field.

9. Let R be the set of all functions Z→Z. For f ,g∈R, define ( f +g)(n)= f (n)+g(n) and ( f g)(n)= f (n)g(n)
for all n ∈ Z.

(a) Prove that R is a commutative ring with identity under these two operations.

(b) What are the units of R?

(c) Is R an integral domain?

10. Let R be the set of all functions Z→Z. For f ,g ∈ R, define ( f +g)(n) = f (n)+g(n) and ( f g)(n) = f (g(n))
for all n ∈ Z. Prove/Disprove: R is a ring under these two operations.

11. Let R be the set of all n-bit words for some n ∈ N. Which of the following is/are ring(s)?

(a) R under bitwise OR and AND operations.

(b) R under bitwise XOR and AND operations.

12. Let R be a ring. Prove that the following conditions are equivalent.

(1) R is commutative.

(2) (a+b)2 = a2 +2ab+b2 for all a,b ∈ R.

(3) (a+b)(a−b) = a2 −b2 for all a,b ∈ R.
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13. Let R be a commutative ring with identity.

(a) Let n ∈ N, n > 2, be a fixed constant. Prove that the set R[x1,x2, . . . ,xn] of n-variate polynomials with

coefficients from R is a commutative ring with identity.

(b) Prove that the set R[[x]] of all infinite power series expansions with coefficients from R is a commutative

ring with identity. What are the units of R[[x]]?

14. If R is an integral domain, which of the rings of the previous exercise is/are integral domain(s)?

15. Let R be a ring, and S,T1,T2 subrings of R. If S ⊆ T1 ∪T2, prove that S ⊆ T1 or S ⊆ T2.

16. Let G be a group. Suppose that there exists some n ∈N such that for all a,b ∈ G, we have (ab)n = anbn and

(ab)n+1 = an+1bn+1. Prove that G is Abelian.

17. Let H and K be two subgroups of a (multiplicative) group G. Suppose that HK = KH (so this is a subgroup),

and H ∩K = {e}. Prove that for every element a ∈ HK, there exist a unique h ∈ H and a unique k ∈ K such

that a = hk.

18. Let G be a (multiplicative) group, and H a subgroup of G.

(a) Prove that the following conditions are equivalent.

(1) aH = bH.

(2) a−1b ∈ H.

(b) Define a relation ρ on G as a ρ b if and only if aH = bH (or equivalently, a−1b ∈ H). Prove that ρ is

an equivalence relation.

(c) What are the equivalence classes of ρ?

(d) Prove that the equivalence classes of ρ are equinumerous.

19. [Lagrange’s theorem] Let G be a finite group, and H a subgroup. Then, the order of H divides the order

of G. (The order of a group is the number of elements in it.)

20. Let I be a non-empty index set (not necessarily finite), and let ai, i ∈ I, be symbols. Define G to be the set

of all symbolic sums of the form ∑
i∈I

niai, where all ni ∈ Z, and only finitely many ni are non-zero. Define

addition on G as ∑
i∈I

miai +∑
i∈I

niai = ∑
i∈I

(mi +ni)ai. Prove that G is an Abelian group under this addition. G

is called the free Abelian group generated by the symbols ai, i ∈ I.
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