Recurrences

1. [Stooge sort] We want to sort an array A of n integer. We run the following algorithm.

If $n \leqslant 2$, sort A manually, otherwise do the following.
Recursively sort the first $\lceil 2 n / 3\rceil$ elements of A.
Recursively sort the last $\lceil 2 n / 3\rceil$ elements of A.
Recursively sort the first $\lceil 2 n / 3\rceil$ elements of A.
(a) Prove that this algorithm sorts A correctly.

Solution The first two recursive calls bring the largest one-third elements of A to their correct positions.
(b) Find the running time of this algorithm.

Solution Neglecting the ceilings, we can write $T(n)=3 T(2 n / 3)+c$, where c is a constant. We have $\delta=\log _{3 / 2} 3=$ $2.709511 \ldots$ and $d=0$, so by the master theorem, $T(n)=\Theta\left(n^{\log _{3 / 2} 3}\right)=\Theta\left(n^{2.709511 \ldots}\right)$.
2. Solve for the following divide-and-conquer recurrence: $T(n)=2 T(n / 2)+\frac{n}{\log n}$ with $T(1)=1$.

Solution Dividing both the sides of the given recurrence by n, we obtain

$$
\frac{T(n)}{n}=\frac{T(n / 2)}{n / 2}+\frac{1}{\log n} .
$$

Assuming $n=2^{k}$ and $S(k)=\frac{T(n)}{n}=\frac{T\left(2^{k}\right)}{2^{k}}$, we can rewrite the above as

$$
S(k)=S(k-1)+\frac{1}{k} \quad \text { with } S(0)=1
$$

Unwinding gives

$$
\begin{aligned}
S(k) & =S(k-1)+\frac{1}{k} \\
& =S(k-2)+\frac{1}{k-1}+\frac{1}{k} \\
& =S(k-3)+\frac{1}{k-2}+\frac{1}{k-1}+\frac{1}{k} \\
& =\cdots=S(0)+\sum_{i=1}^{k} \frac{1}{i}
\end{aligned}
$$

that is, $T(n)=n S(k)=n\left[1+\sum_{i=1}^{\log n} \frac{1}{i}\right]$. We have $H_{m}=\sum_{i=1}^{m} \frac{1}{i}=\Theta(\log m)$. Therefore $T(n)=\Theta(n \log \log n)$.
3. Solve the following recurrence relation, and deduce the closed-form expression for $T(n)$.

$$
T(n)=\left\{\begin{array}{ll}
\sqrt{n} T(\sqrt{n})+n\left(\log _{2} n\right)^{d}, & \text { if } n>2 \\
2, & \text { if } n=2
\end{array}(d \geqslant 0) .\right.
$$

Solution Given that $T(n)=\sqrt{n} T(\sqrt{n})+n \log _{2}^{d} n \quad$ (where $d \geqslant 0$) and $\quad T(2)=2$, we have:

$$
\begin{array}{rlrl}
\frac{T(n)}{n} & =\frac{T(\sqrt{n})}{\sqrt{n}}+\log _{2}^{d} n & \ldots[\text { dividing both sides by } n] \\
\Rightarrow & S(n) & =S(\sqrt{n})+\log _{2}^{d} n & \ldots\left[\text { assuming } S(n)=\frac{T(n)}{n}\right]
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad S\left(2^{2^{k}}\right)=S\left(2^{2^{(k-1)}}\right)+\left(2^{k}\right)^{d} \quad \ldots\left[\text { substituting } n=2^{2^{k}}\right] \\
& \Rightarrow \quad R(k)=R(k-1)+\left(2^{k}\right)^{d} \quad \ldots\left[\text { let } R(k)=S\left(2^{2^{k}}\right)\right] \\
& \Rightarrow \quad R(k)=R(0)+\left(2^{d}\right)^{1}+\left(2^{d}\right)^{2}+\cdots+\left(2^{d}\right)^{k-1}+\left(2^{d}\right)^{k} \quad \cdots\left[\text { because }\left(2^{k}\right)^{d}=2^{k d}=\left(2^{d}\right)^{k}\right] \\
& \Rightarrow \quad R(k)=1+\sum_{i=1}^{k}\left(2^{d}\right)^{i} \quad \ldots\left[S(2)=\frac{T(2)}{2}=1 \text {, implying } R(0)=S\left(2^{2^{0}}\right)=1\right] \\
& \Rightarrow \quad R(k)=\left\{\begin{aligned}
\frac{\left(2^{d}\right)^{(k+1)}-1}{2^{d}-1}, & \text { if } d>0 \\
1+k, & \text { if } d=0
\end{aligned}\right. \\
& \therefore R(k)=S\left(2^{2^{k}}\right)=\left\{\begin{array}{rl}
\frac{\left(2^{d}\right)^{(k+1)}-1}{2^{d}-1}, & \text { if } d>0 \\
1+k, & \text { if } d=0
\end{array}, \quad \text { where } n=2^{2^{k}} \text { and } S(n)=\frac{T(n)}{n} .\right.
\end{aligned}
$$

Finally,

$$
S(n)=\left\{\begin{array}{rl}
\frac{2^{d} \log _{2}^{d} n-1}{2^{d}-1}, & \text { if } d>0 \\
1+\log _{2} \log _{2} n, & \text { if } d=0
\end{array} \quad \Rightarrow \quad T(n)=\left\{\begin{aligned}
\frac{2^{d} n \log _{2}^{d} n-n}{2^{d}-1}, & \text { if } d>0 \\
n+n \log _{2} \log _{2} n, & \text { if } d=0
\end{aligned}\right.\right.
$$

4. Suppose that a recursive algorithm on an input of size n makes two recursive calls: the first one is on an input of size $\lceil n / 5\rceil$, and the second one is on an input of size $\lceil 7 n / 10\rceil$. In addition to these call, the algorithm takes time proportional to n. Express the running time as a recurrence, and solve for $T(n)$ in the big- Θ notation. (Remark: This recurrence appears in the analysis of a worst-case linear-time median-finding algorithm.)

Solution We have

$$
T(n)=T(\lceil n / 5\rceil)+T(\lceil 7 n / 10\rceil)+c n
$$

for some constant of proportionality c. First of all, this implies that $T(n) \geqslant c n$. Next, we show that we can choose a positive constant d such that $T(n) \leqslant d n$. We proceed by induction on n. The recurrence gives

$$
\begin{aligned}
T(n) & =T(\lceil n / 5\rceil)+T(\lceil 7 n / 10\rceil)+c n \\
& \leqslant d\lceil n / 5\rceil+d\lceil 7 n / 10\rceil+c n \\
& \leqslant d((n / 5)+1)+d((7 n / 10)+1)+c n \\
& =d(9 / 10) n+2 d+c n \\
& =n[(9 / 10) d+(2 / n)+c] .
\end{aligned}
$$

Let us choose any $d \geqslant 10(2+c)$. But then, we have

$$
T(n) \leqslant n[(9 / 10) d+(2 / n)+c] \leqslant n[(9 / 10) d+2+c] \leqslant n[(9 / 10) d+(1 / 10) d]=d n
$$

* 5. [Quick select] You are given an array A of n distinct integers, and an integer r in the range $1 \leqslant r \leqslant n$. Your task is to find the r-th smallest element of A (that is, the element of rank r in A). To this end, you choose a uniformly random element p of A, and partition A using p as the pivot. Let the pivot go to position k (assume one-based indexing of arrays). If $k=r$, then you return p. If $k>r$, you recursively find the r-th smallest element in the array consisting of elements of A smaller than p. Finally, if $k<r$, you recursively find the $(r-k)$-th smallest element in the array consisting of elements of A larger than p.
(a) Prove that the expected running time $T(n)$ of this algorithm satisfies the recurrence

$$
T(n) \leqslant c n+\frac{1}{2} T(3 n / 4)+\frac{1}{2} T(n-1)
$$

where c is a constant.
Solution For simplicity, we may assume that n is a multiple of 4. If not, you can find a few smallest elements of A, remove them from A, and adjust k accordingly. This takes $\mathrm{O}(n)$ time which when added to the partitioning stage does not change the complexity of the algorithm. A consists of three parts: the smallest quarter S, the largest quarter L, and the middle half M. With probability $\frac{1}{2}$ the pivot p is an element of M, and with probability
$\frac{1}{2}$ it is an element in S or L. If p is in M, then either L or R is eliminated from the array in the recursive call. Some elements of M may also be eliminated, but we can ignore it because we are computing an upper bound on $T(n)$. On the other hand, if p is from S or L, then the worst-case array size in the recursive call is $n-1$.
(b) Prove that $T(n)=\Theta(n)$.

Solution Since partitioning already takes $\Theta(n)$ time, we have $T(n)$ is $\Omega(n)$. Using the recurrence, we show that $T(n)$ is $\mathrm{O}(n)$ too. To that end, we show that $T(n) \leqslant d n$ for some constant d for all sufficiently large n. Substituting this form in the recurrence gives

$$
\begin{aligned}
T(n) & \leqslant c n+\frac{1}{2} T(3 n / 4)+\frac{1}{2} T(n-1) \\
& \leqslant c n+\frac{1}{2} \times \frac{3 d n}{4}+\frac{1}{2} \times d(n-1) \\
& =\left[c+\left(\frac{7}{8}-\frac{1}{2 n}\right) d\right] n \\
& \leqslant\left[c+\frac{7}{8} d\right] n .
\end{aligned}
$$

It we choose any constant $d \geqslant 8 c$, we have $T(n) \leqslant d n$.

Additional Exercises

6. Find big- Θ estimates for the following positive-real-valued increasing functions $f(n)$.
(a) $f(n)=125 f(n / 4)+2 n^{3}$ whenever $n=4^{t}$ for $t \geqslant 1$.
(b) $f(n)=125 f(n / 5)+2 n^{3}$ whenever $n=5^{t}$ for $t \geqslant 1$.
(c) $f(n)=125 f(n / 6)+2 n^{3}$ whenever $n=6^{t}$ for $t \geqslant 1$.
7. Let the running time of a recursive algorithm satisfy the recurrence

$$
T(n)=a T(n / b)+c n^{d} \log ^{e} n
$$

for some $e \in \mathbb{N}$. Let $t=\log _{b} a$. Deduce the running time $T(n)$ in the big- Θ notation for the three cases: (i) $t<d$, (ii) $t>d$, and (iii) $t=d$.
8. Let t be the number of one-bits in n. Suppose that the running time of a divide-and-conquer algorithm satisfies the recurrence $T(n)=2 T(n / 2)+n t$. When n is a power of 2 , we have $t=1$, so $T(n)=2 T(n / 2)+n$. Why does this not imply that $T(n)=\Theta(n \log n)$? Find a correct estimate for $T(n)$ in the big-O notation.
(Remark: There exist algorithms whose running times depend on t. Example: Left-to-right exponentiation.)
9. Let the running time of a recursive algorithm satisfy the recurrence

$$
T(n)=a T(\sqrt{n})+h(n)
$$

Deduce the running time $T(n)$ in the big- Θ notation for the cases: (i) $h(n)=n^{d}$ for some $d \in \mathbb{N}$, and (ii) $h(n)=\log ^{d} n$ for some $d \in \mathbb{N}_{0}$.
10. [Karatsuba multiplication] You want to multiply two polynomials $a(x)$ and $b(x)$ of degree (or degree bound) $n-1$. Each of the input polynomials is stored in an array of n floating-point variables. The product $c(x)=a(x) b(x)$ is of degree (at most) $2 n-2$, and can be stored in an array of size $2 n-1$.
(a) Use the school-book multiplication method to compute $c(x)$ (use the convolution formula). Deduce the running time of this algorithm.
(b) Let $t=\lceil n / 2\rceil$. Divide the input polynomials as $a(x)=x^{t} a_{h i}(x)+a_{l o(x)}$ and $b(x)=x^{t} b_{h i}(x)+b_{l o(x)}$, where each part of a and b is a polynomial of degree $\leqslant t-1$. But then

$$
c(x)=a_{h i}(x) b_{h i}(x) x^{2 t}+\left(a_{h i}(x) b_{l o}(x)+a_{l o}(x) b_{h i}(x)\right) x^{t}+a_{l o}(x) b_{l o}(x) .
$$

The obvious recursive algorithm uses this formula to compute $c(x)$ by making four recursive calls on polynomials of degrees $\leqslant t-1$. Deduce the running time of this algorithm.
(c) Reduce the number of recursive calls to three (how?). Deduce the running time of this algorithm.
11. In the quick-sort algorithm, two recursive calls are made on arrays of sizes i and $n-i-1$ for some $i \in\{0,1,2, \ldots, n-1\}$ (assuming that there are no duplicates in the input array). Suppose that all these values of i are equally likely. Deduce the expected running time of quick sort under these assumptions.
12. Suppose that an algorithm, upon an input of size n, recursively solves two instances of size $n / 2$ and three instances of size $n / 4$. Let the "divide + combine" time be $h(n)$. Find the running times of the algorithm if
(a) $h(n)=1$,
(b) $h(n)=n$,
(c) $h(n)=n^{2}$,
(d) $h(n)=n^{3}$.
13. Deduce the running times of divide-and-conquer algorithms in the big- Θ notation if their running times satisfy the following recurrence relations.
(a) $T(n)=T(2 n / 3)+T(n / 3)+1$.
(b) $T(n)=T(2 n / 3)+T(n / 3)+n$.
(c) $T(n)=T(2 n / 3)+T(n / 3)+n \log n$.
(d) $T(n)=T(2 n / 3)+T(n / 3)+n^{2}$.
14. Deduce the running times of divide-and-conquer algorithms in the big- Θ notation if their running times satisfy the following recurrence relations.
(a) $T(n)=T(n / 5)+T(7 n / 10)+1$.
(b) $T(n)=T(n / 5)+T(7 n / 10)+n$.
(c) $T(n)=T(n / 5)+T(7 n / 10)+n \log n$.
(d) $T(n)=T(n / 5)+T(7 n / 10)+n^{2}$.
15. Consider the following variant of stooge sort for sorting an array A of size n.

1. Recursively sort the first $\lceil 3 n / 4\rceil$ elements of A.
2. Recursively sort the last $\lceil 3 n / 4\rceil$ elements of A.
3. Recursively sort the first $\lceil n / 2\rceil$ elements of A.
(a) Prove that this algorithm correctly sorts A.
(b) Derive the asymptotic running time of this algorithm.
