(CS21201 Discrete Structures
Tutorial 9

Recurrences

1. [Stooge sort] We want to sort an array A of n integer. We run the following algorithm.

If n < 2, sort A manually, otherwise do the following.
Recursively sort the first [2n/3] elements of A.
Recursively sort the last [2n/3] elements of A.
Recursively sort the first [2n/3] elements of A.

(a) Prove that this algorithm sorts A correctly.
Solution The first two recursive calls bring the largest one-third elements of A to their correct positions.
(b) Find the running time of this algorithm.

Solution Neglecting the ceilings, we can write T'(n) = 37T (2n/3) + ¢, where ¢ is a constant. We have 6 =log;/,3 =
2.709511... and d = 0, so by the master theorem, T'(n) = @(n'%3/23) = @(n2 709511,

2. Solve for the following divide-and-conquer recurrence: T (n) = 2T (n/2) + IL with T(1) = 1.
ogn

Solution Dividing both the sides of the given recurrence by n, we obtain

T(n) _ T(n/2) 1
n n/2 logn’

T(n) _ T(2Y

. S > We can rewrite the above as

Assuming n = 2F and S(k) =
1 .
S(k) = S(k—1)+ 1 with S(0) = 1.
Unwinding gives

S() = S(k=1)+

1
1k
1 1 1
= Sth—3)4——t—— -
()+ k—2 - k—1 * k
S
i=1
logn m o
that is, T'(n) = [1—1— Z } We have H,, = Z; O(logm). Therefore T (n) = @(nloglogn).
i=1

3. Solve the following recurrence relation, and deduce the closed-form expression for 7'(n).

n n)+n(log,n)?, ifn
T(n):{ ng(f)vL (log,): énz; (d>0).

Solution Given that T(n) = \/nT(\/n)+nlogin (whered >0) and T(2) =2, we have:

T T
() = (v7n) + loggn e [dividing both sides by n }
n N
d _ T(n)
= Sn)= S(V/n)+login ... | assuming S(n) = p

— Page 1 0of4 —

= S(22k) = S(ZZ(IH)) + (Zk)d . [substituting n = 22]
~ R(k)= R(k-—1)+(29* [let R(k) = 5(22) |

= Rk)= RO+ +) +-+0H) " 9 [because (24)! =2k = (2")1(}

k ‘
T(2
= RK= 1+Y Y . ﬂ%:A%Q:IJmﬂﬁ@Rwy:ﬂf%:l
i=1 J
(2d>(/"+|)71 .
= R(k)= { w7 ifd>0
14k, ifd=0
ey*1 T
. R(k) = S(sz) = 7 Hd>0 , wheren= 22 and S(n) = (n>
14k, ifd=0 n
Finally,
2910gd n—1 . 24nlogd n—n .
S(l’l _ 7%131 s ifd >0 = T(n) — 721{_21 s ifd >0
1 +log,logyn, ifd=0 n+nlog,logyn, ifd=0

4. Suppose that a recursive algorithm on an input of size n makes two recursive calls: the first one is on an input
of size [n/5], and the second one is on an input of size [7n/10]. In addition to these call, the algorithm takes
time proportional to n. Express the running time as a recurrence, and solve for 7'(n) in the big-® notation.
(Remark: This recurrence appears in the analysis of a worst-case linear-time median-finding algorithm.)

Solution We have
T(n)=T([n/5])+T([7n/10])+cn

for some constant of proportionality ¢. First of all, this implies that T(n) 2> cn. Next, we show that we can
choose a positive constant d such that T'(n) < dn. We proceed by induction on n. The recurrence gives

T(n)

T([n/51)+T(]7n/10]) +cn
d[n/5]+d[7n/10] +cn
d((n/5)+1)+d((7n/10)+ 1) +cn
= d(9/10)n+2d +cn
n[(9/10)d+ (2/n) +¢].

IN N

Let us choose any d > 10(2+ ¢). But then, we have
T(n) <n[(9/10)d+ (2/n) +c] < n[(9/10)d +2+c] < n[(9/10)d + (1/10)d] = dn.

* 5. [Quick select] You are given an array A of n distinct integers, and an integer r in the range 1 < r < n. Your
task is to find the r-th smallest element of A (that is, the element of rank r in A). To this end, you choose a
uniformly random element p of A, and partition A using p as the pivot. Let the pivot go to position k (assume
one-based indexing of arrays). If k = r, then you return p. If k > r, you recursively find the r-th smallest
element in the array consisting of elements of A smaller than p. Finally, if k < r, you recursively find the
(r — k)-th smallest element in the array consisting of elements of A larger than p.

(a) Prove that the expected running time 7 (n) of this algorithm satisfies the recurrence

T(n) < ent 3T(3n/4) + 3T(n—1)

where c is a constant.

Solution For simplicity, we may assume that » is a multiple of 4. If not, you can find a few smallest elements of A,
remove them from A, and adjust k accordingly. This takes O(n) time which when added to the partitioning
stage does not change the complexity of the algorithm. A consists of three parts: the smallest quarter S, the
largest quarter L, and the middle half M. With probability % the pivot p is an element of M, and with probability

— Page2o0of4 —

% it is an element in S or L. If p is in M, then either L or R is eliminated from the array in the recursive call.
Some elements of M may also be eliminated, but we can ignore it because we are computing an upper bound
on T'(n). On the other hand, if p is from S or L, then the worst-case array size in the recursive call is n — 1.

(b) Prove that T'(n) = @(n).

Solution Since partitioning already takes @(n) time, we have T'(n) is Q(n). Using the recurrence, we show that T'(n) is

10.

O(n) too. To that end, we show that 7'(n) < dn for some constant d for all sufficiently large n. Substituting this
form in the recurrence gives

1 1
T(n) < cn+§T(3n/4)+§T(n—1)
1 3dn 1
< Cn+§XT+EXd(n—1)
7 1
7
< [c—l—gd}n.

It we choose any constant d 2> 8¢, we have T'(n) < dn.

Additional Exercises

Find big-@® estimates for the following positive-real-valued increasing functions f(n).

(@) f(n)=125f(n/4)+2n* whenever n = 4' fort > 1.
(b) f(n)=125f(n/5)+2n> whenever n =5 fort > 1.
(¢) f(n)=125f(n/6)+ 2n> whenever n = 6' fort > 1.

Let the running time of a recursive algorithm satisfy the recurrence

T(n) = aT (n/b) +cnlogn
for some e € N. Let r = log,a. Deduce the running time 7'(n) in the big-® notation for the three cases:
(1)t <d, (i)t >d, and (iii) t = d.

Let ¢ be the number of one-bits in n. Suppose that the running time of a divide-and-conquer algorithm
satisfies the recurrence 7'(n) = 2T (n/2) +nt. When n is a power of 2, we havet = 1, so T (n) = 2T (n/2) +n.
Why does this not imply that 7'(n) = ®(nlogn)? Find a correct estimate for 7'(n) in the big-O notation.
(Remark: There exist algorithms whose running times depend on 7. Example: Left-to-right exponentiation.)

Let the running time of a recursive algorithm satisfy the recurrence

T(n) = aT(v/n) +h(n).
Deduce the running time 7'(n) in the big-® notation for the cases: (i) h(n) = n? for some d € N, and
(ii) h(n) = log? n for some d € Nj.

[Karatsuba multiplication] You want to multiply two polynomials a(x) and b(x) of degree (or degree
bound) n — 1. Each of the input polynomials is stored in an array of n floating-point variables. The product
c(x) = a(x)b(x) is of degree (at most) 2n — 2, and can be stored in an array of size 2n — 1.

(a) Use the school-book multiplication method to compute ¢(x) (use the convolution formula). Deduce the
running time of this algorithm.

(b) Let? = [n/2]. Divide the input polynomials as a(x) = x'a;;(x) + a;o(x) and b(x) = x'bpi(x) + by ().
where each part of a and b is a polynomial of degree < r — 1. But then

c(x) = ah,-(x)bhi(x)XZt + (ahi(x)blo(x) +ay, (x)bhi(x))xt + a1 (x)byo(x).

The obvious recursive algorithm uses this formula to compute c(x) by making four recursive calls on
polynomials of degrees < 7 — 1. Deduce the running time of this algorithm.

— Page 30f4 —

11.

12.

13.

14.

15.

(¢) Reduce the number of recursive calls to three (how?). Deduce the running time of this algorithm.

In the quick-sort algorithm, two recursive calls are made on arrays of sizes i and n —i — 1 for some
i €40,1,2,...,n— 1} (assuming that there are no duplicates in the input array). Suppose that all these
values of i are equally likely. Deduce the expected running time of quick sort under these assumptions.

Suppose that an algorithm, upon an input of size n, recursively solves two instances of size n/2 and three
instances of size n/4. Let the “divide + combine” time be /(n). Find the running times of the algorithm if
@) h(n)=1, (b) h(n) =n, (©) h(n)=n? (d) h(n)=n’.
Deduce the running times of divide-and-conquer algorithms in the big-® notation if their running times
satisfy the following recurrence relations.

@ T(n)=T2n/3)+T(n/3)+1. (b) T(n)=T(2n/3)+T(n/3)+n.
(¢) T(n)=T(12n/3)+T(n/3)+nlogn. (d) T(n)=T2n/3)+T(n/3)+n%
Deduce the running times of divide-and-conquer algorithms in the big-® notation if their running times
satisfy the following recurrence relations.

(@) T(n)=Tn/5)+T(7n/10)+1. (b) T(n)=T(n/5)+T(7n/10)+n.
(¢) T(n)=T(n/5)+T(7n/10)+nlogn. (d) T(n)=T(n/5)+T(7n/10)+n>.
Consider the following variant of stooge sort for sorting an array A of size n.

1. Recursively sort the first [3n/4] elements of A.
2. Recursively sort the last [3n/4] elements of A.
3. Recursively sort the first [n/2] elements of A.

(a) Prove that this algorithm correctly sorts A.
(b) Derive the asymptotic running time of this algorithm.

— Page 4of4 —

